搜档网
当前位置:搜档网 › 刚性球与平面弹性接触的临界参数计算

刚性球与平面弹性接触的临界参数计算

刚性球与平面弹性接触的临界参数计算
刚性球与平面弹性接触的临界参数计算

刚性球与平面弹性接触的临界参数计算

接触问题作为应用力学的一个分支在工程中会经常遇到。实际上,在有机械部分的工业设备中,几乎无一例外地存在着接触现象。典型的例子有:齿轮间的接触,轴承中滚子与坐圈的接触,凸轮机构中凸轮与传动件的接触,火车的车轮与铁轨的接触等[1-2]。许多工程表面的接触问题,在宏观上一般可以简化为回转体接触,即便在微观上,实际表面的接触也是椭球状的微凸体接触。对于类似这样的接触问题,都可以简化成球体与平面的接触模型,如果接触过程为

弹性变形,则可采用经典的Hertz模型来进行计算处理。图1反映了刚性球与平面接触过程的变形演化趋势。当压入深度较小时,材料处于完全弹性接触状态,随着压入深度的增加,材料内部发生屈服,开始出现塑性变形,当压入深度达到一定值后,接触区域呈现完全塑性变形。在真实的接触过程中,总是希望两体之间的接触处于弹性状态,此时工件的变形较小,使用寿命也会很高。但是当压入深度超过某一值后,材料就会发生屈服,出现塑性变形,如果工件长期在塑性状态下工作,将会对其使用寿命产生很大的影响。由于材料的弹塑性变形的非线性使得接触问题复杂化,因此,获得从弹性接触进入弹塑性接触的临界点,即Hertz接触的临界参数显得尤为重要。

图1 刚性球与平面接触的变形演化示意图

目前,在工程上采用有限元分析方法来仿真接触体的变形、应力分布、接触面积等得到了广泛应用,但其计算时间长,软硬件成本较高。由于弹性接触问题在工程实际中普遍存在,如何采用一种行之有效的方法进行工件的接触强度分析和校核,建立符合工程实际的设计和校核公式,一直是工程技术人员和广大科研工作者

的一个研究方向。因此,我们以弹性接触理论和弹塑性力学为基础,建立刚性球与平面弹性接触的临界接触参数计算模型,为构件的接触变形分析提供参考。

1 Hertz接触理论

Hertz在研究半径为R的弹性球与弹性半空间变形体的接触时,为了简化分析,做了如下假设:在压入深度为h时,其接触处于弹性变形阶段,两者之间的接触是无摩擦的局部变形,其接触区域相对于球体而言很小,则接触面的投影形状为圆形。图2反映了球与半空间之间的弹性接触示意,a表示接触半径。因此,两个接触体可以认为是弹性半空间,在接触区域上

受到了相同的接触压力。

Hertz假设接触区域的压力分布为抛物线形状,其表达式为:

(1) 式中,p0为接触中心处的最大接触压力;r为接触点距接触中心的径向距离。

图2 球与半空间变形体的接触示意图

对式(1)在整个接触区域0 -a区间进行积分,即可得到其接触的合力F为:

(2) 接触半径a的表达式为:

(3) 式中,E*为等效弹性模量,其表达式为:

(4)

式中,v、vi分别为两接触体的泊松比,E、Ei为其弹性模量。

根据Hertz接触理论,半径为R的刚性球与弹性平面接触,其接触力F,最大接触压力p0,接触半径a与压入深度h之间的关系分别是:

(5)

根据Hertz接触理论,对于不同半径的球之间的接触,同样也可以等效为球与平面的接触,此时半径R为两球的等效半径,其计算表达式为:

(6) 式中,R1、R2分别为两球的半径,+表示两球为外接触,-表示两球为内接触。

2 临界参数计算

根据图2所示的坐标,采用最大接触压力p0对z轴上各点的应力场进行无量纲化,正应力和剪应力的表达式分别为:

(7) 式中,Rr、RH和Rz分别是径向、周向和z向的正应力;Srz、SrH和RzH是相应的剪应力。

根据式(9)~式(11)可以发现:Rz与泊松比v无关,但是Rr和RH与泊松比v相关。z轴上的无量纲应力Rr/p0、RH/p0和Rz/p0与无量纲位置z/a和泊松比v之间的变化关系曲线如图3所示。

图3 无量纲应力R/p0、Y/p0与无量纲深度z/a和泊松比v的关系从图3中可以发现,当z/a小于1时,Rr、RH和Rz随深度的增加而增加,但是Rz增加的速度明显没有另外两个快。当z/a大于1后,Rr和RH变化很小,且趋近于0,而Rz随z/a增加而继续增加。泊松比v越小,Rr和RH越大,这是因为材料的可压缩性增加(泊松比小),应力也会随之增加。

在弹性变形区域,应力随着F或h增加而增加,最终导致材料屈服。在z轴方向,由于Srz、SrH和SzH为0,因此,Rr、RH和Rz为主应力[6]。根据V on Mises屈服准则,在z轴上的点的屈服应力可以表示为:

(8) 对于某一个v,式(13)所表示的屈服应力值随着z/a变化而变化,其变化关系曲线如图3所示。从图3中可以看出:无量纲屈服应力Y/p0随着泊松比v的增加而减小,而且Y/p0的最大值发生在接触中心的正下方,即最初的屈服发生在材料内部。当该点的屈服应力达到屈服强度Ry时,此时的压入深度hy即为初始屈服时的临界压入深度。为获得临界屈服位置,将式(13)相对于z/a进行微分,并令该值为0,即可得到最大V on Mises应力下的无量纲位置F0=z0/a。

(9)

将式(9)改写为:

(10)

对于大部分金属材料,泊松比v在0到0.5之间变化。由于式(5)的表达式比较复杂,因此采用数值方法求解该超越方程。图4所示为该等式的曲线表达式及其拟合曲线,从图4中可见,在初始屈服时,其拟合函数关系式为:

(11)

式(11)的拟合误差小于0.31%。因此,无量纲的初始屈服位置F0和泊松比v 之间可以用近似线性函数表示:

(12)

从等式(12)中可以看出,F0随着v增加而增加。因此,大的v导致初始屈服发生在接触中心正下方更深的位置。

图4 泊松比v与无量纲屈服点z0/a的关系

当初始屈服发生时

(13) 式中,Fy为弹塑性材料的屈服强度。

(14) 则

(15)

同样,式(14)也是一个超越方程。Cv与v的关系曲线及其拟合曲线如图5所示,拟合函数的表达式为:

(16)对于大部分金属材料,v=0.3。则根据式(16)可以计算得到

(17) 因此,对于v=0.3的材料,在初始屈服时,临界压入深度hy为:

(18) 将式(18)带入到式(5)中,得到其临界压入载荷Fy为:

