搜档网
当前位置:搜档网 › 三角恒等式试题

三角恒等式试题

三角恒等式试题
三角恒等式试题

常见的三角恒等式

常见的三角恒等式及其证明 设A,B,C是三角形的三个内角 (1) tanA+tanB+tanC=tanAtanBtanC 证明: tanA+tanB+tanC=tan(A+B)(1-tanAtanB)+tanC=tan(π-c)(1-tanAtanB)+tanC=-ta nC(1-tanAtanB)+tanC=tanAtanBtanC (2) cotAcotB+cotBcotC+cotCcotA=1 证明: tanA+tanB+tanC=tanAtanBtanC cotX*tanX=1 tanA*cotAcotBcotC+tanB*cotAcotBcotC+tanC*cotAcotBcotC=tanAtanBtanC* cotAcotBcotC cotAcotB+cotBcotC+cotCcotA=1 (3) (cosA)^2+(cosB)^2+(cosC)^2+2cosAcosBcosC=1 证明: (cosA)^2+(cosB)^2+x^2+2cosAcosBx=1 x^2+2cosAcosBx+(cosA)^2+(cosB)^2-1=0 x={-2cosAcosB+-√[(2cosAcosB)^2-4((cosA)^2+(cosB)^2-1)]}/2 x=-cosAcosB+-√[(cosAcosB)^2-((cosA)^2+(cosB)^2-1)] x=-cosAcosB+-√[1-(cosA)^2][1-(cosB)^2] x=-cosAcosB+-√[(sinA)^2(sinB)^2] x=-cosAcosB+-sinAsinB x=-cos(A+B)或x=-cos(A-B) x=cosC或x=-cos(A-B) 所以 cosC是方程的一个根 所以 (cosA)^2+(cosB)^2+(cosC)^2+2cosAcosBcosC=1 (4) cosA+cosB+cosC=1+4sin(A/2)sin(B/2)sin(C/2) 证明: cosA+cosB+cosC=1+4sin(A/2)sin(B/2)sin(C/2) cos(180-B-C)+cosB+cosC=1+2sin(A/2)[2sin(B/2)sin(C/2)] cos(180-B-C)+cosB+cosC=1+2cos(B/2+C/2)[2sin(B/2)sin(C/2)] -cos(B+C)+cosB+cosC=1+2cos(B/2+C/2)[2sin(B/2)sin(C/2)]

三角函数常用公式以及证明

三角函数公式和相关证明 倒数关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 商的关系: sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系: sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α) 平常针对不同条件的常用的两个公式 sin^2(α)+cos^2(α)=1 tan α *cot α=1 一个特殊公式 (sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ) 证明:(sina+sinθ)*(sina-sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2] =sin(a+θ)*sin(a-θ) 坡度公式 我们通常半坡面的铅直高度h与水平高度l的比叫做坡度(也叫坡比),用字母i表示, 即i=h / l, 坡度的一般形式写成l : m 形式,如i=1:5.如果把坡面与水平面的夹角记作 a(叫做坡角),那么i=h/l=tan a. 锐角三角函数公式 正弦:sin α=∠α的对边/∠α 的斜边 余弦:cos α=∠α的邻边/∠α的斜边 正切:tan α=∠α的对边/∠α的邻边 余切:cot α=∠α的邻边/∠α的对边 二倍角公式 正弦 sin2A=2sinA·cosA 余弦 1.Cos2a=Cos^2(a)-Sin^2(a) 2.Cos2a=1-2Sin^2(a) 3.Cos2a=2Cos^2(a)-1 即Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1=1-2Sin^2(a) 正切 tan2A=(2tanA)/(1-tan^2(A)) 三倍角公式

三角形内有关角的三角函数恒等式的证明

三角形内有关角的三角函数恒等式的证明 张思明 课型和教学模式:习题课,“导学探索,自主解决”模式 教学目的: (1)掌握利用三角形条件进行角的三角函数恒等式证明的主要方法,使学生熟悉三角变换的一些常用方法和技巧(如定向变形,和积互换等)。 (2)通过自主的发现探索,培养学生发散、创造的思维习惯和思维能力,体验数形结合、特殊一般转化的数学思想。并利用此题材做学法指导。 (3)通过个人自学、小组讨论、互相启发、合作学习,培养学生自主与协作相结合的学习能力和敢于创新,不断探索的科学精神。 教学对象:高一(5)班 教学设计: 一.引题:(A,B环节) 1.1复习提问:在三角形条件下,你能说出哪些有关角的三角恒等式? 拟答: , …… , , …… 这些结果是诱导公式,的特殊情况。 1.2今天开始的学习任务是解决这类问题:在三角形条件下,有关角的三角恒等式的证明。学习策略是先分若干个学习小组(四人一组),分头在课本P233---P238,P261-266的例题和习题中,找出有三角形条件的所有三角恒等式。 1.3备考:期待找出有关△ABC内角A、B、C的三角恒等式有: (1)P233:例题10:sinA+sinB+sinC=4cosA/2cosB/2cosC/2

