搜档网
当前位置:搜档网 › 微纳机电系统建模与仿真大作业.

微纳机电系统建模与仿真大作业.

微纳机电系统建模与仿真大作业.
微纳机电系统建模与仿真大作业.

研究生课程考试成绩单

(试卷封面

院系机械工程学院专业机械设计及理论学生姓名刘晨晗学号129580

课程名称微/纳机电系统建模与仿真

授课时间2013年 3 月至2013年 6 月周学时 3 学分 2

考核论题MEMS综述

总评成绩

(含平时成绩

备注

任课教师签名:

日期:

注:1. 以论文或大作业为考核方式的课程必须填此表,综合考试可不填。“简要评语”栏缺填无效。

2. 任课教师填写后与试卷一起送院系研究生秘书处。

3. 学位课总评成绩以百分制计分。

目录

1、MEMS简介 (1

2、MEMS历史与发展现状 (2

2.1 MEMS历史 (2

2.2 MEMS发展现状 (3

3、MEMS研究内容 (4

4、MEMS器件举例--悬浮微器件的结构及工作原理 (6

4.1 器件介绍 (6

4.2 器件的结构和加工工序 (6

4.3 器件的生产工艺 (7

4.4 器件的工作原理 (8

5、MEMS的应用与未来 (9

6、参考文献 (11

MEMS 综述

129580 刘晨晗

1、MEMS 简介

图1显示了自然界一些典型事物的特征尺寸,我们人类生活在以米为单位的世界里。两端分别有宏大的宇宙与微小的原子,其间有一段尺寸区间1m μ-100m μ或者0.1m μ-100m μ称为微纳米区间。在1959年12月29日的美国加州理工学院,著名的物理学家理查德-费曼(Richard P. Feynman 在一年一度的美国物理学会上提出

一个极具深刻洞察力的观点“There is plenty of room at the bottom ” 【1】。接下来的时间至今,在微纳米尺度以及原子尺寸级别相关研究的快速发展映证了费曼观点的远见卓识。尤其值得一提的是在微纳米区间的发展。

图1 自然界典型事物的特征尺寸

MEMS 即Micro-Electro-Mechanical System ,它是以微电子、微机械及材料科学为基础,研究、设计、制造、具有特定功能的微型装置,包括微结构器件、微传感器、微执行器和微系统等。MEMS 所研究的尺寸范围正好是上述微纳米区间。日本国家MEMS 中心给Microsystem/Micromachine 下的定义【2】:A micro machine is an extremely small machine comprising very small(several millimeters or less yet highly sophisticated functional elements that allows it to perform minute and complicated tasks 。

MEMS 是在微电子技术基础上发展起来的多学科交叉的前沿研究领域,其起源可以追溯到20世纪50~60年代,最初贝尔实验室发现了硅和锗的压阻效应,从而导致

了硅基MEMS 传感器的诞生和发展。在随后的几十年里,MEMS 得到了飞速发展,1987年美国加州大学伯克利分校研制出转子直径为60~120m μ的硅微型静电电机

【3】;1987~1988年,一系列关于微机械和微动力学的学术会议召开,所以20世纪80年代后期微机电系统一词就渐渐成为一个世界性的学术用语,MEMS技术的研究开发也成为一个热点,引起了世界各国科学界、产业界和政府部门的高度重视,经过几十年的发展,它已成为世界瞩目的重大科技领域之一。

MEMS是一种集成系统,典型的MEMS是将信息获取传感器、信息处理电路及执行机构等功能器件集成在一起,以提高系统的效率和可靠性。MEMS被认为是微电子技术的又一次革命,它具有一下一些特点【4,5】:

(1微型化:MEMS器件体积小、重量轻、耗能低、惯性小、谐振频率高、响应时间短。

(2以硅为主要材料,机械电器性能优良:硅的强度、硬度和杨氏模量与铁相当,密度类似铝,热传导率接近钼和钨。

(3尺度效应现象:一般的MEMS器件还没有小到进入物理学中的微观范畴,因此进店物理学仍然成立。但由于尺寸说笑带来的影响,许多物理现象与宏观世界有很大区别,因此许多原来的理论基础都会发生变化,如力的尺寸效应、微结构的表面效应、微观摩擦机理等,因此有必要对为动力学、微流体力学、微热力学、微摩擦学、微光学和微结构学进行深入的研究。

(4批量生产:用硅微加工工艺在一片硅片上可同时制造成百上千个微型机电装置或完整的MEMS,批量生产可大大降低生产成本。

(5集成化:可以把不同功能、不同敏感方向或致动方向的多个传感器或执行器集成于一体,或形成微传感器阵列、微执行器阵列,甚至把多种功能的器件集成在一起,形成复杂的微系统。微传感器、微执行器和微电子器件的集成科制造出可靠性、稳定性很高的MEMS。

(6多学科交叉:MEMS涉及电子、机械、材料、制造、信息与自动控制、物理、化学和生物等多种学科,并集约了当今科学技术发展的许多尖端成果。

2、MEMS历史与发展现状

2.1 MEMS历史

费曼提出“There is plenty of room at the bottom”观点后几十年,人们都没有意识到它的重要性。直到微马达的出现才引起了人们的重视。1987年,美国UC Berkeley 大学发明了基于表面牺牲层技术的微马达,引起国际学术界的轰动,人们看到了电路与执行部件集成制作的可能性,这是MEMS技术的开端。1988年,美国的一批著名科学家提出“小机器、大机遇”,并呼吁:美国应当在这一重大领域发展中走在世界的前列。1993年,美国ADI公司采用该技术成功地将微型加速度计商品化,并大批量应用于汽车防撞气囊,标志着MEMS技术商品化的开端。20世纪90年代,发达国家先后投巨资并设立国家重大项目促进其发展。此后,MEMS技术发展迅速,特别是深槽刻蚀技术出现后,围绕该技术发展了多种新型加工工艺。最近,美国朗讯公司开发的基于MEMS光开关的路由器已经试用,预示着MEMS发展又一高潮的来临。目前

部分器件已经实现了产业化,如微型加速度计、微型压力传感器、数字微镜器件(DMD、喷墨打印机的微喷嘴、生物芯片等,并且应用领域十分广泛。近年来国际上MEMS的专利数正呈指数规律增长,说明MEMS技术全面发展和产业快速起步的阶段已经到来。图2展示了MEMS发展历史上一些重要的时刻【6】

图2 MEMS发展历史

2.2 MEMS发展现状

2.2.1 国外概况

回顾MEMS发展进程,国外发展MEMS的特点有如下4个方面【7】:

A国家高度重视。在初期,政府行为起主导作用,如1992年“美国国家关键技术计划”把“微米级和纳米级制造”列为“在经济繁荣和国防安全两方面都至关重要的技术”。美国国家自然基金会(NSF把微米/纳米列为优先支持的项目。美国国防部先进研究计划署(DARPA制定的微米/纳米和微系统发展计划,对“采用与制造微电子器件相同的工艺和材料,充分发挥小型化、多元化和集成微电子技术的优势,设计和制造新型机电装置”给予了高度的重视。日本早在1991年开始启动了2.5亿美元的大型研究计划—“微机械十年计划”。

B企业介入、市场牵引。在MEMS发展初期,美国就重视牵引研究主体—大学与企业的结合。例如在MEMS的重点研究单位UC Berkeley成立的BSAC(Berkeley Sensor and Actuator Center就由多所大学和企业组成。ADI公司看到了微型加速度计在汽车领域应用的巨大前景,通过引入表面牺牲层技术并加以改造,使微型加速度计的商品化获得巨大成功。

C重点领域明确。美国在发展初期确定军事应用为其主要方向,侧重以惯性器件为代表的MEMS传感器的研究;日本重点发展进入工业狭窄空间的微机器人、进入人体狭窄空间的医疗微系统和微型工厂。欧洲则重点发展μTAS(Micro Total Analysis System,全微分析系统或LOC(Lab on Chip,芯片实验室。