(19) 同样地,根据式(7)得到其临界接触半径ay为

(20) 从式(18)~式(20)可看出,只要知道材料的弹性模量、屈服强度和球半径,即可计算出刚性球与

平面弹性接触时的临界压入深度、临界压入载荷和临界接触半径。

图5 Cv与泊松比v的关系

从上面的分析还可以看出,对于泊松比v=0.3的材料,当&Rz-Rr&=0.62p0时,在接触区域中心正下方深度为0.481 1a处,材料开始屈服,此时接触中心处的接触压力p0=1.613Ry。如果压入深度继续增加,则接触中心下方的材料塑性变形区域逐渐扩大,进入弹塑性变形阶段。在此变形阶段,由于存在塑性变形,此时,两体的接触不再满足Hertz弹性接触的使用条件,因此,不能再用Hertz接触理论来分析两体

的接触过程。

需要指出的是,由于上面分析的是球与平面的弹性接触,因此,弹性模量和泊松比对接触响应起主要作用。当材料发生屈服后,屈服强度就会对接触响应产生较大的影响。在实际工程应用中,很多工件的表面在加工过程中或多或少会产生加工硬化,在此情况下,可以认为表层材料的屈服强度得到提高,因此,采用上面的计算公式时,屈服强度需要进行必要的修正,即根据硬化程度而采用合适的等效屈服强度,同样可以采用式(18)~式(20)计算获得弹性接触时的临界参数。

3 结论

以弹性接触理论和弹塑性力学为基础,通过分析刚性球与平面弹性接触时的应力变化关系,采用数值方法获得了初始屈服发生时的位置位于接触中心的正下方0.481 1a处,此时接触中心处的接触压力为1.613Ry。根据Hertz接触理论,建立了两体弹性接触的临界接触参数计算公式,如果已知材料的弹性模量、屈服强度(或等效屈服强度)和球半径,即可获得发生初始屈服时的临界参数,为构件的弹塑性接触变形分析提供了参考。

关于接触刚度的讨论

关于接触刚度的讨论(转载) ANSYS基本概念 2008-09-11 10:11 阅读65 评论0 字号:大中小 BBS 锦城驿站 我最近在做接触分析,老觉得不合理。接触刚度应该是与接触面等材料属性有关,为什么还要自己定义这个刚度?我仿照《使用ANSYS6。1进行结构力学分析》里面的接触例子,求解时出现real constant2 ha s been referenced by element types element types1 and 2 one of which is contact element.书上说的是通过共享实常数来判别接触对,为什么又出现这样的错误提示呢?请大家帮忙。 决定接触刚度 所有的接触问题都需要定义接触刚度,两个表面之间渗量的大小取决了接触刚度,过大的接触刚度可能会引起总刚矩阵的病态,而造成收敛困难,一般来谘,应该选取足够大的接触刚度以保证接触渗透小到可以接受,但同时又应该让接触刚度足够小以使不会引起总刚矩阵的病态问题而保证收敛性。 程序会根据变形体单元的材料特性来估计一个缺省的接触刚度值,你能够用实常数FKN来为接触刚度指定一个比例因子或指定一个真正的值,比例因子一般在0.01和10之间,当避免过多的迭代次数时,应该 尽量使渗透到达极小值。 为了取得一个较好的接触刚度值,又可需要一些经验,你可以按下面的步骤过行。 1、开始时取一个较低的值,低估些值要比高估些值好因为由一个较低的接触刚度导致的渗透问题要比过 高的接触刚度导致的收敛性困难,要容易解决。 2、对前几个子步进行计算 3、检查渗透量和每一子步中的平衡迭代次数,如果总体收敛困难是由过大的渗透引起的(而不是由不平衡力和位移增量引起的),那么可能低估了FKN的值或者是将FTOLN的值取得大小,如果总体的收敛困难是由于不平衡力和位移增量达到收敛值需要过多的迭代次数,而不是由于过大的渗透量,那么FKN的值 可能被高估。 4、按需要调查FKN或FTOLN的值,重新分析。 (ANSYS公司的资料) 我的理解:接触刚度与接触面等材料属性无关,理论上接触刚度越大越好,尽量小的接触渗透。但难收敛。 通过共享实常数来判别接触对。要注意使用一个contact element 和一个 target element共享实常数。 如: type,1 ! defined 1 as a contact element real,1 mat,1 !mesh type,2 !defined 2 as a target element real,1 mat,1 !mesh

基本计算轴心受力构件的强度和刚度计算

轴心受力构件的强度和刚度计算 1.轴心受力构件的强度计算 轴心受力构件的强度是以截面的平均应力达到钢材的屈服应力为承载力极限状态。轴心受力构件的强度计算公式为 f A N n ≤= σ (4-1) 式中: N ——构件的轴心拉力或压力设计值; n A ——构件的净截面面积; f ——钢材的抗拉强度设计值。 对于采用高强度螺栓摩擦型连接的构件,验算净截面强度时一部分剪力已由孔前接触面传递。因此,验算最外列螺栓处危险截面的强度时,应按下式计算: f A N n ≤= ' σ (4-2) 'N =)5 .01(1 n n N - (4-3) 式中: n ——连接一侧的高强度螺栓总数; 1n ——计算截面(最外列螺栓处)上的高强度螺栓数; ——孔前传力系数。 采用高强度螺栓摩擦型连接的拉杆,除按式(4-2)验算净截面强度外,还应按下式验算毛截面强度 f A N ≤= σ (4-4) 式中: A ——构件的毛截面面积。 2.轴心受力构件的刚度计算 为满足结构的正常使用要求,轴心受力构件应具有一定的刚度,以保证构件不会在运输和安装过程中产生弯曲或过大的变形,以及使用期间因自重产生明显下挠,还有在动力荷载作用下发生较大的振动。 轴心受力构件的刚度是以限制其长细比来保证的,即

][λλ≤ (4-5) 式中: λ——构件的最大长细比; [λ]——构件的容许长细比。 3. 轴心受压构件的整体稳定计算 《规范》对轴心受压构件的整体稳定计算采用下列形式: f A N ≤? (4-25) 式中:?——轴心受压构件的整体稳定系数,y cr f σ?= 。 整体稳定系数?值应根据构件的截面分类和构件的长细比查表得到。 构件长细比λ应按照下列规定确定: (1)截面为双轴对称或极对称的构件 ? ?? ==y y y x x x i l i l //00λλ (4-26) 式中:x l 0,y l 0——构件对主轴x 和y 的计算长度; x i ,y i ——构件截面对主轴x 和y 的回转半径。 双轴对称十字形截面构件,x λ或y λ取值不得小于t (其中b/t 为悬伸板件宽厚比)。 (2)截面为单轴对称的构件 以上讨论柱的整定稳定临界力时,假定构件失稳时只发生弯曲而没有扭转,即所谓弯曲屈曲。对于单轴对称截面,绕对称轴失稳时,在弯曲的同时总伴随着扭转,即形成弯扭屈曲。在相同情况下,弯扭失稳比弯曲失稳的临界应力要低。因此,对双板T 形和槽形等单轴对称截面进行弯扭分析后,认为绕对称轴(设为y 轴)的稳定应取计及扭转效应的下列换算长细比代替y λ [] 2 /122202022222)/1(4)()(2 1 z y z y z y yz i e λ λλλλλλ--+++= )/7.25//(2 202ωωλl I I A i t z +=