(2)P238:习题十七第6题:sinA+sinB-sinC=4sinA/2sinB/2cosC/2. (3) cosA+cosB+cosC=1+4sinA/2sinB/2sinC/2. (4) sin2A+sin2B+sin2C=4sinAsinBsinC. (5)cos2A+cos2B+cos2C=-1-4cosAcosBcosC. (6)P264:复参题三第22题:tgA+tgB+tgC = tgAtgBtgC. (7) 也许有学生会找出:P264--(23)但无妨。 1.4请各组学生分工合作完成以上恒等式的证明: 提示:建议先自学例题10,注意题目之间的联系,以减少证明的重复劳动。 二.第一层次的问题解决(C,D环节) 2.1让一个组上黑板,请学生自主地挑出有“代表性”的3题(不超过3题)书写证明过程。然后请其他某一个组评判或给出不同的证法。 证法备考:(1)左到右:化积---->提取----->化积。 (2)左到右:化积---->提取----->化积sin(A+B)/2=cosC/2 (3)左到右:化积--->--->留“1”提取-->化积 (4)左到右:化积--->提取---->化积sin2C=sin2(A+B) (5)左到右: (6)左到右:tgA+tgB=tg(A+B)(1-tgAtgB) (7)左到右:通分后利用(4)的结果 2.2教师注意记录学生的“选择”,问:为什么认为你们的选择有代表性? 体现学法的“暗导”。选择的出发点可以多种多样,如从品种、不同的证法、逻辑源头等考虑。 2.3另一组学生判定结果或给出其他解法,(解法可能多样。)也可对前一组学生所选择书写的“例题”的“代表性”进行评价。教师记录之。注意学生的书写中的问题(不当的跳步等……)。 2.4其他证法备考: 1.如右到左用积化和差,(略) 2.利用已做的习题:

三角恒等式-高中数学知识点讲解

三角恒等式 1.三角恒等式 基本公式 sin(2kπ+α)=sinα,cos(2kπ+α)=cosα,tan(2kπ+α)=tanα cot(2kπ+α)=cotα,sec(2kπ+α)=secα,csc(2kπ+α)=cscα sin(π+α)=﹣sinα,cos(π+α)=﹣cosα,tan(π+α)=tanα cot(π+α)=cotα,sec(π+α)=﹣secα,csc(π+α)=﹣cscα sin(﹣α)=﹣sinα,cos(﹣α)=cosα,tan(﹣α)=﹣tanα cot(﹣α)=﹣cotα,sec(﹣α)=secα,csc(﹣α)=﹣cscα sin(π﹣α)=sinα,cos(π﹣α)=﹣cosα,tan(π﹣α)=﹣tanα cot(π﹣α)=﹣cotα,sec(π﹣α)=﹣secα,csc(π﹣α)=cscα sin(α﹣π)=﹣sinα,cos(α﹣π)=﹣cosα,tan(α﹣π)=tanα cot(α﹣π)=cotα,sec(α﹣π)=﹣secα,csc(α﹣π)=﹣cscα sin(2π﹣α)=﹣sinα,cos(2π﹣α)=cosα,tan(2π﹣α)=﹣tanα cot(2π﹣α)=﹣cotα,sec(2π﹣α)=secα,csc(2π﹣α)=﹣cscα sin(π/2+α)=cosα,cos(π/2+α)=﹣sinα,tan(π/2+α)=﹣cotα cot(π/2+α)=﹣tanα,sec(π/2+α)=﹣cscα,csc(π/2+α)=secα sin(π/2﹣α)=cosα,cos(π/2﹣α)=sinα,tan(π/2﹣α)=cotα cot(π/2﹣α)=tanα,sec(π/2﹣α)=cscα,csc(π/2﹣α)=secα sin(3π/2+α)=﹣cosα,cos(3π/2+α)=sinα,tan(3π/2+α)=cotα cot(3π/2+α)=tanα,sec(3π/2+α)=cscα,csc(3π/2+α)=﹣secα sin(3π/2﹣α)=﹣cosα,cos(3π/2﹣α)=sinα,tan(3π/2﹣α)=cotαcot(3π/2﹣α)=tanα,sec(3π/2﹣α)=﹣cscα,csc(3π/2﹣α)=﹣secα两角余差 1/ 3

最常用三角公式(精心简洁整理,可直接打印)