D重视基础技术的建设。十分重视设计、材料、加工、封装、测试等技术的发

展。美国除在研究单位建立独立的加工实验室外,还特别建立了专门为研究服务的加

工基地,如MCNC、SANDIA国家实验室等。德国也建立了BOSCH实验室。

2.2.2 国内概况

我国MEMS的研究始于20世纪90年代初,起步并不晚,在“八五”、“九五”期间得到了科技部、教育部、中国科学院、国家自然科学基金委和原国防科工委的支持。经过10年的发展,我国在多种微型传感器、微型执行器和若干微系统样机等方面已有一定的基础和技术储备,初步形成了几个MEMS研究力量比较集中的地区。包括京津地区,如清华大学、北京大学、中科院电子所、信息产业部电子13所、南开大学等;华东地区,如中科院上海冶金所、上海交通大学、复旦大学、上海大学、东南大学、浙江大学、中国科技大学、厦门大学等;东北地区,如信息产业部电子49所、哈尔滨工业大学、中科院长春光机所、大连理工大学、沈阳仪器仪表工艺研究所等;西南地区,如重庆大学,信息产业部电子24所、44所和26所等;西北地区,如西安交通大学、航空618所、航天771所等。这些因地域而组成的研究集群,已形成彼此协作、互为补充的关系,为我国的MEMS研究打下了良好的基础。

在科研能力积累上,1996年建设的微米/纳米加工技术国家级重点实验室,使我国的MEMS加工技术研究得到较大提高,实验室购置了当时国际上最先进的MEMS 加工关键设备,如STS深槽刻蚀机、Karlsuss双面光刻机/键合对准机、可用于硅/玻璃静电键合和硅/硅预键合的Karlsuss键合机、LPCVD、压塑机等,连同配套的IC 设备,如溅射台、扩散炉、RIE刻蚀机、PECVD、光刻机等设备,初步构成了具有国际先进水平的MEMS加工线。这些设备结合一些分散于各研究机构的微电子工艺线和微加工设备,组成了目前我国的MEMS加工技术基础。在上述设备的基础上,已开发出具有一定水平的MEMS加工技术。其中北京大学所属微米/纳米加工技术重点实验室分部开发出4种MEMS全套加工工艺和多种先进的单项工艺,已制备出加速度计样品,并已开始为国内研究MEMS的单位提供加工服务。上海交通大学所属微米/纳米加工技术重点实验室分部可以提供非硅材料的微加工服务,如LIGA技术制作高深宽比微结构的基本加工技术,紫外深度光刻—、高深宽比微电铸和模铸加工,功能材料薄膜制备等。电子部13所研究的融硅工艺也取得了较大进展,已制备出微型加速度计和微型陀螺样品。

经过近20年的发展,我国已在微型惯性器件和惯性测量组合、机械量微型传感器和制动器、微流量器件和系统、生物传感器和生物芯片、微型机器人和微操作系统、硅和非硅制造工艺等方面取得一定成果。现有的技术条件已初步形成MEMS 设计、加工、封装、测试的一条龙体系,为保证我国MEMS技术的进一步发展提供了较好的平台。但是,由于历史原因造成的条块分割、力量分散,再加上投入严重不足,尽管已有不少成果,但在质量、性能价格比及商品化等方面与国外差距还很大。

3、MEMS研究内容

MEMS系统主要包括微型传感器、微执行器和相应的处理电路三部分。作为输入信号的自然界各种信息,首先通过传感器转换成电信号,经过信号处理单元后(包括A/D、D/A转换,再通过微执行器对外部世界发生作用。下图给出了MEMS系统与外界相互作用的示意图【8】。

图3 MEMS系统与外界相互作用图

MEMS研究的内容极为广泛。其关键技术有设计技术、材料、制作工艺和测试技术。

(一设计技术

MEMS产品设计包括系统、器件、电路和封装等设计。

MEMS器件的设计需要综合多学科理论分析,这大大增加了设计参数选择的难度,常规分析计算已无法满足设计需要。计算机技术的进步使得CAD技术在MEMS 器件设计中得到广泛的应用,采用CAD能设计出具有低成本、高性能、更为复杂的新型系统。2D和3D计算机绘图技术的发展能够对复杂的MEMS结构及版图进行计算机设计,有限元分析技术的应用可以用精确的计算机数值求解方法来分析和预测器件的性能,对器件的静态、准静态和动态模拟成为可能,从而使我们能够对MEMS 器件的结构和工艺进行计算机模拟和设计优化。

(二材料

MEMS应用的材料主要有三种:单晶硅和多晶硅,压电材料和其他类型合成材料。

(1硅材料:硅的机械性能好,硅的强度、硬度和杨氏模量与铁相当,密度类似铝,热传导性接近钼和钨。19世纪60年代,MEMS刚出现时,IC工业应用的半导体材料只有单晶硅衬底和多晶硅薄膜两种材料。

(2压电材料:开发研究表明,压电材料是制作MEMS的良好材料。MEMS 材料的一个明显的变化是用单晶石英取代硅。石英也是一种高性能的晶体,虽然批量生产不如硅,但可以进行定向腐蚀,已用于制造压力传感器、加速度计和陀螺。

(3合成材料:最近几年材料结构的控制技术发展很快,在未来阶段,MEMS 应用的新材料包括化合物材料、高温超导材料、磁阻材料、铁电材料、热点材料以及许多其他功能材料。这些材料是专门为MEMS传感器研究和开发的。

(三制作工艺

微机械加工技术是制作微传感器、微执行器和微电子机械系统的关键技术。

微机械加工工艺分为硅基加工和非硅基加工。硅基加工技术比较成熟,硅的力学性能较好,适合做微型机械。硅基工艺包括表面加工(牺牲层技术、体加工(各向异性刻蚀技术、SPB(硅直接键合、LIGA和准LIGA加工;非硅基加工包括微电火花加工、微电铸、激光加工、STM和AFM等。

MEMS技术首先是在微电子平面加工工艺基础上发展起来的,又先后有了深反应离子刻蚀(DRIE、LIGA和准分子激光等多种工艺创新。这些工艺相互补充,各有所长。目前已经面市的一代MEMS产品具有一个关键特征:简单、易于大规模生

产、价格便宜、适合于用硅平面工艺加工。硅熔合键合与深反应离子刻蚀相结合是把“表面”微机械加工与传统的“体”微机械加工的优点结合起来,即把一般集成电路制造工艺的设计灵活性与兼容性和体工艺的坚固性和三维成型能力结合起来。

深反应离子刻蚀DRIE 采用氯和氟为基础的等离子体(如用射频功率驱动刻蚀出近似垂直壁面的深层结构。目前已经能刻蚀出200m μ的深度。

(四测试技术

MEMS 的封装和测试占重要地位。建立在微电子基础上的MEMS 产品的生产工艺应该是比较成熟和可靠的,伴随着CAD 和生产工艺要求的不断提高,提高测试和封装的水平和手段才能确保产品的高性能、高可靠性、降低生产成本。

4、MEMS 器件举例--悬浮微器件的结构及工作原理

4.1 器件介绍

随着人们对纳米材料的兴趣越来越浓烈,尤其是碳纳米管和石墨烯的发现,导致了对纳米材料大量的研究工作。然而这些工作很多集中在理论上,实验上的研究相当有限。原因在于传统的实验方法几乎不可能测量这种小尺寸—微/纳米尺度的物理性质。介于此,伯克利大学的相关研究人员设计了一套实验设备用来测量这种纳米材料尤其是一维纳米线的物理性质。利用这套装置可以用来测量一维纳米线的热导率、Seeback 系数和电导率,测量结果和先期理论符合得很好。这套器件后来经过很多学者的改进,目前已经成为一种常用的设备用来测量一维纳米线的相关物理性质。

4.2 器件的结构和加工工序

这里我们介绍2003年Li Shi 发表在杂志Jour of Heat Transfer 上论文【9】介绍的悬浮微器件,如图4所示:

图4悬浮微器件扫描电子显微图

图4是该悬浮微器件的扫描电子图像。从图中我们可以看出这是一个悬浮结构,包括两个14 m μX25m μ 低应力x SiN 薄膜,薄膜由五根0.5m μ厚,420m μ长以及2m μ宽的x SiN 梁支撑。在每个薄膜表面上都有30nm 厚、300nm 宽的铂阻器(PRT。PRT 通