轴的设计计算

轴的设计计算 【一】能力目标 1.了解轴的功用、分类、常用材料及热处理。 2.能合理地进行轴的结构设计。 【二】知识目标 1.了解轴的分类,掌握轴结构设计。 2.掌握轴的强度计算方法。 3.了解轴的疲劳强度计算和振动。 【三】教学的重点与难点 重点:轴的结构设计 难点:弯扭合成法计算轴的强度 【四】教学方法与手段 采用多媒体教学(加动画演示),结合教具,提高学生的学习兴趣。【五】教学任务及内容 任务知识点 轴的设计计算 1. 轴的分类、材料及热处理 2. 轴的结构设计 3. 轴的设计计算 (一)根据承受载荷的情况,轴可分为三类 1、心轴工作时只受弯矩的轴,称为心轴。心轴又分为转动心轴(a)和固定心轴(b)。 2、传动轴工作时主要承受转矩,不承受或承受很小弯矩的轴,称为传动轴。

3、转轴工作时既承受弯矩又承受转矩的轴,称为转轴。 (二)按轴线形状分: 1、直轴 (1)光轴 作传动轴(应力集中小) (2)阶梯轴 优点:1)便于轴上零件定位;2)便于实现等强度 2、曲轴 另外还有空心轴(机床主轴)和钢丝软轴(挠性轴)——它可将运动灵活地传到狭窄的空间位置。如牙铝的传动轴。 二、轴的结构设计 轴的结构设计就是确定轴的外形和全部结构尺寸。但轴的结构设计原则上应满足如下要求: 1)轴上零件有准确的位置和可靠的相对固定; 2)良好的制造和安装工艺性; 3)形状、尺寸应有利于减少应力集中; 4)尺寸要求。

(一)轴上零件的定位和固定 轴上零件的定位是为了保证传动件在轴上有准确的安装位置;固定则是为了保证轴上零件在运转中保持原位不变。作为轴的具体结构,既起定位作用又起固定作用。 1、轴上零件的轴向定位和固定:轴肩、轴环、套筒、圆螺母和止退垫圈、弹性挡圈、螺钉锁紧挡圈、轴端挡圈以及圆锥面和轴端挡圈等。 2、轴上零件的周向固定:销、键、花键、过盈配合和成形联接等,其中以键和花键联接应用最广。 (二)轴的结构工艺性 轴的结构形状和尺寸应尽量满足加工、装配和维修的要求。为此,常采用以下措施: 1、当某一轴段需车制螺纹或磨削加工时,应留有退刀槽或砂轮越程槽。 2、轴上所有键槽应沿轴的同一母线布置。 3、为了便于轴上零件的装配和去除毛刺,轴及轴肩端部一般均应制出45o的倒角。过盈配合轴段的装入端常加工出带锥角为30o的导向锥面。 4、为便于加工,应使轴上直径相近处的圆角、倒角、键槽、退刀槽和越程槽等尺寸一致。 (三)提高轴的疲劳强度 轴大多在变应力下工作,结构设计时应尽量减少应力集中,以提高其疲劳强度。 1、结构设计方面轴截面尺寸突变处会造成应力集中,所以对阶梯轴相邻轴段直径不宜相差太大,在轴径变化处的过渡圆角半径不宜过小。尽量避免在轴上开横孔、凹槽和加工螺纹。在重要结构中可采用凹切圆角、过渡肩环,以增加轴肩处过渡圆角半径和减小应力集中。为减小轮毂的轴压配合引起的应力集中,可开减载槽。 2、制造工艺方面提高轴的表面质量,降低表面粗糙度,对轴表面采用碾压、喷丸和表面热处理等强化方法,均可显著提高轴的疲劳强度。

ansys接触问题!牛人的经验之谈!

接触问题的关键在于接触体间的相互关系(废话,),此关系又可分为在接触前后的法向关系与切向关系。 法向关系: 在法向,必须实现两点:1)接触力的传递。2)两接触面间没有穿透。 ANSYS通过两种算法来实现此法向接触关系:罚函数法和拉格朗日乘子法。 1.罚函数法 是通过接触刚度在接触力与接触面间的穿透值(接触位移)间建立力与位移的线性关系:    接触刚度*接触位移=法向接触力 对面面接触单元17*,接触刚度由实常数FKN来定义。穿透值在程序中通过分离的接触体上节点间的距离来计算。接触刚度越大,则穿透就越小,理论上在接触刚度为无穷大时,可以实现完全的接触状态,使穿透值等于零。但是显而易见,在程序计算中,接触刚度不可能为无穷大(否则病态),穿透也就不可能真实达到零,而只能是个接近于零的有限值。 以上力与位移的接触关系可以很容易地合并入整个结构的平衡方程组K*X=F中去。并不改变总刚K的大小。这种罚函数法有以下几个问题必须解决: 1)接触刚度FKN应该取多大? 2)接触刚度FKN取大些可以减少虚假穿透,但是会使刚度矩阵成为病态。 3)既然与实际情况不符合的虚假穿透既然是不可避免的,那么可以允许有多大为合适? 因此,在ANSYS程序里,通常输入FKN实常数不是直接定义接触刚度的数值,而是接触体下单元刚度的一个因子,这使得用户可以方便地定义接触刚度了,一般FKN取0.1到1中间的值。当然,在需要时,也可以把接触刚度直接定义,FKN输入为负数,则程序将其值理解为直接输入的接触刚度值。 对于接近病态的刚度阵,不要使用迭代求解器,例如PCG等。它们会需要更多的迭代次数,并有可能不收敛。可以使用直接法求解器,例如稀疏求解器等。这些求解器可以有效求解病态问题。 穿透的大小影响结果的精度。用户可以用PLESOL,CONT,PENE来在后处理中查看穿透的数值大小。如果使用的是罚函数法求解接触问题,用户一般需要试用多个FKN值进行计算,可以先用一个较小的FKN值开始计算,例如0.1。因为较小的FKN有助于收敛,然后再逐步增加FKN值进行一系列计算,最后得到一个满意的穿透值。 FKN的收敛性要求和穿透太大产生的计算误差总会是一对矛盾。解决此矛盾的办法是在接触算法中采用扩展拉格朗日乘子法。此方法在接触问题的求解控制中可以有更多更灵活的控制。可以更快的实现一个需要的穿透极限。 2.拉格朗日乘子法与扩展拉格朗日乘子法 拉格朗日乘子法与罚函数法不同,不是采用力与位移的关系来求接触力,而是把接触力作为一个独立自由度。因此这里不需要进行迭代,而是在方程里直接求出接触力(接触压力)来。Kx=F+Fcontact 从而,拉格朗日乘子法不需要定义人为的接触刚度去满足接触面间不可穿透的条件,可以直接实现穿透为零的真实接触条件,这是罚函数法所不可能实现的。使用拉格朗日乘子法有下列注意事项: 1)刚度矩阵中将有零对角元,使有些求解器不克使用。只能使用直接法求解器,例如波前法或系数求解器。而PCG之类迭代求解器是不能用于有零主元问题的。 2)由于增加了额外的自由度,刚度阵变大了。 3)一个可能发生的严重问题,就是在接触状态发生变化时,例如从接触到分离,从分离到接触,此时接触力有个突变,产生chattering(接触状态的振动式交替改变)。如何控制这种chattering,是纯粹拉格朗日法所难以解决的。