最常用三角公式 1. 诱导公式 sin(-a) = - sin(a) cos(-a) = cos(a) sin(π/2 - a) = cos(a) cos(π/2 - a) = sin(a) sin(π/2 + a) = cos(a) cos(π/2 + a) = - sin(a) sin(π - a) = sin(a) cos(π - a) = - cos(a) sin(π + a) = - sin(a) cos(π + a) = - cos(a) 2. 两角和与差的三角函数 sin(a + b) = sin(a)cos(b) + cos(α)sin(b) cos(a + b) = cos(a)cos(b) - sin(a)sin(b) sin(a - b) = sin(a)cos(b) - cos(a)sin(b) cos(a - b) = cos(a)cos(b) + sin(a)sin(b) tan(a + b) = [tan(a) + tan(b)] / [1 - tan(a)tan(b)] tan(a - b) = [tan(a) - tan(b)] / [1 + tan(a)tan(b)] 3.和差化积公式 sin(a) + sin(b) = 2sin[(a + b)/2]cos[(a - b)/2] sin(a) - sin(b) = 2cos[(a + b)/2]sin[(a - b)/2] cos(a) + cos(b) = 2cos[(a + b)/2]cos[(a - b)/2] cos(a) - cos(b) = - 2sin[(a + b)/2]sin[(a - b)/2]

三角函数公式的推导及公式大全

诱导公式 目录·诱导公式 ·诱导公式记忆口诀 ·同角三角函数基本关系 ·同角三角函数关系六角形记忆法 ·两角和差公式 ·倍角公式 ·半角公式 ·万能公式 ·万能公式推导 ·三倍角公式 ·三倍角公式推导 ·三倍角公式联想记忆 ·和差化积公式 ·积化和差公式 ·和差化积公式推导 诱导公式 ★诱导公式★ 常用的诱导公式有以下几组: 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα

tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα (以上k∈z) 诱导公式记忆口诀 ※规律总结※

三角恒等式证明9种基本技巧

三角恒等式证明9种基本技巧 三角恒等式的证明是三角函数中一类重要问题,这类问题主要以无条件和有条件恒等式出现。根据恒等式的特点,可采用各种不同的方法技巧,技巧常从以下各个方面表示出来。 1.化角 观察条件及目标式中角度间联系,立足于消除角间存在的差异,或改变角的表达形式以便更好地沟通条件与结论使之统一,或有利于公式的运用,化角是证明三角恒等式时一种常用技巧。 例1求证:tan 23x - tan 21x =x x x 2cos cos sin 2+ 思路分析:本题的关键是角度关系:x=23x -2 1 x ,可作以下证明: 2.化函数 三角函数中有几组重要公式,它们不仅揭示了角间的关系,同时揭示了函数间的相互关系,三角变换中,以观察函数名称的差异为主观点,以化异为为同(如化切为弦等)的思路,恰当选用公式,这也是证明三角恒等式的一种基本技巧。 例2 设A B A tan )tan(-+A C 22sin sin =1,求证:tanA 、tanC 、tanB 顺次成等比数列。 思路分析:欲证tan 2 C = tanA ·tanB ,将条件中的弦化切是关键。 3.化幂 应用升、降幂公式作幂的转化,以便更好地选用公式对面临的问题实行变换,这也是三角恒等式证明的一种技巧。 例3求证 cos4α-4cos2α+3=8sin 4 α 思路分析:应用降幂公式,从右证到左:

将已知或目标中的常数化为特殊角的函数值以适应求征需要,这方面的例子效多。如 1=sin 2 α+cos 2 α=sec 2 α-tan 2 α=csc 2 α-cot 2 α=tan αcot α=sin αcsc α=cos αsec α,1=tan450 =sin900 =cos00 等等。如何对常数实行变换,这需要对具体问题作具体分析。 例4 求证 αααα2 2sin cos cos sin 21--=α α tan 1tan 1+- 思路分析:将左式分子中“1”用“sin 2 α+cos 2 α”代替,问题便迎刃而解。 5.化参数 用代入、加减、乘除及三角公式消去参数的方法同样在证明恒等式时用到。 例5 已知acos 2 α+bsin 2 α=mcos 2 β,asin 2 α+bcos 2 α=nsin 2 β,mtan 2 α=ntan 2 β(β≠n π) 求证:(a+b)(m+n)=2mn 6.化比 一些附有积或商形式的条件三角恒等式证明问题,常可考虑应用比例的有关定理。用等比定理,合、分比定理对条件加以变换,或顺推出结论,或简化条件,常常可以为解题带来方便。 例6 已知(1+ cos α)(1- cos β)=1- 2 ( ≠0,1)。求证:tan 2 2α= -+11tan 22 β 思路分析:综观条件与结论,可考虑从条件中将 分离出来,以结论中 -+11为向导,应用合比定理即可达到论证之目的。

高中数学人教版必修简单的三角恒等变换教案(系列一)