过位于梁表面1.8m μ宽的铂连接到200m μX200m μ的铂板上。另外在薄膜上还有1.8m μ宽的铂电极,提供对样品的电接触。

4.3 器件的生产工艺

根据文中叙述,该装置可以批量生产。在一片100mm 直径的wafer 上可以生产2000个密集排布的悬浮微装置。具体的微制造工艺如下:

SiNx Si

Pt LTO (低

温SiO2 Photoresist

射频溅射低压化学气相沉积 I-line 圆片分档器活性离子刻蚀

溅射刻蚀活性离子

刻蚀

(a (b (c (d (e (f (g (h (i

图5 悬浮微装置制造工艺步骤

生产工艺如图5所示:首先在100mm 的wafer 上用低压化学气象沉积法(LPCVD 沉积一层厚度为0.5m 的低应力x SiN 薄膜如图5(a 所示;接着30nm 厚的铂薄膜通过射频溅射法沉积到x SiN 薄膜上。类似地,用LPCVD 在铂膜上沉积一层300nm 厚的低温二氧化硅(LTO ;然后沉积光刻胶(photoresist,接着用活性离子刻蚀LTO 层,将photoresist 层的图案转移到LTO 层,然后以LTO 层为掩膜刻蚀铂层如图5(f ,photoresist 和LTO 剥除后如图5(g ;接着再沉积photoresist ,以其为掩膜刻蚀薄膜,最后刻蚀掉基底硅形成需要的悬浮微器件如图5(i 所示。

4.4 器件的工作原理

图6 样品热导测量原理图

图6是测量样品热导实验原理图。整个实验装置工作时需要放置在低温真空环境中(压力需要小于1X10^-5Torr 。上述悬浮微器件的两个薄膜一个是加热薄膜、另一个是感应薄膜。实验时,从一根梁上Pt 线通入直流电流I (有两根梁有电流I

,如图

羟化四甲基铵

(i

微/纳机电系统建模与仿真报告 6 所示。这样就会在加热 PRT 上产生

Rh 的热量, Rh 是 PRT 的热阻;通有电流的两根梁上每根梁产生,RL 是梁上 Pt 线的热阻。由图 6 可以看出,有 Q2 的能量通过样品从加热薄膜流向感应薄膜。根据电阻图我们可以画出相应的热阻图,如图 6 下部所示。据此我们得到如下方程:(1)式中

5kl A / L 是五根梁的热导,k l 、A 和 L 分别是梁的热导率、横截面积和长度;

是样品的热导,其中 Gc 是接触热导,

An / Ln 是样品本身的热导,横截面积和长度(两个薄膜之间部分的长度), k n 、An 和 Ln 分别是样品的热导率、在实际工艺中一般会使得接触热阻 Gc 很大,这样 Gs 就是 Gn 即样品本身的热导。根据式(1)只要测到 Gb 就可计算得到 Gs

即 Gn 。在分析中,考虑一维热传导就可以得到梁中的温度分布:两根通有电流的梁中有一个抛物线的温度分布;其他八根梁中是线性温度分布。所以说通过两根梁流向环境的能量为(2)加热薄膜上的其他三根梁流向环境的热量为感应薄膜通过五根梁流向环境的热量为(3)(4)式(2)和式(3)中的,式(4)中的。根据能量守恒,在稳定时通入电流系统产生的能量和系统流向环境的能量相等得(5)从(5)式我们可以化简得到和(6a)(6b)

式(6)中 Qh 和 QL 很容易从电流和电压得到。关键是求和,这可以根据 PRT 的温阻度系数以及电阻的该变量得到,计算公式如下:

(7)

(8) dRh 式中 I=0 物理意思表示左侧没有通电流。到此就可以得到样品本身热导 Gn 。最后需要提一点:在计算过程中忽略了热辐射,因为热辐射所在比重很小。、MEMS 的应用与未来近几年来,MEMS 器件正在加速向具有信号处理功能的微传感器芯片,以及能 9

微/纳机电系统建模与仿真报告够完成独立功能的“片上系统” (微系统方向发展。近年来,国外一些著名厂商将 MEMS 技术推广应用到光电领域,研制成功微型光电子系统,进一步拓展了 MEMS 技术的应用领域。Agere 公司日前新推出业界首款三维手持 MEMS 系统【10】,该系统由微镜像章动开关和驱动器芯片等一系列器件构成,集光、电、微机械和微封装技术于一体,其优势是能够简化交换设备和交叉连接等光纤联网系统的设计和制造,大大加快全光网技术和设备的发展步伐。TI 公司为高清晰度显示设备而研制的数字光处理器件(DLP也属于一种MEMS 系统【11】,这款产品的核心是一种数字微镜器件 (DMD光半导体芯片。由于 DLP 技术不断实现的商业化,该技术的应用也越来越广泛,目前,全球已经有将近 40 家著名的 TV 和放映设备厂商开始采用 DLP 子系统。 LG 公司也在韩国电子展览会上展示了一款采用 DLP 子系统的 52 英寸彩电 (1 英寸=2. 54 cm。美国也在日前推出一款集成了振动传感器和控制电路的 MEMS 芯片,这款新产品采用

先进的半导体工艺制造,适用于家电、汽车安全气囊和游戏机等产品。在游戏机中,MEMS 芯片组成的器件可以取代游戏机中的操作杆或者按键,用户只需改变这种器件的位置,即可随心所欲地控制整个游戏过程,获得更佳的享受。微传感器最热门的趋势之一是“片上系统”构想,也就是说要制成微系统,而不仅仅是微传感器,这种研究工作大多是在许多大学里进行的,例如:位于俄亥俄州克利夫兰市的 CaseWestern Reserve 大学,在研究开发集成 MEMS 流体处理系统方面,包括应用于分析仪器中的新型微阀门和微量泵等方面,已取得一些研究成果【12】。美国加州的斯坦福大学,在研究开发 MEMS 技术和器件方面成绩斐然【13】。该校与位于帕萨迪纳市的加州理工学院协作,研究开发脑细胞组织探针,并已证实MEMS 器件具有再生某些神经细胞组织能力。另外,作为片上微仪器研究开发的重点内容之一,斯坦福大学证实,MEMS 技术可以用于光刻工艺中。光刻的片上MEMS 仪器可能已经不是遥远的事了,斯坦福大学与位于加州米尔皮塔斯市的Lu-casNova-Sensor 公司联手,一直在研究开发新微机械加工技术—深度活性离子刻蚀 (DRIE。这种技术将可能实现对硅作深度达,并接近理想状态的垂直墙、窄沟道及孔的刻蚀,而且,可以保持高精度和较大的纵横尺寸比。这项技术成果将促进 MEMS 技术在生物医学领域的进一步应用。 MEMS 未来可能的一些方向: 1、MEMS 与无线通信领域在无线通信终端领域,对微型化、高性能和低成本的追求使大家普遍期待能将各种功能单元集成在一个单一芯片上,即实现SOC(System On a Chip,而通信工程中大量射频技术的采用使诸如谐振器,滤波器、耦合器等片外分离单元大量存在。 MEMS 技术不仅可以克服这些障碍,而且表现出比传统的通信元件具有更优越的内在性能。日前,IBM 公司采用 MEMS 技术已经开发出了能够用在手机等无线装置上的微型嵌入式频率调谐器和其他设备。 2、MEMS 与微波射频技术(1)MIC:microwave integrated circuits(微波集成电路)(2)MMIC:monolithic MICs(单片微波集成电路)(3)采用 MEMS 技术,可以制作 MEM 开关、各种 MEMS 增强的平面微波无源器件、MEM 谐振腔等等。 3、MEMS 光通信与光网络 MEMS 技术可使开发就地配置的光器件成为可能。用于光网络的 MEMS 动态元件包括可调的激光器和滤波器、动态增益均衡器、可变光衰减器以及光交叉连接器等。此外,MEMS 技术已经在光交换应用中