刚度校核

刚度校核 l.轴的弯曲刚度校核计算 2.轴的扭转刚度校校计算 l.轴的弯曲刚度校核计算 常见的轴大多可视为简文梁。若是光轴,可直接用材料力学中的公式计算其挠度或偏转角;若是阶梯轴,如果对计算精容要求不高,则可用当量直径法作近似计算。把阶梯轴看成是当量直径为dv的光轴,然后再按材料力学中的公式计算。当量直径为 式中:l i——阶梯轴第i段的长度,mm; d i——阶梯轴第i段的直径,mm; L——阶梯轴的计算长度;m。; Z——阶梯轴计算长度内的轴段数。 当载荷作用干两支承之间时,L=l(l为支承跨距);当载荷作用于悬臂端时,L=l+K(K为轴的悬臂长度)。 轴的弯曲刚度条件为: 挠度 偏转角 式中:[y]——轴的允许挠度,mm,见表15-5; [θ]——轴的允许偏转角,rad,见表15-5。

表15-5 轴的允许挠度及允许偏转角 2.轴的扭转刚度校校计算 轴的扭转变形用每米长的扭转角p来表示。圆轴扭转角P的计算公式为: 光轴 阶梯轴 式中:T——轴所受的扭矩,N·mm; G——轴的材料的剪切弹性模量,MPa,对于钢材,G=8.1*104MPa; I p——轴截面的极惯性矩,mm4,对于圆轴,I p= d4/32 L——阶梯轴受扭矩作用的长度,mm; T i、l i、I pi——分别代表阶梯轴第i段上所受的扭矩、长度和极惯性矩,单位同前; z——阶梯轴受扭矩作用的轴段数。 轴的扭转刚度条件为

?≤[?] ( °)/m 式中[?] 为轴每米长的允许扭转角,与轴的使用场合有关。对于一般传动轴,可取[?]=0.5-1( °)/m;对于精密传动轴,可取[?]=0.25-0.5( °)/m;对于精度要求不高的轴,[?]可大于1( °)/m。 表15-4 抗弯,抗扭截面系数计算公式 注:近似计算时,单,双键槽一般可忽略,花键轴截面可视为直径等于平均直径的圆截面。

桩基(设计、设计极限、极限、承载、终压、复压值)计算确定

桩基(设计、设计极限、极限、承载、终压、复压值)计算确定 一、概述 1、概念 单桩承载力特征值×=单桩承载力设计值; 单桩承载力特征值×2=单桩承载力极限值=桩侧摩阻力+桩端阻力=单桩承载力(设计 单桩承载力设计值×=单桩承载力极限值。 2、静压桩终压值确定 压桩应控制好终止条件,一般可按以下进行控制: 1)对于摩擦桩,按照设计桩长进行控制,但在施工前应先按设计桩长试压几根桩,待停置24h后,用与桩的设计极限承载力相等的终压力进行复压,如果桩在复压时几乎不动,即可以此进行控制。 2)对于端承摩擦桩或摩擦端承桩,按终压力值进行控制: ①对于桩长大于21m的端承摩擦桩,终压力值一般取桩的设计极限承载力。当桩周土为粘性土且灵敏度较高时,终压力可按设计极限承载力的~倍取值; ②当桩长小于21m,而大于14m时,终压力按设计极限承载力的~倍取值;或桩的设计极限承载力取终压力值的~倍; ③当桩长小于14m时,终压力按设计极限承载力的~倍取值;或设计极限承载力取终压力值~倍,其中对于小于8m的超短桩,按倍取值。 3)超载压桩时,一般不宜采用满载连续复压法,但在必要时可以进行复压,复压的次数不宜超过2次,且每次稳压时间不宜超过10s。 3、静压桩复压值确定 取终压力值 举例:桩长18~20m,800kn(单桩竖向承载力特征值) =2×800 kn=1600 kn单桩承载力(设计)极限值

=1600 kn/=1000 kn (单桩承载力设计值) =1600 kn ×=2000 kn(终压力值、复压力值) ,当桩长小于21m ,而大于14m 时,终压力按设计极限承载力的~倍取值(取)。 二、钢管桩承载力 (5.3.7-1) 当h d /d<5时, (5.3.7-2) 当h d /d ≥5时, (5.3.7-3) 式中:q sik 、q pk 分别按表5.3.5-1、5.3.5-2取与混凝土预制桩相同值; :桩端土塞效应系数;对于闭口钢管桩λp = 1,对于敞口钢管桩按式(5.3.7-2)、(5.3.7-3)取值; h b :桩端进入持力层深度; d :钢管桩外径。 对于带隔板的半敞口钢管桩,应以等效直径d e 代替d 确定λp ; d e = d / ;其中n 为桩端隔板分割数(图5.3.7)。 图 5.3.7 隔板分割 表 5.3.5-1 桩的极限侧阻力标准值sik q (kPa) p pk p i sik pk sk uk A q l q u Q Q Q λ+=+=∑d h b p /16.0=λ8.0=p λp λ