3.2 简单的三角恒等变换 一.教学目标 1、通过二倍角的变形公式推导半角的正弦、余弦、正切公式,体会化归、换元、方程、逆向 使用公式等数学思想,提高学生的推理能力。 2、理解并掌握二倍角的正弦、余弦、正切公式,并会利用公式进行简单的恒等变形,体会三 角恒等变形在数学中的应用。 3、通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中 如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力. 二、教学重点与难点 教学重点:引导学生以已有的十一个公式为依据,以推导积化和差、和差化积、半角公式的推导作为基本训练,学习三角变换的内容、思路和方法,在与代数变换相比较中,体会三角变换的特点,提高推理、运算能力. 教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力. 三、教学设想: (一)复习:三角函数的和(差)公式,倍角公式 (二)新课讲授: 1、由二倍角公式引导学生思考:2 αα与有什么样的关系? 学习和(差)公式,倍角公式以后,我们就有了进行变换的性工具,从而使三角变换的内容、思路和方法更加丰富,这为我们的推理、运算能力提供了新的平台. 例1、试以cos α表示222 sin ,cos ,tan 222α α α. 解:我们可以通过二倍角2cos 2cos 12αα=-和2cos 12sin 2αα=-来做此题. 因为2cos 12sin 2αα=-,可以得到21cos sin 2 2α α-=;

因为2cos 2cos 12α α=-,可以得到21cos cos 22 α α+=. 又因为222 sin 1cos 2tan 21cos cos 2α α ααα-==+. 思考:代数式变换与三角变换有什么不同? 代数式变换往往着眼于式子结构形式的变换.对于三角变换,由于不同的三角函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角函数种类方面的差异,因此三角恒等变换常常首先寻找式子所包含的各个角之间的联系,这是三角式恒等变换的重要特点. 例2.已知135sin = α,且α在第二象限,求2tan α的值。 例3、求证: (1)、()()1sin cos sin sin 2 αβαβαβ=++-????; (2)、sin sin 2sin cos 22θ? θ? θ?+-+=. 证明:(1)因为()sin αβ+和()sin αβ-是我们所学习过的知识,因此我们从等式右边着手. ()sin sin cos cos sin αβαβαβ+=+;()sin sin cos cos sin αβαβαβ-=-. 两式相加得()()2sin cos sin sin αβαβαβ=++-; 即()()1sin cos sin sin 2 αβαβαβ=++-????; (2)由(1)得()()sin sin 2sin cos αβαβαβ++-=①;设,αβθαβ?+=-=, 那么,22θ? θ? αβ+-==. 把,αβ的值代入①式中得sin sin 2sin cos 22θ?θ?θ?+-+=. 思考:在例3证明中用到哪些数学思想? 例3证明中用到换元思想,(1)式是积化和差的形式,

最全面高中数学三角恒等式变形解题常用方法2021(完整版)

高中数学三角恒等式变形解题常用方法 一.知识分析 1. 三角函数恒等变形公式 (1)两角和与差公式 (2)二倍角公式 (3)三倍角公式 (4)半角公式 (5)万能公式 ,, (6)积化和差 , , ,

(7)和差化积 , , ,2.网络结构

3. 基础知识疑点辨析 (1)正弦、余弦的和差角公式能否统一成一个三角公式? 实际上,正弦、余弦的和角公式包括它们的差角公式,因为在和角公式中,是一个任意角,可正可负。另外,公式虽然形式不同,结构不同,但本质相同: 。

(2)怎样正确理解正切的和差角公式? 正确理解正切的和差角公式需要把握以下三点: ①推导正切和角公式的关键步骤是把公式,右边的“分子”、“分母”都除以,从而“化弦为切”,导出了。 ②公式都适用于为任意角,但运用公式时,必须限定,都不等于。 ③用代替,可把转化为,其限制条件同②。 (3)正弦、余弦、正切的和差角公式有哪些应用? ①不用计算器或查表,只通过笔算求得某些特殊角(例如15°,75°,105°角等)的三角函数值。 ②能由两个单角的三角函数值,求得它们和差角的三角函数值;能由两个单角的三角函数值与这两个角的范围,求得两角和的大小(注意这两个条件缺一不可)。 ③能运用这些和(差)角公式以及其它有关公式证明三角恒等式或条件等式,化简三角函 数式,要注意公式可以正用,逆用和变用。运用这些公式可求得简单三角函数式的最大值或最 小值。 (4)利用单角的三角函数表示半角的三角函数时应注意什么? 先用二倍角公式导出,再把两式的左边、右边分别相除,得到,由此得到的三个公式:,, 分别叫做正弦、余弦、正切的半角公式。公式中根号前的符号,由所在的象限来确定,如果没有给出限制符号的条件,根号前面应保持正、负两个符号。另外,容易 证明。 4. 三角函数变换的方法总结 三角学中,有关求值、化简、证明以及解三角方程与解几何问题等,都经常涉及到运用三 角变换的解题方法与技巧,而三角变换主要为三角恒等变换。三角恒等变换在整个初等数学中