进入现场试验阶段,基于 MEMS 的光交换机已经能够传递实际的业务数据流,全光 MEMS 光交换机也正在步入商用阶段。 10

微/纳机电系统建模与仿真报告 2003 年 3 月,日立制作所机械研究所与日立金属下属的尖端电子研究所合作,日前成功开发出了用于城域网的三维 MEMS 型光交换元件。该元件通过采用三维 MEMS 型光矩阵交换方式,同时实现了小型化设计和低损耗。 4、MEMS 与生物技术生物芯片是近年来在生命科学领域中迅速发展起来的一项高新技术,它主要是指通过微加工技术和微电子技术在固格体芯片表面构建的微型生物化学分析系统,以实现对细胞、蛋白质、DNA 以及其他生物组分的准确、快速、大信息量的检测。常用的生物芯片分为三大类:即基因芯片、蛋白质芯片和芯片实验室。 5、MEMS 与纳米技术纳米技术与 MEMS 技术作为在尺度上的两个不同的概念(纳米的尺幅范围是在 100nm—0.1nm,而微机械的尺寸定义在 0.1mm 到 1 微米)。纳米技术的应用主要包括纳米材料、纳米电子

技术、纳米机器人、纳米卫星还有纳米武器。费曼曾经设想:“如果有一天可以按照人们的意志安排一个个原子,那将会产生怎样的奇迹?”现代的 MEMS 技术正是建立在微米与纳米尺度之上。两者优势的结合,前景是不可限量的 6、MEMS 在交叉学科中的具有广泛的应用当前,MEMS 技术正处于高速发展前夕, 21 世纪会展现一个大发展的局面,它的广泛应用和效益将强有力地显示出来,它对信息、航空、航天、自动控制、医学、生物学、力学、热学、光学、近代物理和工程学等诸领域发展的影响将是深远的,人类的生产和生活方式也会因此而发生重大改变。 6、参考文献【1】Richard P.Feynman, “There is plenty room at the bottom”, Eigineering and Science, 1959, pp22 【2】郭清, 微电子机械系统(MEMS)综述, 浙江大学微电子所, 2003. 【3】L. S. Fan. Y. C. Tai and R. S. Muller. Tech. Digest IEEE Int. Electron Devices Meeting, San Fransisco, Dec.1988, 11-14, pp666. 【4】刘成刚. MEMS 技术的发展与应用[J]. 济南职业学院学报, 2007, 1, pp5. 【5】牛君,刘云桥. MEMS 技术的发展与应用[J]. 高新技术, 2007, 11, pp1. 【6】Chang Liu, “Foundation of MEMS,” 2nd edition, Pearson Education, 2011. 【7】孙立宁,周兆英,龚振邦. MEMS 国内外发展状况及我国 MEMS 发展战略的思考[J]. 机器人技术与应用, 2002, 02, pp2. 【8】张威,张大成,等. MEMS 概况及其发展趋势[J]. 微纳电子技术, 2002, 1,

pp22. 【9】Li Shi. “Measuring Thermal and Thermoelectric Properties of One-Dimensional Nanostructures Using a Microfabricated Device”, Journal o f Heat Transfer, 125, pp881. 【10】Stanci A, Iusan V, Buioca C D. “Magneto fluidic sensor for volume measurement”. Sensors and Actuators, 2000, 84, pp246. 【11】PopaN C, Potencz I, “.Magnetic liquid sensor for very low gas flow rate with magnetic flow adjustin g possibility”. Sensors and Actuators A, 1997, 59, pp307. 【12】Cotae C, Baltag O. “The study of a magnetic fluid-based sensor”. Journal of Magnetism and Magnetic Materials, 1999, 201, pp394. 【13】Anton S E, Simonenko DV. Location tracking device e. g. for tracking inventory items, includes acceleration sensor having magnetic field sources arranged on mutually perpendicular axes a-round vessel that contains magnetic fluid[P]. US: 2005001814-A1, 2005-01-06. 11

物流系统建模与仿真课程设计

课程设计物流系统建模与仿真 专业年级2011级物流工程指导教师张莹莹 小组成员 重庆大学自动化学院 物流工程系 2014年9 月12 日

课程设计指导教师评定成绩表 项目分 值 优秀 (100>x≥90) 良好 (90>x≥80) 中等 (80>x≥ 70) 及格 (70>x≥60) 不及格 (x<60) 评 分参考标准参考标准参考标准参考标准参考标准 学习态度15 学习态度认 真,科学作风 严谨,严格保 证设计时间并 按任务书中规 定的进度开展 各项工作 学习态度比较 认真,科学作 风良好,能按 期圆满完成任 务书规定的任 务 学习态度 尚好,遵守 组织纪律, 基本保证 设计时间, 按期完成 各项工作 学习态度尚 可,能遵守组 织纪律,能按 期完成任务 学习马虎, 纪律涣散, 工作作风 不严谨,不 能保证设 计时间和 进度 技术水平 与实际能力25 设计合理、理 论分析与计算 正确,实验数 据准确,有很 强的实际动手 能力、经济分 析能力和计算 机应用能力, 文献查阅能力 强、引用合理、 调查调研非常 合理、可信 设计合理、理 论分析与计算 正确,实验数 据比较准确, 有较强的实际 动手能力、经 济分析能力和 计算机应用能 力,文献引用、 调查调研比较 合理、可信 设计合理, 理论分析 与计算基 本正确,实 验数据比 较准确,有 一定的实 际动手能 力,主要文 献引用、调 查调研比 较可信 设计基本合 理,理论分析 与计算无大 错,实验数据 无大错 设计不合 理,理论分 析与计算 有原则错 误,实验数 据不可靠, 实际动手 能力差,文 献引用、调 查调研有 较大的问 题 创新10 有重大改进或 独特见解,有 一定实用价值 有较大改进或 新颖的见解, 实用性尚可 有一定改 进或新的 见解 有一定见解观念陈旧 论文(计算 书、图纸)撰写质量50 结构严谨,逻 辑性强,层次 清晰,语言准 确,文字流畅, 完全符合规范 化要求,书写 工整或用计算 机打印成文; 图纸非常工 整、清晰 结构合理,符 合逻辑,文章 层次分明,语 言准确,文字 流畅,符合规 范化要求,书 写工整或用计 算机打印成 文;图纸工整、 清晰 结构合理, 层次较为 分明,文理 通顺,基本 达到规范 化要求,书 写比较工 整;图纸比 较工整、清 晰 结构基本合 理,逻辑基本 清楚,文字尚 通顺,勉强达 到规范化要 求;图纸比较 工整 内容空泛, 结构混乱, 文字表达 不清,错别 字较多,达 不到规范 化要求;图 纸不工整 或不清晰 指导教师评定成绩:

物流仿真大作业.doc

物流系统仿真 期末作业 题目:Manufacturing System Planning and Scheduling 班级:物流工程131 学号:1311393003 1311393008 姓名:黎宇帆张力夫 日期:2015-09-19 成绩:

制造系统规划与调度 翻译 2.1引言 现代生产调度工具是非常强大的,提供了广阔的范围内调整工具的行为的真实过程要求的选项和参数。 然而,更多的选项的存在,它就在实践中找到的工具的最佳配置更加困难。 即专家们经常无法预测的多种可能性的影响。 测试甚至一小部分在现实中可能的配置,对实际生产过程的影响可能需要几个月的时间,可能会严重降低整体性能。 因此,这样的试验在实践中是不可行的。 优化的生产调度仿真模型比使用真正的过程更安全,更便宜,更快,更容易测试。为了在一个中等规模的制造公司充分使用先进的调度工具的优势,找到它的一个最佳的规则和参数的优化配置。 模块化仿真模型的整个业务的制造系统和生产过程中阳极氧化阶段是建立以测试不同的调度配置的影响。调度工具的配置测试和优化进行了离线使用的仿真模型。实际生产过程不受干扰,可以非常快速、低成本的找到最优配置。 2.2问题描述 位于英国的一个中型制造商,生产一系列的不同的小压铝零件和一系列大批量的其他面向消费者的产品。典型的应用包括香水的喷雾组件和哮喘患者的分配器。这是一个高度竞争的行业,成功取决于是否能实现高效率和低成本制造。所以生产调度是非常重要的。 在过去,该公司安装的软件工具可以支持生产过程中的各个区域调度。全面提高公司绩效,增加产量和减少产品的交货时间,他们计划建立自动电抗器的供应链规划服务器–总调度系统协调当地所有的业务和生产区。为了提供最好的解决方案,调度工具供应商,预优国际(https://www.sodocs.net/doc/aa10373225.html,)决定使用模拟求解调度工具的优化配置。 问题是建立一个仿真工具,它将接受的到来客户订单和生产订单排序以满足这些需求。一个重要的地方是模型的生产过程本身,以确保它的主要阶段的最佳时刻加载。阳极氧化阶段是整个生产过程中特别重要的,因此,它必须是非常详细的模拟,以测试到整体订单的交货时间可以通过阳极氧化过程阶段优化减少到什么程度。 在这种情况下的研究主要目标是以下几个: (1)为了确定公司模型间的相关业务和生产过程和确定订单和交货时间, (2)在规划部门分析和优化业务流程,为了处理传入的需求和规划生产订单。 (3)测试的整体生产时间,提高灵敏度,特别是确定是否引入特定排序规则的生产订单将减少在阳极氧化处理阶段总的处理时间。

matlab机电系统仿真大作业

一曲柄滑块机构运动学仿真 1、设计任务描述 通过分析求解曲柄滑块机构动力学方程,编写matlab程序并建立Simulink 模型,由已知的连杆长度和曲柄输入角速度或角加速度求解滑块位移与时间的关系,滑块速度和时间的关系,连杆转角和时间的关系以及滑块位移和滑块速度与加速度之间的关系,从而实现运动学仿真目的。 2、系统结构简图与矢量模型 下图所示是只有一个自由度的曲柄滑块机构,连杆与长度已知。 图2-1 曲柄滑块机构简图 设每一连杆(包括固定杆件)均由一位移矢量表示,下图给出了该机构各个杆件之间的矢量关系 图2-2 曲柄滑块机构的矢量环

3.匀角速度输入时系统仿真 3.1 系统动力学方程 系统为匀角速度输入的时候,其输入为输出为;。 (1) 曲柄滑块机构闭环位移矢量方程为: (2)曲柄滑块机构的位置方程 (3)曲柄滑块机构的运动学方程 通过对位置方程进行求导,可得 由于系统的输出是与,为了便于建立A*x=B形式的矩阵,使x=[], 将运动学方程两边进行整理,得到 将上述方程的v1与w3提取出来,即可建立运动学方程的矩阵形式 3.2 M函数编写与Simulink仿真模型建立 3.2.1 滑块速度与时间的变化情况以及滑块位移与时间的变化情况 仿真的基本思路:已知输入w2与,由运动学方程求出w3和v1,再通过积分,即可求出与r1。 (1)编写Matlab函数求解运动学方程 将该机构的运动学方程的矩阵形式用M函数compv(u)来表示。 设r2=15mm,r3=55mm,r1(0)=70mm,。 其中各个零时刻的初始值可以在Simulink模型的积分器初始值里设置

M函数如下: function[x]=compv(u) %u(1)=w2 %u(2)=sita2 %u(3)=sita3 r2=15; r3=55; a=[r3*sin(u(3)) 1;-r3*cos(u(3)) 0]; b=[-r2*u(1)*sin(u(2));r2*u(1)*cos(u(2))]; x=inv(a)*b; (2)建立Simulink模型 M函数创建完毕后,根据之前的运动学方程建立Simulink模型,如下图: 图3-1 Simulink模型 同时不要忘记设置r1初始值70,如下图: 图3-2 r1初始值设置

《生产系统建模与仿真》教学大纲

《生产系统建模与仿真》教学大纲 (理论课程) 开课系(部):工程学院课程编号:010396 课程类型:专业课总学时:48 学分:3 适用专业:工业工程开课学期:2014-2015学年第一学期 先修课程:概率论与数理统计、C语言程序设计、系统工程导论 一、课程简述 《生产系统建模与仿真》是面向工程实际的应用型课程,是工业工程系的主导课程之一。学生通过本课程的学习能够初步运用仿真技术来发现生产系统中的关键问题,并通过改进措施的实现,提高生产能力和生产效率。 本课程具有较强的理论性,同时具有较强的实践性和应用性,能够有效增强学生的系统仿真理论基础,提高学生对系统仿真、分析工作的适应性,培养其开发创新能力。 本课程的教学目标是培养学生的设计能力、创新能力和工程意识。课程以制造型生产企业为核心,通过理论教学和实践环节相结合,阐述了离散事件系统建模与仿真技术在生产企业分析中的基本原理和方法。其容涉及计算机仿真技术在生产系统分析中的作用和原理、仿真软件的介绍,重点介绍排队系统、库存系统、加工系统以及输入、输出数据分析。本课程的目的是要求学生通过学习、课堂教育和上机训练,能了解如何运用计算机仿真技术模拟生产系统的布置和调度管理;并熟悉和掌握计算机仿真软件的基本操作和能够实现的功能;使学生了解计算机仿真的基本步骤。 二、课程要求 (一)教学方法 1、启发式课堂讨论 针对关键知识点、典型题和难题,通过教师提问,鼓励学生回答问题或请到讲台前做题,并请其他学生评判或提出不同的答案或不同的解决方法。目的是加强学生自主学习的能力和判断能力,培养主动思考的习惯,启发学生的探索精神。 2、重视在教学中加强知识演进的逻辑规律的讲解 提高学生的逻辑思维能力,培养学生分析问题、解决问题的能力。 3、加强计算机辅助设计、分析 将Flexsim仿真软件引入教学中。应用计算机辅助设计、分析,能方便的改变系统

含有凸轮机械的机电系统建模与仿真

光学精密工程990508 光学精密工程 OPTICS AND PRECISION ENGINEERING 1999年 第7卷 第5期 No.5Vol.7 1999 含有凸轮机械的机电系统建模与仿真 李兴华 翟林培 摘 要 凸轮机构由于其优良的工作性能而被广泛用于高精度往复运动系统中。但由于它的变转动惯量、变加速度、震动、间隙等非线性动力学特性,给凸轮机构的稳速控制带来了很大难度。为便于对含有凸轮机构的机电系统的控制系统的研究,本文针对负载、转动惯量、间隙等影响控制性能的参数,以具有正弦加速运动规律的改进型等速运动凸轮廓线的对心凸轮机构为例,给出了凸轮机构的建模、仿真的公式,并给出了仿真程序设计方法。这一模型从控制系统研究需要出发,适合对含有凸轮机构的机电控制系统进行仿真研究。仿真结果表明所建的模型符合实际情况,是正确的。 关键词 凸轮 机电系统 建模与仿真 中图分类号 TH112.2 文献标识码 A Modeling and Simulation of Electromechanical System with Cam Mechanism LI Xing-Hua,ZHAI Lin-Pei (Changchun Institute of Opticsand Fine Mechanics, Chinese Academy of Sciences,Changchun 130022) Abstract Cam Mechanism is wide used in many high accuracy movement systems because of itsexcellent characteristics.This paper introduces the modeling method of electromechanical system with cam mechanism and the designs of simulation program based on discrete method.The model considers most of the nonlinear characteristics,such as the changingload torque,the changing moment of inertia and the transaction clearance between the camand the slave mechanism.It can be used in the studying of control strategy of the elec-tromechanical systems with cam mechanism.The simulating results convince thatthe modelgiven is correct. Key words:Cam mechanism,Electromechanical system,Modeling and simulation 1 引言 凸轮机构被广泛用于高精度往复运动机构中,但由于它的变转动惯量、变加速度、震动、间隙等非线性动力学特性,给凸轮机构的稳速控制带来了很大难度。从本file:///E|/qk/gxjmgc/gxjm99/gxjm9905/990508.htm(第 1/9 页)2010-3-22 20:49:29