ANSYS关于接触刚度

【原创】为什么在接触分析中要自己定义接触刚度呢? 决定接触刚度 所有的接触问题都需要定义接触刚度,两个表面之间渗量的大小取决了接触刚度,过大的接触刚度可能会引起总刚矩阵的病态,而造成收敛困难,一般来谘,应该选取足够大的接触刚度以保证接触渗透小到可以接受,但同时又应该让接触刚度足够小以使不会引起总刚矩阵的病态问题而保证收敛性。 程序会根据变形体单元的材料特性来估计一个缺省的接触刚度值,你能够用实常数FKN来为接触刚度指定一个比例因子或指定一个真正的值,比例因子一般在0.01和10之间,当避免过多的迭代次数时,应该尽量使渗透到达极小值。 为了取得一个较好的接触刚度值,又可需要一些经验,你可以按下面的步骤过行。 1、开始时取一个较低的值,低估些值要比高估些值好因为由一个较低的接触刚度导致的渗透问题要比过高的接触刚度导致的收敛性困难,要容易解决。 2、对前几个子步进行计算 3、检查渗透量和每一子步中的平衡迭代次数,如果总体收敛困难是由过大的渗透引起的(而不是由不平衡力和位移增量引起的),那么可能低估了FKN的值或者是将FTOLN的值取得大小,如果总体的收敛困难是由于不平衡力和位移增量达到收敛值需要过多的迭代次数,而不是由于过大的渗透量,那么FKN的值可能被高估。 4、按需要调查FKN或FTOLN的值,重新分析。(ANSYS公司的资料) 我的理解:接触刚度与接触面等材料属性无关,理论上接触刚度越大越好,尽量小的接触渗透。但难收敛。 通过共享实常数来判别接触对。要注意使用一个contact element 和一个target element共享实常数。 如: type,1 ! defined 1 as a contact element real,1 mat,1 !mesh type,2 !defined 2 as a target element real,1 mat,1 !mesh 在有限元分析中,接触单元通常用来描述两物体相互接触或滑动的界面。近年来,ANSYS开发了一系列的接触单元。刚开始有节点对节点单元CONTAC12和CONTAC52,接着有节点对地单元CONTAC26,然后有节点对面单元CONTAC48和CONTAC49。最近几年,我们引入一类面对

轴的设计计算

轴的设计计算 轴的计算通常都是在初步完成结构设计后进行校核计算,计算准则是满足轴的强度和刚度要求。 一、轴的强度计算 进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。 对于仅仅承受扭矩的轴(传动轴),应按扭转强度条件计算; 对于只承受弯矩的轴(心轴),应按弯曲强度条件计算; 对于既承受弯矩又承受扭矩的轴(转轴),应按弯扭合成强度条件进行计算,需要时还应按疲劳强度条件进行精确校核。 此外,对于瞬时过载很大或应力循环不对称性较为严重的轴,还应按峰尖载荷校核其静强度,以免产生过量的塑性变形。 下面介绍几种常用的计算方法: 按扭转强度条件计算。 1、按扭转强度估算轴的直径 对只受转矩或以承受转矩为主的传动轴,应按扭转强度条件计算轴的直径。若有弯矩作用,可用降低许用应力的方法来考虑其影响。 扭转强度约束条件为: [] 式中:为轴危险截面的最大扭剪应力(MPa); 为轴所传递的转矩(N.mm); 为轴危险截面的抗扭截面模量(); P为轴所传递的功率(kW); n为轴的转速(r/min); []为轴的许用扭剪应力(MPa);

对实心圆轴,,以此代入上式,可得扭转强度条件的设计式: 式中:C为由轴的材料和受载情况决定的系数。 当弯矩相对转矩很小时,C值取较小值,[]取较大值;反之,C取较大值,[]取较小值。 应用上式求出的值,一般作为轴受转矩作用段最细处的直径,一般是轴端直径。若计算的轴段有键槽,则会削弱轴的强度,作为补偿,此时应将计算所得的直径适当增大,若该轴段同一剖面上有一个键槽,则将d增大5%,若有两个键槽,则增大10%。 此外,也可采用经验公式来估算轴的直径。如在一般减速器中,高速输入轴 的直径可按与之相联的电机轴的直径估算:;各级低速轴的轴径可按同级齿轮中心距估算,。 几种轴的材料的[]和C值 轴的材料Q2351Cr18Ni9Ti354540Cr,35SiMn,2Cr13,20CrMnTi []12~2012~2520~3030~4040~52 160~135148~125135~118118~107107~98 2、按弯扭合成强度条件校核计算

ANSYS接触问题的计算方法

ANSYS接触问题的计算方法 接触问题的关键在于接触体间的相互关系(废话,),此关系又可分为在接触前后的法向关系与切向关系。 法向关系: 在法向,必须实现两点:1)接触力的传递。2)两接触面间没有穿透。 ANSYS通过两种算法来实现此法向接触关系:罚函数法和拉格朗日乘子法。 1.罚函数法 是通过接触刚度在接触力与接触面间的穿透值(接触位移)间建立力与位移的线性关系:接触刚度*接触位移=法向接触力 对面面接触单元17*,接触刚度由实常数FKN来定义。穿透值在程序中通过分离的接触体上节点间的距离来计算。接触刚度越大,则穿透就越小,理论上在接触刚度为无穷大时,可以实现完全的接触状态,使穿透值等于零。但是显而易见,在程序计算中,接触刚度不可能为无穷大(否则病态),穿透也就不可能真实达到零,而只能是个接近于零的有限值。 以上力与位移的接触关系可以很容易地合并入整个结构的平衡方程组K*X=F中去。并不改变总刚K的大小。这种罚函数法有以下几个问题必须解决: 1)接触刚度FKN应该取多大? 2)接触刚度FKN取大些可以减少虚假穿透,但是会使刚度矩阵成为病态。 3)既然与实际情况不符合的虚假穿透既然是不可避免的,那么可以允许有多大为合适? 因此,在ANSYS程序里,通常输入FKN实常数不是直接定义接触刚度的数值,而是接触体下单元刚度的一个因子,这使得用户可以方便地定义接触刚度了,一般FKN取0.1到1中间的值。当然,在需要时,也可以把接触刚度直接定义,FKN输入为负数,则程序将其值理解为直接输入的接触刚度值。 对于接近病态的刚度阵,不要使用迭代求解器,例如PCG等。它们会需要更多的迭代次数,并有可能不收敛。可以使用直接法求解器,例如稀疏求解器等。这些求解器可以有效求解病态问题。 穿透的大小影响结果的精度。用户可以用PLESOL,CONT,PENE来在后处理中查看穿透的数值大小。如果使用的是罚函数法求解接触问题,用户一般需要试用多个FKN值进行计算,可以先用一个较小的FKN值开始计算,例如0.1。因为较小的FKN有助于收敛,然后再逐步增加FKN值进行一系列计算,最后得到一个满意的穿透值。 FKN的收敛性要求和穿透太大产生的计算误差总会是一对矛盾。解决此矛盾的办法是在接触算法中采用扩展拉格朗日乘子法。此方法在接触问题的求解控制中可以有更多更灵活的控制。可以更快的实现一个需要的穿透极限。 2.拉格朗日乘子法与扩展拉格朗日乘子法 拉格朗日乘子法与罚函数法不同,不是采用力与位移的关系来求接触力,而是把接触力作为一个独立自由度。因此这里不需要进行迭代,而是在方程里直接求出接触力(接触压力)来。Kx=F+Fcontact 从而,拉格朗日乘子法不需要定义人为的接触刚度去满足接触面间不可穿透的条件,可以直接实现穿透为零的真实接触条件,这是罚函数法所不可能实现的。使用拉格朗日乘子法有下列注意事项: 1)刚度矩阵中将有零对角元,使有些求解器不克使用。只能使用直接法求解器,例如波前法或系数求解器。而PCG之类迭代求解器是不能用于有零主元问题的。