人教版高中数学必修四三角恒等变换题库

(数学4必修)第三章 三角恒等变换 [基础训练A 组] 一、选择题 1.已知(,0)2x π∈-,4cos 5x =,则=x 2tan ( ) A .247 B .247- C .724 D .7 24- 2.函数3sin 4cos 5y x x =++的最小正周期是( ) A . 5π B .2 π C .π D .2π 3.在△ABC 中,cos cos sin sin A B A B >,则△ABC 为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .无法判定 4.设00sin14cos14a =+,00sin16cos16b =+,c = , 则,,a b c 大小关系( ) A .a b c << B .b a c << C .c b a << D .a c b << 5.函数)cos[2()]y x x ππ= -+是( ) A .周期为4π的奇函数 B .周期为4 π的偶函数 C .周期为2π的奇函数 D .周期为2 π的偶函数 6.已知cos 2θ= 44sin cos θθ+的值为( ) A .1813 B .1811 C .9 7 D .1- 二、填空题 1.求值:0000 tan 20tan 4020tan 40+=_____________。 2.若1tan 2008,1tan αα+=-则1tan 2cos 2αα += 。 3.函数f x x x x ()cos sin cos =-223的最小正周期是___________。

4.已知sin cos 223 θ θ +=那么sin θ的值为 ,cos2θ的值为 。 5.ABC ?的三个内角为A 、B 、C ,当A 为 时,cos 2cos 2 B C A ++取得最大值,且这个最大值为 。 三、解答题 1.已知sin sin sin 0,cos cos cos 0,αβγαβγ++=++=求cos()βγ-的值. 2.若,2 2sin sin = +βα求βαcos cos +的取值范围。 3.求值:0 010001cos 20sin10(tan 5tan 5)2sin 20 -+-- 4.已知函数.,2 cos 32sin R x x x y ∈+= (1)求y 取最大值时相应的x 的集合; (2)该函数的图象经过怎样的平移和伸变换可以得到)(sin R x x y ∈=的图象. (数学4必修)第三章 三角恒等变换 [综合训练B 组] 一、选择题 1.设2132tan131cos50cos6sin 6,,,221tan 13a b c -=-==+则有( ) A .a b c >> B .a b c << C .a c b << D .b c a <<

3-2-2 三角恒等式的应用

能 力 提 升 一、选择题 1.函数y =sin x 1+cos x 的周期等于( ) A.π2 B .π C .2π D .3π [答案] C [解析] y =2sin x 2cos x 2 2cos 2x 2=tan x 2,T =π 1 2=2π. 2.函数y =1 2sin2x +sin 2x 的值域是( ) A.??????-12,32 B.???? ??-32,12 C.??????-22+12,22+12 D.? ????? -22-12,22-12 [答案] C [解析] ∵y =12sin2x +sin 2x =12sin2x +1-cos2x 2=12+22sin ? ? ? ??2x -π4, ∴值域为??????12 -22,12+22. 3.已知函数f (x )=sin x +a cos x 的图象的一条对称轴是x =5π 3,则

函数g (x )=a sin x +cos x 的最大值是( ) A.223 B.23 3 C.43 D.263 [答案] B [解析] 由于函数f (x )的图象关于x =5π 3对称, 则f (0)=f ? ?? ??10π3,∴a =-32-a 2, ∴a =-3 3, ∴g (x )=-3 3sin x +cos x =233sin ? ????x +2π3, ∴g (x )max =23 3. 4.函数y =cos 2ωx -sin 2ωx (ω>0)的最小正周期是π,则函数f (x )=2sin(ωx +π 4)的一个单调递增区间是( ) A .[-π2,π 2] B .[5π4,9π4] C .[-π4,3π4] D .[π4,5π4] [答案] B [解析] y =cos 2ωx -sin 2ωx =cos2ωx (ω>0), 因为函数的最小正周期为π,故 2π 2ω=π,所以ω=1.则