液压机械系统建模仿真软件AMESim及其应用

液压机械系统建模仿真软件AMESim及其应用

液压仿真软件AMESim及其应用 在现代工业中,随着对液压机械设备的性能要求以及机电液一体化程度的不断提高,对液压传动与控制系统的性能和控制精度等提出了更高的要求,传统的以完成设备工作循环和满足静态特性为目的的液压系统设计方法已不能适应现代产品的设计和性能要求。如果要对液压机械系统进行动态特性分析和采用动态设计方法,就需要运用计算机仿真技术,它是利用计算机技术研究液压机械系统动态特性的一种新方法。计算机仿真技术不仅可以在设计中预测系统性能,缩短设计周期,降低成本,还可以通过仿真对所涉及的系统进行整体分析和评估,从而达到优化设计,提高系统稳定性及可靠性的目的。 仿真首要任务就是建立数学模型,重点和难点也是进行建模,然后才可能进行计算机仿真研究,而建模是一件相当复杂的工作。目前常用的建模方法有传递函数法、状态空间法、功率键合图法等。模型建立的好坏直接关系到仿真的结果,不恰当的模型有可能得出相反的结论。目前

绝大多数软件采用状态方程建模,这些对一般的液压工作者来说,要求较高,有相当的难度。 1建模仿真软件——AMESim 基于建模过程的复杂性以及给仿真研究带来的不便,近几年来国外尤其是欧洲陆续研制出一些更为实用的液压机械仿真软件,并获得了成功的应用。AMESim就是其中杰出的代表。它是法国IMAGINE公司于1995年推出基于键合图的液压/机械系统建模仿真及动力学分析软件。它由一系列软件构成,其中包括AMESim、AMESet、A MECustom和AMERun。这4部分有其各自的用途和特性。 (1)AMESim——图形化工程系统建模、仿真和动态性能分析工具 AMESim是一个图形化的开发环境,用于工程系统建模、仿真和动态性能分析。使用者完全可以应用集成的一整套AMESim应用库来设计一个系统,所有的模型都经过严格的测试和实验验证。AMESim不仅可以令使用者迅速达到建模仿真的最终目标,而且还可以分析和优化设计。A MESim使得工程师从繁琐的数学建模中解放出

曾华艳组离散事件系统仿真大作业

新疆财经大学实验报告 课程名称:物流管理综合实验 实验项目名称:系统建模与仿真 学号: 2013104059 姓名:曾华艳 班级:物流管理11-1 指导教师:林秋平 2014年 6月 2日

新疆财经大学实验报告

《铁路局联通营业厅排队仿真分析实验报告》 一、实验目的 (一)通过对铁路局联通营业厅运作的观察,建立计算机仿真全过程,对营业厅运作进行数据采集、建模和仿真分析,为联通营业厅提出改进和优化方案的建议。 (二)通过这次实验活动,全面了解计算机仿真技术在物流领域、生产制造领域等离散事件系统中的应用,理解仿真技术如何辅助管理人员进行决策。 (三)通过分组合作的形式,提供一种系统仿真工作中常见的团队协作方式的实践体验,培养协调工作、共同完成任务的能力。 二、系统描述 人们进入联通营业厅,首先要通过取票系统拿到自己的号,先在等待区等待叫号系统报自己的号。一共有2个服务台,2个服务台同时工作,哪个服务台叫到几号,拿这个号码的人就去哪个服务台,叫号系统按顺序叫号,2个服务台叫号不会发生重复现象。我们组决定针对铁路局联通营业厅叫号排队办理业务的过程进行研究,因此我们采集了仿真模型相关数据。记录了每位顾客到达时间、等待时间和离开时间。将收集的数据整理,录入excel中,并计算出了顾客的到达时间间隔和被服务时间,再利用flexsim建立仿真模型进行仿真分析与优化。 三、小组分工 (一)本组成员 1.组长:曾华艳 2.组员:晁芙蓉、陈磊、阿尔孜姑丽、宗泽宁、张振恒 (二)小组分工 1.调查收集数据和模型优化:全体成员 2.数据录入:晁芙蓉、张振恒、阿尔孜姑丽 3.数据处理:宗泽宁、阿尔孜姑丽 4.仿真模型建立与分析:陈磊、曾华艳 5.实验报告:曾华艳、晁芙蓉、宗泽宁 6.PPT 制作:张振恒、陈磊

大作业题目

控制系统仿真大作业 1、曲线拟合的Matlab实现和优化度检验 通过一个实际的例子,介绍最小二乘曲线拟合法的基本原理,对最小二乘曲线拟合法的Matlab实现方法进行研究,并给出曲线拟合Matlab实现的源程序。论述了Matlab软件在做曲线拟合时的用法,并进行曲线的拟合和相应的图像。 2、基于Matlab的液位串级控制系统 运用组态王和Matlab混合编程的方法设计了一个双容(两个水箱串联)液位串级在线控制系统,由组态王编制人机交互界面,用Matlab完成控制算法,二者通过DDE进行实时数据交换;采用串级控制策略,减小二次干扰的影响,验证其方法的有效性。 3、基于Matlab的变压器差动保护闭环仿真研究 应用Matlab建立了微机保护仿真系统,并对不同原理的变压器差动保护进行了仿真和比较.仿真系统采用积木式结构,根据微机保护的实现原理构建模块,实现保护的闭环仿真,对保护的动作过程进行分析. 4、基于MATLAB/SIMULINK的交流电机调速系统建模与仿真 根据直接转矩控制原理,利用MATLAB/SIMULINK软件构造了一个交流电机调速系统,该系统能够很好地模拟真实系统,实现高效的调速系统设计。仿真结果验证该方法的有效性。 5、基于MCGS和MATLAB的薄膜厚度控制系统仿真 以MCGS组态软件和MATLAB为平台,设计和仿真了一个薄膜厚度控制系统.MCGS完成硬件接口的设置、数据的实时采集、人机对话、以动画的方式显示控制系统的运行情况,MATLAB完成PID参数的自动整定,并利用动态数据交换(DDE)技术建立两者间的通讯.并分析其仿真结果。 6、Matlab在动态电路分析中的应用 用Matlab计算动态电路,可得到解析解和波形图.一阶电路先计算3要素,后合成解