接触刚度单元划分密度对计算精度的影响

接触刚度单元划分密度对计算精度的影响 作者:李初晔王海涛马岩 摘要:有限元分析中通常采用接触单元和耦合节点位移两种方法处理组合体计算问题,对于明显存在相对滑动的组合结构,采用节点耦合的计算方法已不适用,必须采用接触单元来处理此类问题。接触计算时零件之间的接触穿透会丧失部分计算精度,穿透值的大小主要与接触刚度有关,对于弯曲问题,单元划分密度也会对穿透值的大小产生影响。本文基于ANSYS 的接触计算理论,讨论了接触刚度、单元划分密度对有限元计算精度的影响,期望找到提高接触计算精度的方法。 前言 零件组合结构分析的难点是如何正确处理零件连接部位之间的约束过渡,通过此约束条件的建立完成工作力在整机零件之间的传递。有限元分析软件通常采用接触单元和耦合节点位移两种方法处理此类问题,节点耦合是点对点的位移协调关系,即一组耦合节点在变形过程中沿所定义的自由度方向变形保持一致。显然只要两点距离足够接近,并且各零件在变形过程中没有相对滑动,这种定义是符合实际的。然而对于明显存在相对滑动的组合结构,采用节点耦合的计算方法已不适用,必须采用接触单元来处理此类问题。接触计算时零件之间的接触穿透会丧失部分计算精度,穿透值的大小主要与接触刚度有关,对于弯曲问题,单元划分密度会影响最大穿透值的测量基准位置,间接对穿透值的大小产生影响。本文的研究内容基于ANSYS的接触计算理论,讨论了接触刚度、单元划分密度对有限元计算精度的影响,期望找到提高接触计算精度的方法。 1 问题描述 图1的两板之间采用接触单元连接,力F使其压缩,板厚度a,弹性模量E,泊淞比c,板间间隙e,研究接触刚度及单元划分密度对计算精度的影响。 有限元分析采用的模型参数:L1=800mm,L2=1200mm,a=300mm,b=800mm,e=8mm。材料特性参数:弹性模量210000MPa,泊淞比0.3。

MATLAB轴的强度与刚度校核

Matlab三级项目 用matlab实现轴强度刚度的校核 专业:工程设计与分析 学号:6 姓名: 晨 指导老师:建亮

引言 传统校核过程的相对固定,以及冗繁的计算量使得程序化的实现成为了我的首选。为简化计算,在“工欲善其事,必先利其器”思想的指导下,我尝试写了这个多参数函数,与传统机械设计中的强度刚度校核理论相结合验证,结果无误。 理论基础 《材料力学》中提到了扭转剪应力、弯曲剪应力、弯曲正应力的各自计算方法。《机械设计》中关于轴的设计及刚度强度的校核过程。 常见的轴有转轴,心轴和传动轴。在上学期的机械设计课程设计中的减速器中所用的都为转轴。轴的材料主要采用碳素钢和合金钢,其中最常用的事45钢,应进行调质和正火处理,基本界面确定之后将用45钢进行调整和试运行。本次课程设计为了实现广泛性将不确定材料,因此所用系数因具体的材料,毛坯直径及热处理方法由机械设计手册查得。 在一般情况下,轴的工作能力主要决定于它的强度和刚度,对于高转速轴,有时还决定于它的振动稳定性。在设计轴时,除了要按这些工作能力准则进行设计计算或校核计算以外,在结构设计时还需要使其能满足其他一系列要求,例如轴上零件固定的要求、热处理要求、运转维护等。 所以,本软件的功用旨在使得以往复杂的算法程序化。使用者输入相关参数即可得出结果,而且可以重复计算,方便而且可靠。

同时,可以给出查表或者查数据所需的一些简单计算的结果,方便用户进行设计计算。并且,在一些需要用户人工选择的情况下,给出一定的参考值或者参考意见。 一、轴的强度设计 1.1按许用弯曲应力的计算 由弯矩所产生的弯曲应力b σ应不超过许用弯曲应力,一般计算顺序 如下: 1.画出轴的空间受力简图,将轴上作用力分解为水平受力图和垂直受力图。求出水平面上和垂直面上的弯矩Mxy 图和Mxz 图。 2.作出弯矩M=22Mxz xy +M 图 3.作出转矩T 图。 4.应用公式M`=22)(T M α+M`图。(式中α是根据转矩性质而定的应力校正系数。对于不变的转矩,取α=[]b 1-σ/[]b 1+σ,对于脉动的轴,取α为[]b 1-σ/[]b 0σ,对于对称循环的转矩,取α=1. []b 1-σ[]b 1+σ[]b 0σ,分别为材料在静,脉动循环和对称循环应力状态下的需用弯曲应力。其值可由机械设计课本表7-3选取。 5.计算应满足下列条件。 []W σσ== =≤

标准滚动轴承承载能力计算

标准滚动轴承承载能力计算 在跟踪架通用轴系中,标准滚动轴承是重要的部件,轴承的承载能力计算是轴系设计中的关键问题。采用通用轴系后,地平式跟踪架水平轴两端的轴承主要承受径向载荷,同时承受一定量的轴向载荷。垂直轴上的轴承要承载垂直轴及上部转体的负荷,载荷较大;另一方面垂直轴为了满足强度和刚度的要求,轴径一般较大,轴承的尺寸与轴要相互配合,因此使用时必须考虑轴承的尺寸和轴向承载能力。同时为了减少跟踪架的成本,尽量采用轴承厂批量生产的轴承。 角接触球轴承按公称接触角分为 15°、25°、40°三种类型,公称接触角越大,轴向承载能力越强。 目前批量生产的角接触球轴承,尺寸最大是接触角为 25°的 7244AC,其外形尺寸为 220 ×400×65。 下表中给出了 7244AC 轴承的相关参数 轴承额定载荷选取的流程为: (1)计算滚动轴承的当量载荷 在实际应用中,根据跟踪架承载状况先估算出轴承承受的径向载荷和轴向载荷,则可计算出此时轴承的当量动载荷 P 为: 式中 X ——径向动载荷系数; Y ——轴向动载荷系数; ——载荷系数。 (2)基本额定动载荷 C 选取 计算出轴承实际工作时的当量载荷后,当轴承的预期使用寿命选定,轴 承最大转速n可知时,可计算出轴承应具有的基本额定动载荷C′,在手册中选择轴承时,所选轴承应满足基本额定载荷 C > C′。