第七章 三角恒等式的证明

第七章 三角恒等式的证明 要证明三角恒等式就必须了解证明三角恒等式的方法,为此我们将在下面一一介绍。 第一节 一般恒等式 (一)基本思想、方法和技巧 三角恒等变形的基本思想是:首先考察函数式能不能直接应用三角公式(或者三角公式的变形)进行变形;若不能则用代数法对三角函数中的角进行适当的变换,使之变形为可以应用三角公式的形式。 1、熟悉公式的变形,做到“三会”(会正用,会逆用,会变形用) 例题1:在非直角三角形中,求证:C B A C B A tan tan tan tan tan tan =++. 证明:由题有A+B+C=π则 左=()()C B A B A tan tan tan 1tan +-+ =-()C B A C tan tan tan 1tan +-=右 例题2:求证:340tan 20tan 340tan 20tan =??+?+?. 分析: 在正切恒等式中常常出现3,应于33 tan =π 相联系,这样问题就好解决了。 证明: 仿例题1即可。 例题3:求证:8 1804020= ???Cos Cos Cos 。 分析:角度成倍数增长,就应该和二倍角联系在一起,构造适合条件形式,从而解决问题。 证明:左= ?????202804020202Sin Cos Cos Cos Sin =?? 2016081Sin Sin =右。 例题4:求证:x x x Sin x Cos SinxCosx tan 1tan 1212 2-+=-+. 分析:弦化切(先降次)或者切化弦。 证明:左= ()x x Sinx Cosx Cosx Sinx x Sin x Cos Cosx Sinx tan 1tan 1222 -+=-+= -+=右。 2、注意角间的关系,正确应用三角公式进行变换 必须领会和掌握公式的实质,决不能停留在表面上。若:SinxCosx x Sin 22=, 也可以改写为2 32323222x Cos x Sin x Sin x Cos x Sin Sinx ==或者,因此,对三角公式要善于变换其中角的表现形式以及发现恒等式变形问题中角之间的相互关系: ⑴改变角的表现形式; 如()()βαβαββααα α-+=-+-=? =,,2 2。

新编人教A版高中数学必修4第三章三角恒等变换导学案

第三章 三角恒等变换 1.三角恒等变换中角的变换的技巧 三角函数是以角为自变量的函数,因此三角恒等变换离不开角之间的变换.观察条件及目标式中角度间联系,立足消除角之间存在的差异,或改变角的表达形式以便更好地沟通条件与结论使之统一,或有利于公式的运用,化角是三角恒等变换的一种常用技巧. 一、利用条件中的角表示目标中的角 例1.已知cos ? ????π6+α=33,求cos ? ??? ?5π6-α的值. 分析.将π6+α看作一个整体,观察π6+α与5π 6 -α的关系. 解.∵? ????π6+α+? ?? ? ?5π6-α=π, ∴ 5π6-α=π-? ?? ??π6 +α. ∴cos ? ????5π6-α=cos ???? ? ?π-? ????π6+α =-cos ? ????π6+α=-33,即cos ? ?? ??5π 6-α =-33. 二、利用目标中的角表示条件中的角 例 2.设 α 为第四象限角,若sin 3α sin α =13 5 ,则tan 2α= _______________________________. 分析.要求tan 2α的值,注意到sin 3α=sin(2α+α)=sin 2αcos α+cos 2αsin α,代入到sin 3αsin α=13 5中,首先求出cos 2α的值后,再由同角三角函数之间的关系求出tan 2α. 解析.由sin 3αsin α=sin (2α+α)sin α=sin 2αcos α+cos 2αsin α sin α =2cos 2 α+cos 2α=135 . ∵2cos 2 α+cos 2α=1+2cos 2α=135.∴cos 2α=45. ∵α为第四象限角,∴2k π+3π 2<α<2k π+2π(k ∈Z ), ∴4k π+3π<2α<4k π+4π(k ∈Z ),

三角函数恒等式证明的基本方法

三角函数恒等式证明的基本方法 三角函数恒等式是指对定义域内的任何一个自变量x 都成立的等式;三角函数恒等式的证明问题是指证明给定的三角函数等式对定义域内的任何一个自变量x 都成立的数学问题。这类问题主要包括:①三角函数等式一边较繁杂,一边较简单;②三角函数等式的两边都较繁杂两种类型。那么在实际解答三角函数恒等式的证明问题时,到底应该怎样展开思路,它的基本方法如何呢?下面通过典型例题的解析来回答这个问题。 【典例1】解答下列问题: 1、证明下列三角函数恒等式: (1)4222sin sin cos cos 1αααα++=; (2) 22(cos 1)sin 22cos ααα-+=-; (3)若sin α.cos α<0,sin α.tan α<0, =±2tan 2 α 。 【解析】 【知识点】①同角三角函数的基本关系;②二次根式的定义与性质;③分式的定义与性质。 【解题思路】(1)对左边运用同角三角函数的基本关系,通过运算就可得到右边,从而证明恒等式;(2)对左边运用同角三角函数的基本关系,通过运算就可得到右边,从而证明恒等式;(3)对左边运用分式的性质,同角三角函数的基本关系和二次根式的性质,通过运算就