浅析机械设计中的系统建模与仿真

浅析机械设计中的系统建模与仿真 发表时间:2018-05-15T14:56:43.670Z 来源:《知识-力量》2018年3月上作者:赵洪泽[导读] 本文介绍发展系统建模与仿真技术的的分类,进一步阐述系统建模与仿真技术的运用,最后总结建模与仿真技术的发展的趋势。 (西华大学,四川成都 610039)摘要:本文介绍发展系统建模与仿真技术的的分类,进一步阐述系统建模与仿真技术的运用,最后总结建模与仿真技术的发展的趋势。关键词:系统建模仿真趋势 一、模拟仿真的定义 仿真(Simulation),即使用系统模型将特定于某一具体层次的不确定性转化为它们对目标的影响,该影响是在项目仿真系统整体的层次上表示的。系统仿真利用计算机模型和某一具体层次的风险估计,一般采用蒙特卡洛法进行仿真,为设计提供决策支持和科学依据。仿真是利用模型复现实际系统中发生的本质过程,并通过对系统模型的实验来研究存在的或设计中的系统,又称模拟。 二、模拟仿真的运用 研制新型飞机时,一般先要对按比例缩小的飞机模型进行风洞试验,以验证飞机的空气动力学性能;开发新型轮船或舰艇等时,一般先要在水池中对缩小的轮船模型进行试验,以了解轮船的各种性能;我国在建设三峡大坝时,广泛采用建模与仿真技术研究和评估大坝对环境、生态、洪水等方面的影响;设计新的生产线或新产品时,要通过仿真或试验对生产线或产品性能作出评估。训练、演示、教学、培训;军事模拟、指挥、虚拟战场;建筑视景与城市规划等多个领域均有仿真模拟的存在。 三、仿真的分类仿真可以按照不同原则分类: ①按所用模型的类型(物理模型、数学模型、物理数学模型)分为物理仿真、计算机仿真(数学仿真)、半实物仿真; ②按所用计算机的类型(模拟计算机、数字计算机、混合计算机)分为模拟仿真、数字仿真和混合仿真 ③按仿真对象中的信号刘(连续的、离散的)分为连续系统仿真和离散系统仿真; ④按仿真时间与实际时间的比例关系分为实时仿真(仿真时间标尺等于自然时间标尺)、超实时仿真(仿真时间标尺小于自然时间标尺)和亚实时仿真(仿真时间标尺大于自然时间标尺); ⑤按对象的性质分为宇宙飞船仿真、化工系统仿真、经济系统仿真等四、系统的分类 (一)从自然属性的角度对系统划分的内容。根据系统是否具有齐次性,系统可以分为:线性系统与非线性系统。简单地说,线性系统就是满足“加法”和“乘法”的系统,两个信号之和经过一个线性系统所产生的输出,等于这两个信号分别经过这个系统得到的输出,这就是加法;乘法就是一个信号乘以一个常数经过线性系统的输出,等于这个信号经过此系统的输出乘以这个常数;而非线性系统就是不满足“加法”和“乘法”的系统(二)根据系统状态变化是否连续,可以将系统分为连续系统(continuous system)和离散事件系统(discrete event system)。连续系统是指系统状态随时间发生连续变化,如化工、电力、液压-气动系统、铣削加工等,其数学模型有微分方程、状态方程、脉冲响应函数等形式。离散事件系统是指只有在离散的时间点上发生“事件”时,系统状态才发生变化的系统,它的数学模型通常为差分方程。制造领域中生产线/装配线、路口的交通流量分布、电信网络的电话流量等都是典型的离散事件系统。 (三)根据系统的模型参数是否恒定,系统可以分为:时变系统与时不变系统。时变系统的函数随时间发生而变化,时不变系统的函数是恒定的,不因时间的变化而变化。还是以售票系统为例,这个系统的参数设定,一般就不会随时间的变化而变化了,因此是时不变系统;人类生存的生态环境就是一个时变系统,每一时刻都有动植物在灭绝,五、数字化仿真的优势 ①有利于缩短产品的开发周期; ②有利于提高产品质量; ③有利于降低产品开发成本; ④可以完成复杂产品的操作、使用训练。 六、数学模型的分类 按人们对事物发展过程的了解程度分类:白箱模型:指那些内部规律比较清楚的模型。如力学、热学、电学以及相关的工程技术问题。灰箱模型:指那些内部规律尚不十分清楚,在建立和改善模型方面都还不同程度地有许多工作要做的问题。如气象学、生态学经济学等领域的模型。黑箱模型:指一些其内部规律还很少为人们所知的现象。如生命科学、社会科学等方面的问题;但由于因素众多、关系复杂,也可简化为灰箱模型来研究按建立模型的数学方法分类:几何模型、微分方程模型、图论模型规划论模型马氏链模型;按应用离散方法或连续方法分类:离散型、连续模型;按是否考虑模型的变化分类:静态模型动态模型按是否考虑随机因素分类:确定性模型随机性模型;按模型的应用领域分类:生物数学模型、医学数学模型、地质数学模型、数量经济学模型、数学社会学模型。 七、建模与仿真的发展趋势 由于国际化市场的激烈竞争和用户对产品的功能、质量、价格、供货期、售后服务等要求越来越高,以及高新技术的飞速发展,柔性自动化,智能化,并行工程等是当今先进制造技术的发展趋势。计算机的普遍应用给系统仿真领域带来了巨大的发展动力。计算机仿真技术,也就是数学仿真技术的发展改变了以往物理仿真投资大、周期长、不易改进的局面,计算机的应用又推动了系统仿真领域的研究不断向前发展。通过建模与仿真技术的结合,进一步优化产品,使产品智能化,自动化。仿真技术将逐渐涉及更多领域,以求跟随计算机的数字化发展进程。

最新物流建模与仿真期末复习资料

1、系统模型定义模型是把对象实体通过适当的过滤,用适当的表现规则描绘出的简洁的模仿品。 2、模型的特点 (1)它们都是被研究对象的模仿和抽象; (2)它们都是由与研究目的有关的、反映被研究对象某些特征的主要因素构成的; (3)反映被研究对象各部分之间的关联,体现系统的整体特征。 3、按照模型的形式分,模型有抽象模型和形象模型 (1)抽象模型 用概念、原理、方法等非物质形态对系统进行描述所得到的模型,包括数学模型、图形模型、计算机程序、概念模型 (2)形象模型 模拟模型和实物模型 4、建立模型的步骤 (1)根据系统的目的,提出建立模型的目的-为什么建模型 (2)根据建立模型的目的,提出要解决的具体问题-解决哪些问题 (3)根据所提出的问题,构思要建立的模型类型、各类模型之间的关系等,即构思所要建立的模型系统。-建一些什么样的模型?它们的关系? (4)根据所构思的模型体系,收集有关资料-模型需要哪些资料? (5)设置变量和参数-需要哪些变量和参数? (6)模型具体化--模型的形式是什么? (7)检验模型的正确性--模型正确吗? (8)将模型标准化--该模型通用性如何? (9)根据标准化的模型编制计算机程序,使模型运行--计算时间短吗?占用内存少吗? 5、建立模型的注意事项 (1)明确目的,确定构成要素 (2)模型的简单化和高精度模型 (3)没有固定不变的建模方法 (4)模型的验证 (5)没有人类介入的系统模型 6、系统仿真技术是应用数学模型、相应的实用模型的装置、计算机系统、部分实物的仿真系统,对某一给定系统进行数学模拟、半实物模拟、实物模拟,以便分析、设计、研究这种给定系统;或者利用这种仿真训练给定系统的专业人员。 7、系统仿真的组成要素 (1)实际系统:行为输入输出行为 (2)实验框架:有效性某种假设、限制条件 (3)基本模型:假想的完全解释 能解释实际系统的所有输入-输出行为的模型 (4)集总模型:简化从基本模型或根据实验者对实际系统的设想,按照把各个实体集总在一起并简化它们的相互关系而构造的模型。 (5)计算机:复杂性 8、系统、模型及仿真的关系 系统是研究对象,模型是系统抽象,仿真则是通过对模型的实验以达到研究系统的目的。

物流系统建模与仿真软件简介

一、物流系统建模与仿真软件简介 由于物流系统变得越来越复杂并且内部关联性越来越强。仿真是公司检验其物流系统及决策是否真的高效的唯一可用技术了。在设计一个新的工厂或系统,对已由系统添加新设备或重新优化,仿真都是非常必要的。同时仿真还用来提供直觉的和经验的决策支持。在当今市面上,仿真可用使用专用软件来实现。由于存在着如此多的仿真软件,如何正确的选择软件至关重要。下面列举出典型的系统仿真软件[3]。

二、成功仿真研究的步骤 对于每一个成功的仿真研究项目,其应用都包含着特定的步骤。不论该研究的类型和目的,仿真的过程是保持不变的。一般要进行如下9 步 1.问题定义 2.制定目标 3.描述系统并对所有假设列表 4.罗列出所有可能替代方案 5.收集数据和信息 6.建立计算机模型 7.校验和确认模型 8.运行模型 9.分析输出 下面对这九步作简洁的定义。它不是为了引出详细的讨论,仅仅起到抛砖引玉的作用。注意仿真研究不能简单遵循这九步的排序,有些项目在获得系统的内在细节之后,可能要返回到先前的步骤中去。同时,检验和确认将贯穿于仿真工程的每一个步骤当中。 1.问题的定义 一个模型不可能呈现被模拟的现实系统的所有方面,有时是因为太昂贵。另外,假如一个表现真实系统所有细节的模型也常常是非常差的模型,因为它将过于复杂和难于理解。因此,明智的做法是:先定义问题,再制定目标,再然后构建一个能够完全解决问题的模型。在问题定义阶段,对于假设要小心谨慎,不要做出错误的假设。例如,假设叉车等待时间较长,比假设没有足够的接收码头要好。作为大纲,制定问题的陈述越普通越好,考虑到值问题的原因,然后尽可能将问题定义的专业化。 2.制定目标和定义系统效能测度 没有目标的方针研究是毫无用途的。目标是仿真工程所有步骤的导向。系统的定义是基于 系统目标的;目标决定了该作出怎样的假设;目标决定了应该收集那些信息和数据;模型 的建立和确认专门是考虑是否满足目标的需求。目标需要清楚、明确和切实可行。目标经 常被描述成像这样的问题“通过添加机器或延长工时,能够获得更多的利润吗?”在定义 目标时,详细说明那些将要被用来决定目标是否实现的性能测度是非常必要的。每小时的 产出率、工人利用率、平均排队时间、以及最大队列长度是最常见的系统性能测度。最后,列出仿真结果的先决条件。如,必须通过利用现有设备来实现目标,或最高投资额要在限度内,或产品订货提前期不能延长等。 3.描述系统和列出假设 简单点说,仿真模型降低完成工作的时间。系统中的时间被划分成处理时间、运输时间和排队时间。不论模型是一个物流系统、制造工厂、或服务机构,清楚明了的定义如下建模要素都是非常必要的:资源、流动项目(产品、顾客或信息)、路精、项目运输、流程控制、