式中 ——温度系数,可从机械设计手册中查得; ε——寿命指数,球轴承取3,滚子轴承取10/3。 由于角接触轴承的径向承载能力大于轴向承载能力,而其在垂直轴上的应用主要承受较大轴向载荷,因此必须考虑其轴向承载能力。 (3)轴承受轴向载荷时承载能力分析 在轴承转速不高时,可以忽略钢球离心力和陀螺力矩的影响,钢球与内外套圈的接触角相等。 由赫兹接触理论得到轴承滚动体与内外滚道的接触变形和负荷之间的相互关系,可以表示为 式中 —滚动体与内外滚道接触变形总量; K —系数; Q —滚动体承受载荷; t —指数,线接触时为,点接触时为 2/3。

关于计算极限的几种方法

目录 摘要 (1) 引言 (2) 一.利用导数定义求极限 (2) 二.利用中值定理求极限 (2) 三.利用定积分定义求极限 (3) 四.利用施笃兹公式 (4) 五.利用泰勒公式 (5) 六.级数法 (5) 七.结论 (6) 参考文献 (6)

内容摘要 摘要:极限是数学分析中最基本、最重要的概念之一,极限是微积分的重要基础,研究函数性质的重要手段.极限是描述函数在无限过程中的变化趋势的重要概念,本文通过典型例题,举一反三,给出几种常用的求极限方法。极限的计算方法很多,并且有一定的规律和技巧性,对此,本文将根据实例进行分析、探讨,并归纳出一些计算方法. 关键词:极限;计算;方法 Abstract:the limit is one of the most basic, the most important concept in mathematical analysis, the limit is an important foundation for the calculus, an important means to study the function of the nature of the concept description. The limit is an important trend in the infinite process function, through typical examples, infer other things from one fact,several commonly used methods for the limits. A lot of calculation method of limit, and there are rules and skills, certain of

接触刚度的计算

step(time,0,0d,0.68,-12000d)+step(time,0.68,0d,1.77,0d)+step(time,1.77,0d,2.45,12000d) 3.2.3定义齿轮啮合的接触碰撞力 为了保证仿真分析的真实性,齿轮之间的啮合运动关系没有被定义成理想化的几何约束关系,而是被定义为基于接触碰撞的力约束关系,即齿轮之间只能通过接触碰撞力(法向)和摩擦力(切向)相互约束,而不存在其他的约束关系。 在ADAMS 中有两种接触碰撞的计算模型,一种是基于Hertz 理论的Impact 函数模型,一中是基于恢复系数(Coefficient of restitution )的泊松(POISSON )模型。两种力模型都来自于法向接触约束的惩罚函数。ADAMS/C++Solver 使用惩罚因子来转换所有的接触约束。 采用Impact 函数来计算各啮合齿轮轮齿之间的接触碰撞力。Impact 函数模型将实际中物体的碰撞过程等效为基于穿透深度的非线性弹簧—阻尼模型,其计算表达式为: ()()?????>时,两物体不发生接触,接触力为0,当1x x <时,两物体接触,接触力大小与接触刚度系数、非线性指数、阻尼系数以及两物体距离的改变量即穿透量有关。由以上公式可知,Impact 接触力包括两个部分: (1)弹性分量n x x K )(1-,相当于一个非线性弹簧; (2)阻尼分量(). 1max 10,,,,x x C d x x step -,其方向与运动方向相反,为了避免阻尼分量突变而使得函数变得不连续,采用了阶跃函数()step 来定义阻尼,()step 函数是利用三次多项式逼近海赛(Heacisde )阶跃函数,具有连续的一阶导数,但在起始点处二阶导数不连续。在ADAMS 中的表达形式为:

第四章 扭转的强度与刚度计算

41 一、 传动轴如图19-5(a )所示。主动轮A 输入功率kW N A 75.36=,从动轮D C B 、、输出功率分别为kW N kW N N D C B 7.14,11===,轴的转速为n =300r/min 。试画出轴的扭矩图。 解 (1)计算外力偶矩:由于给出功率以kW 为单位,根据(19-1)式: 1170300 75.3695509550=?==n N M A A (N ·m ) 351 300 1195509550=?===n N M M B C B (N ·m ) 468 300 7.1495509550=?==n N M D D (N ·m ) (2)计算扭矩:由图知,外力偶矩的作用位置将轴分为三段:AD CA BC 、、。现分 别在各段中任取一横截面,也就是用截面法,根据平衡条件计算其扭矩。 BC 段:以1n M 表示截面Ⅰ-Ⅰ上的扭矩,并任意地把1n M 的方向假设为图19-5(b )所示。根据平衡条件0=∑x m 得: 01=+B n M M 3511-=-=B n M M (N ·m ) 结果的负号说明实际扭矩的方向与所设的相反,应为负扭矩。BC 段内各截面上的扭矩不变,均为351N ·m 。所以这一段内扭矩图为一水平线。同理,在CA 段内: M n Ⅱ+0=+B C M M Ⅱn M = -B C M M -= -702(N ·m ) AD 段:0=D n M M -Ⅲ 468==D n M M Ⅲ(N ·m ) 根据所得数据,即可画出扭矩图[图19-5(e )]。由扭矩图可知,最大扭矩发生在CA 段内,且702max =n M N ·m 二、 如图19-15所示汽车传动轴AB ,由45号钢无缝钢管制成,该轴的外径 (a ) (c ) C B m (d ) (e ) 图19-5 (b )