可得到右边,从而证明恒等式。 【详细解答】(1)Q 左边=sin 2α( sin 2α+ cos 2α)+ cos 2α= sin 2α+ cos 2α=1 =右边,∴4222sin sin cos cos 1αααα++=;(2)Q 左边= cos 2α-2 cos α+1+ sin 2α =2-2 cos α=右边,∴22(cos 1)sin 22cos ααα-+=-;(3) Q sin α.cos α<0,sin α.tan α<0,∴α是第二象限的角,?2 α 是第一象限或第三象限的角,①当 2 α 是第一象限的角时,左边 |1sin |2|cos | 2α α+- |1sin |2|cos | 2 α α-=1sin 1sin 2 2cos 2 α α α +-+=2tan 2α;②当2 α是第一象限的角时,左边 |1sin |2|cos |2α α+-|1sin | 2|cos | 2α α- = 1sin 1sin 2 2cos 2 α α α --+-=-2tan 2α;?左边=±2tan 2 α=右边,∴若若 sin α.cos α<0,sin α.tan α<0 ±2tan 2α。 2、求证:22sin()sin() sin cos αβαβαβ+-=1-22tan tan βα ; 【解析】

高中奥林匹克数学竞赛讲座三角恒等式和三角不等式

高中奥林匹克数学竞赛讲座 三角恒等式和三角不等式 知识、方法、技能 三角恒等变形,既要遵循代数式恒等变形的一般法则,又有三角所特有的规律. 三角恒等式包括绝对恒等式和条件恒等式两类。证明三角恒等式时,首先要观察已知与求证或所证恒等式等号两边三角式的繁简程度,以决定恒等变形的方向;其次要观察已知与求证或所证恒等式等号两边三角式的角、函数名称、次数以及结构的差别与联系,抓住其主要差异,选择恰当的公式对其进行恒等变形,从而逐步消除差异,统一形式,完成证明.“和差化积”、“积化和差”、“切割化弦”、“降次”等是我们常用的变形技巧。当然有时也可以利用万能公式“弦化切割”,将题目转化为一个关于2 tan x t =的代数恒等式的证明问题. 要快捷地完成三角恒等式的证明,必须选择恰当的三角公式. 为此,同学们要熟练掌握 上图为三角公式脉络图,由图可见两角和差的三角函数的公式是所有三角公式的核心和基础. 此外,三角是代数与几何联系的“桥梁”,与复数也有紧密的联系,因而许多三角问题往往可以从几何或复数角度获得巧妙的解法. 三角不等式首先是不等式,因此,要掌握证明不等式的常用方法:配方法、比较法、放缩法、基本不等式法、数学归纳法等. 其次,三角不等式又有自己的特点——含有三角式,因而三角函数的单调性、有界性以及图象特征等都是处理三角不等式的锐利武器. 三角形中有关问题也是数学竞赛和高考的常见题型. 解决这类问题,要充分利用好三角

形内角和等于180°这一结论及其变形形式. 如果问题中同时涉及边和角,则应尽量利用正弦定理、余弦定理、面积公式等进行转化,实现边角统一. 求三角形面积的海伦公式 )](2 1 [))()((c b a p c p b p a p p S ++= ---=其中,大家往往不甚熟悉,但十分有用. 赛题精讲 例1:已知.cos sin )tan(:,1||),sin(sin A A A -= +>+=ββ βαβαα求证 【思路分析】条件涉及到角α、βα+,而结论涉及到角βα+,β.故可利用 αβαβββαα-+=-+=)()(或消除条件与结论间角的差异,当然亦可从式中的“A ” 入手. 【证法1】 ),sin(sin βαα+=A ),sin()sin(βαββα+=-+∴A ), cos(sin ))(cos sin(), sin(sin )cos(cos )sin(βαβββαβαββαββα+=-++=+-+A A . cos sin )tan(, 0)cos(, 0cos ,1||A A A -= +≠+≠-∴>ββ βαβαβ从而 【证法2】 αβαβββαβααββββ sin )sin(cos sin )sin() sin(sin cos sin sin sin -++= +- = -A ). tan(sin )cos(sin )sin(])sin[()sin(cos sin )sin(βαββαβ βαββαβαββ βα+=++=-+-++= 例2:证明:.cos 64cos 353215cos 77cos 7x x x ocs x x =+++ 【思路分析】等号左边涉及角7x 、5x 、3x 、x 右边仅涉及角x ,可将左边各项逐步转化为x sin 、 x cos 的表达式,但相对较繁. 观察到右边的次数较高,可尝试降次. 【证明】因为,cos 33cos cos 4,cos 3cos 43cos 3 3 x x x x x x +=-=所以 从而有x x x x x 226cos 9cos 3cos 63cos cos 16++= = )2cos 1(2 9 )2cos 4(cos 326cos 1x x x x +++++

第10讲 三角恒等式一(数学竞赛)