最新 角接触球轴承动刚度的计算分析-精品

角接触球轴承动刚度的计算分析 赵耿,刘保国,冯伟,王攀 (河南工业大学机电工程学院,河南郑州 450001) 摘要:通过对轴承运动过程进行物理模型简化以及力学分析,运用MATLAB建立了角接触球轴承的刚度数值计算模型,经实例验证能很好地计算出不同参数下的轴承刚度。本文通过对7012C型角接触球轴承进行实例计算分析,发现:轴承刚度随着转速的提高呈减小趋势,但各方向刚度变化趋势存在不同;轴承钢球陀螺力矩以及离心作用惯性力随着转速增大逐渐增大;轴承刚度受轴承滚珠离心作用惯性力以及陀螺力矩的影响,轴承的刚度随着轴承滚珠离心作用惯性力及陀螺力矩的增大呈减小趋势。 关键词:轴承;角接触球轴承;轴承刚度;陀螺力矩;离心作用;Matlab 中图分类号:TH123;TH133.3 文献标志码:A DOI: 10.3969/j.issn.1674-9146.2017.08.075 高速电主轴作为高精密机床的核心部件,已成为世界各国的重点研究对象[1],高速电主轴的研制能够为高精密数控机床系统提供更好的动力系统。角接触球轴承作为高速电主轴的主要支撑部件,其高速运行情况下的力学特性将会影响电主轴工作性能[2]。轴承刚度被视为衡量轴承性能的重要指标之一,它对轴承的负载能力、极限转速以及使用寿命有重要的影响。李纯洁等人研究发现随着预紧力的增大角接触球轴承的等效动刚度也随之增大,且当预紧力增大到一定范围时动刚度受预紧力影响明显变小[3]。王保民等人通过建立模型分析了预紧力对角接触球轴承的接触角、球的离心力和陀螺力矩的影响[4]。本文通过数值算法建立了轴承刚度计算模型,计算分析了在预紧力一定的情况下,角接触球轴承的动刚度在不同转速下刚度的变化,为高速电主轴主轴系统的模型建立提供数据支持。 1 数学模型的建立 该数学模型以Jones滚道控制理论为基础建立,运用Newton-Raphson迭代方法进行数值计算,在模型建立之前先做如下假设:一是轴承的几何形状理想;二是外圈固定,内圈相对于外圈做旋转运动;三是忽略钢球和内外圈沟道之间的摩擦力;四是轴承构件间的相互作用均符合Hertz接触理论;五是不计轴承内部油膜厚度和油膜阻力带来的影响[5]。 第76页图3为轴承受载前后,在第k个滚珠位置φk处,轴承的滚珠中心以及轴承内外圈沟道曲率中心在受载前后的位置相对变化。

ansys接触问题牛人的经验之谈(终审稿)

a n s y s接触问题牛人的 经验之谈 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

接触问题的关键在于接触体间的相互关系(废话,),此关系又可分为在接触前后的法向关系与切向关系。 法向关系: 在法向,必须实现两点:1)接触力的传递。2)两接触面间没有穿透。ANSYS通过两种算法来实现此法向接触关系:罚函数法和拉格朗日乘子法。 1.罚函数法 是通过接触刚度在接触力与接触面间的穿透值(接触 位移)间建立力与位移的线性关系:     接触刚度*接触位移=法向接触力 对面面接触单元17*,接触刚度由实常数FKN来定义。穿透值在程序中通过分离的接触体上节点间的距离来计算。接触刚度越大,则穿透就越小,理论上在接触刚度为无穷大时,可以实现完全的接触状态,使穿透值等于零。但是显而易见,在程序计算中,接触刚度不可能为无穷大(否则病态),穿透也就不可能真实达到零,而只能是个接近于零的有限值。 以上力与位移的接触关系可以很容易地合并入整个结构的平衡方程组 K*X=F中去。并不改变总刚K的大小。这种罚函数法有以下几个问题必须解决: 1)接触刚度FKN应该取多大 2)接触刚度FKN取大些可以减少虚假穿透,但是会使刚度矩阵成为病态。

3)既然与实际情况不符合的虚假穿透既然是不可避免的,那么可以允许有多大为合适 因此,在ANSYS程序里,通常输入FKN实常数不是直接定义接触刚度的数值,而是接触体下单元刚度的一个因子,这使得用户可以方便地定义接触刚度了,一般FKN取0.1到1中间的值。当然,在需要时,也可以把接触刚度直接定义,FKN输入为负数,则程序将其值理解为直接输入的接触刚度值。 对于接近病态的刚度阵,不要使用迭代求解器,例如PCG等。它们会需要更多的迭代次数,并有可能不收敛。可以使用直接法求解器,例如稀疏求解器等。这些求解器可以有效求解病态问题。 穿透的大小影响结果的精度。用户可以用PLESOL,CONT,PENE来在后处理中查看穿透的数值大小。如果使用的是罚函数法求解接触问题,用户一般需要试用多个FKN值进行计算,可以先用一个较小的FKN值开始计算,例如0.1。因为较小的FKN有助于收敛,然后再逐步增加FKN值进行一系列计算,最后得到一个满意的穿透值。 FKN的收敛性要求和穿透太大产生的计算误差总会是一对矛盾。解决此矛盾的办法是在接触算法中采用扩展拉格朗日乘子法。此方法在接触问题的求解控制中可以有更多更灵活的控制。可以更快的实现一个需要的穿透极限。 2.拉格朗日乘子法与扩展拉格朗日乘子法

轴承相关计算

第十八章滚动轴承 §18-1 滚动轴承的结构及类型 一、滚动轴承的结构 滚动轴承一般是由内圈、外圈、滚动体和保持架组成(图18-1)。通常内圈随轴颈转动,外圈装在机座或零件的轴承孔内固定不动。内外圈都制有滚道,当内外圈相对旋转时,滚动体将沿滚道滚动。保持架的作用是把滚动体沿滚道均匀地隔开,如图18-2所示。 图18-1滚动轴承结构图18-2滚动轴承运动 滚动体与内外圈的材料应具有高的硬度和接触疲劳强度、良好的耐磨性和冲击韧性。一般用含铬合金钢制造,经热处理后硬度可达HRC61~65,工作表面须经磨削和抛光。保持架一般用低碳钢板冲压制成,高速轴承多采用有色金属或塑料保持架。 与滑动轴承相比,滚动轴承具有摩擦阻力小,起动灵敏、效率高、润滑简便和易于互换等优点,所以获得广泛应用。它的缺点是抗冲击能力较差,高速时出现噪声,工作寿命也不及液体摩擦的滑动轴承。由于滚动轴承已经标准化,并由轴承厂大批生产,所以,使用者的任务主要是熟悉标准、正确选用。 图18-3给出了不同形状的滚动体,按滚动体形状滚动轴承可分为球轴承和滚子轴承。滚子又分为长圆柱滚子、短圆柱滚子、螺旋滚子、圆锥滚子、球面滚子和滚针等。

图18-3 滚动体的形状二、滚动轴承的类型 滚动轴承常用的类型和特性,见表18-1。

由于结构的不同,各类轴承的使用性能如下。 1.承载能力 在同样外形尺寸下。滚子轴承的承载能力约为球轴承的1.5~3倍。所以,在载荷较大或有冲击载荷时宜采用滚子轴承。但当轴承内径d≤20mm时,滚子轴承和球轴承的承载能力已相差不多,而球轴承的价格一般低于滚子轴承,故可优先选用球轴承。 2.接触角α 接触角是滚动轴承的一个主要参数,轴承的受力分析和承载能力等与接触角有关。表18-2列出各类轴承的公称接触角。

相关主题