第10讲 三角恒等式与三角不等式(一) 【赛点突破】 1. 诱导公式:奇变偶不变,符号看象限。 2. 同角函数基本关系:平方关系,倒数关系,商关系。 3. 三角公式:和差倍半,和差化积,积化和差。 【范例解密】 例1若x 是锐角,证明:(1)sin tan x x x <<;(2) sin tan 2 x x x +>。 分析与解:(1)如图,在单位圆中, OAB OAB OBC S S S ??<<扇形,即sin tan x x x <<; (2)224tan tan 2tan sin tan 22 221tan 1tan 1tan 222 x x x x x x x x +=+= +-- 2tan 222 x x x >>?=。 注:(2)的变形值得回味。 例2 2tan x =-,求x 的取值范围。 解:原式左边= 1sin 1sin 2sin cos cos cos x x x x x x -+--=,故cos 0x >或者sin 0x =,则 22,22 k x k k Z π π ππ- <<+ ∈或者,x k k Z π=∈。 注:本题非常容易漏解,考查思维的严谨性。 例3 求15 ()()44f x x = ≤≤的最小值。 分析与解:sin()2 ()x f x π π-+=54x =取得最大值,分子当54x =取得最小值,故5 4 x = 原式取得最小值。 注:解决问题的思维值得借鉴。 例4求 1 tan10cos50 +的值。

分析与解: 1cos802cos 40cos80cos402cos60cos 20 sin40sin80sin80sin80 ++ += = 2cos30cos10 3 sin80 ==。 注;tan10cot80 =是一个很好的变形,另外2cos40 cos802cos(12080) + =- cos802sin120sin80 +=是一个更启发思路的方法。 例5()sin2)sin()23,[0,] 42 f x x x a x ππ =-+++∈,若 () cos() 4 f x x π > - 恒成立,求a的取值范围。 分析与解:设sin cos x x t +=∈,则2 sin21 x t=-,原不等式化为 2 4 (2)22 t a t a t -+++>,即 2 (2)()0 t t a t -+-<,故 2 a t t >+恒成立,则3 a>。注:其中的三角换元是常用的重要方法,高次方程的分解因式是稍高的技巧。例6ABC ?中,求cos cos cos A B C ++的最大值。 分析与解:原式2 2cos cos cos2sin12sin 2222 A B A B C C C +- =+≤+-= 2 13 2(sin) 222 C --+,故当 3 A B C π ===时原式的最大值是 3 2 。 注(1)如果求cos cos cos A B C ++的值域呢? (2)3 cos cos cos cos2cos2cos 322 C A B A B C π π+ + +++≤+≤ 3 3 4cos 42 A B C π +++ =是很好的方法,由此如何解决sin sin sin A B C ++的最值问题,并和其他的方法比较。 例7,a b是正实数,且 sin cos8 55tan 15 cos sin 55 a b a b ππ π ππ + = - ,求 b a 的值。 分析与解:设tan, b x x a =是锐角,则 tan tan8 5tan 15 1tan tan 5 x x π π π + = - ,即 8 tan()tan 515 x ππ +=, 故 8 , 5153 x x πππ +==, b a = 注:本解法比较灵巧,还有多种基本的方法,请自己探索。

三角函数万能公式及推导过程

三角函数公式看似很多、很复杂,但只要掌握了三角函数的本质及内部规律,就会发现三角函数各个公式之间有强大的联系。接下来分享三角函数万能公式及推导过程。 三角函数万能公式 (1)(sinα)^2+(cosα)^2=1 (2)1+(tanα)^2=(secα)^2 (3)1+(cotα)^2=(cscα)^2 (4)tanA+tanB+tanC=tanAtanBtanC(任意非直角三角形) 三角函数万能公式推导过程 由余弦定理:a^2+b^2-c^2-2abcosC=0 正弦定理:a/sinA=b/sinB=c/sinC=2R 得(sinA)^2+(sinB)^2-(sinC)^2-2sinAsinBcosC=0 转化1-(cosA)^2+1-(cosB)^2-[1-(cosC)^2]-2sinAsinBcosC=0 即(cosA)^2+(cosB)^2-(cosC)^2+2sinAsinBcosC-1=0 又cos(C)=-cos(A+B)=sinAsinB-cosAcosB 得(cosA)^2+(cosB)^2-(cosC)^2+2cosC[cos(C)+cosAcosB]-1=0 (cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC 得证(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC 同角三角函数的关系公式 倒数关系公式 ①tanαcotα=1 ②sinαcscα=1 ③cosαsecα=1 商数关系公式 tanα=sinα/cosα

cotα=cosα/sinα平方关系公式 ①sin2α+cos2α=1 ②1+tan2α=sec2α ③1+cot2α=csc2α

相关主题