物流系统建模与仿真-考前复习题

物流系统建模与仿真考前复习题 1、名词解释(5*4分) (1)系统:系统是由若干可以相互区别、相互联系而又相互作用的要素所组成,在一定的阶层结构形成中分布,在给定的环境约束下,为达到整体的目的而存在的有机集合体。 (2)物流系统模型:物流系统模型是对物流系统特征要素、有关信息和变化规律的一种抽象表达,描述了系统各要素之间的相互关系、系统与环境之间的相互作用,以反映系统的某些本质。 (3)系统仿真:应用数学模型、相应的实用模型的装置、计算机系统、部分实物的仿真系统,对某一给定系统进行数学模拟、半实物模拟、实物模拟,以便分析、设计、研究这种给定系统;或者利用这种仿真训练给定系统的专业人员。 (4)离散事件系统:指系统状态在某些随机时间点上发生离散变化的系统。离散事件动态系统,本质上属于人造系统 (4)实体:实体是描述系统的三个基本要素(实体、属性、活动)之一。在离散事件系统中的实体可分为两大类:临时实体及永久实体。在系统中只存在一段时间的实体叫临时实体。这类实体由系统外部到达系统,通过系统,最终离开系统。临时实体按一定规律不断地到达(产生),在永久实体作用下通过系统,最后离开系统,整个系统呈现出动态过程。 (5)事件:事件就是引起系统状态发生变化的行为。从某种意义上说,这类系统是由

事件来驱动的。在一个系统中,往往有许多类事件,而事件的发生一般与某一类实体相联系,某一类事件的发生还可能会引起别的事件发生,或者是另一类事件发生的条件等,为了实现对系统中的事件进行管理,仿真模型中必须建立事件表,表中记录每一发生了的或将要发生的事件类型和发生时问,以及与该事件相联的实体的有关属性等。 (6)仿真时钟:仿真钟用于表示仿真时间的变化。离散事件动态系统的状态是在离散时间点上发生变化的,并且由于引起状态变化的事件发生时间的随机性,仿真钟的推进步长是随机的。如果两个相邻发生的事件之间系统状态不发生任何变化,则仿真钟可以跨过这些“不活动”周期。从一个事件发生时刻推进到下一事件发生时刻,仿真钟的推进呈跳跃性,推进速度具有随机性。 (7)事件调度法:仿真模型中的时间控制部件用于控制仿真钟的推进。在事件调度法中,事件表按事件发生时间先后顺序安排事件。时间控制部件始终从事件表中选择具有最早发生时问的事件记录,然后将仿真钟修改到该事件发生时刻。对每一类事件,仿真模型有相应的事件子程序。每一个事件记录包含该事件的若干个属性,其中事件类型是必不可少的,要根据事件类型调用相应的事件子程序。在事件子程序中,处理该事件发生时系统状态的变化,进行用户所需要的统计计算;如果是条件事件,则应首先进行条件测试,以确定该事件是否确能发生。如果条件不满足,则推迟或取消该事件。该事件子程序处理完后返回时问控制部件。 (8)进程交互法:一个进程包含若干个有序事件及有序活动。进程交互法采用进程描述系统,它将模型中的主动成分所发生的事件及活动按时间顺序进行组合,从而形成进程表,一个成分一旦进入进程,它将完成该进程的全部活动。 (9)连接:通过对象之间的连接定义仿真模型的流程,模型中对象之间是通过端口来

微纳机电系统建模与仿真大作业.

研究生课程考试成绩单 (试卷封面 院系机械工程学院专业机械设计及理论学生姓名刘晨晗学号129580 课程名称微/纳机电系统建模与仿真 授课时间2013年 3 月至2013年 6 月周学时 3 学分 2 简 要 评 语 考核论题MEMS综述 总评成绩 (含平时成绩 备注 任课教师签名: 日期: 注:1. 以论文或大作业为考核方式的课程必须填此表,综合考试可不填。“简要评语”栏缺填无效。 2. 任课教师填写后与试卷一起送院系研究生秘书处。 3. 学位课总评成绩以百分制计分。

目录 1、MEMS简介 (1 2、MEMS历史与发展现状 (2 2.1 MEMS历史 (2 2.2 MEMS发展现状 (3 3、MEMS研究内容 (4 4、MEMS器件举例--悬浮微器件的结构及工作原理 (6 4.1 器件介绍 (6 4.2 器件的结构和加工工序 (6 4.3 器件的生产工艺 (7 4.4 器件的工作原理 (8 5、MEMS的应用与未来 (9 6、参考文献 (11 MEMS 综述 129580 刘晨晗 1、MEMS 简介 图1显示了自然界一些典型事物的特征尺寸,我们人类生活在以米为单位的世界里。两端分别有宏大的宇宙与微小的原子,其间有一段尺寸区间1m μ-100m μ或者0.1m μ-100m μ称为微纳米区间。在1959年12月29日的美国加州理工学院,著名的物理学家理查德-费曼(Richard P. Feynman 在一年一度的美国物理学会上提出

一个极具深刻洞察力的观点“There is plenty of room at the bottom ” 【1】。接下来的时间至今,在微纳米尺度以及原子尺寸级别相关研究的快速发展映证了费曼观点的远见卓识。尤其值得一提的是在微纳米区间的发展。 图1 自然界典型事物的特征尺寸 MEMS 即Micro-Electro-Mechanical System ,它是以微电子、微机械及材料科学为基础,研究、设计、制造、具有特定功能的微型装置,包括微结构器件、微传感器、微执行器和微系统等。MEMS 所研究的尺寸范围正好是上述微纳米区间。日本国家MEMS 中心给Microsystem/Micromachine 下的定义【2】:A micro machine is an extremely small machine comprising very small(several millimeters or less yet highly sophisticated functional elements that allows it to perform minute and complicated tasks 。 MEMS 是在微电子技术基础上发展起来的多学科交叉的前沿研究领域,其起源可以追溯到20世纪50~60年代,最初贝尔实验室发现了硅和锗的压阻效应,从而导致

电力电子电路建模与分析大作业要点

西安理工大学 研究生课程论文/研究报告 课程名称:电力电子系统建模与分析 任课教师: 完成日期:2016 年7 月 5 日 专业:电力电子与电力传动 学号: 姓名: 同组成员: 成绩:

题目要求 某用户需要一直流电源,要求:直流输出24V/200W,输出电压波动及纹波均<1%。用户有220V交流电网(±10%波动变化)可供使用: (1) 设计电源主电路及其参数; (2) 建立电路数学模型,获得开关变换器传函模型; (3) 设计控制器参数,给出控制补偿器前和补偿后开环传递函数波特图,分 析系统的动态和稳态性能; (4) 根据设计的控制补偿器参数进行电路仿真,实现电源要求; (5) 讨论建模中忽略或近似因素对数学模型的影响,得出适应性结论(量化 性结论:如具体开关频率、具体允许扰动幅值及频率等)。 主要工作 本次设计主要负责电源主电路及其参数的的设计,以及建立电路数学模型并获得开关变换器传函模型这两部分内容,具体如下: (1) 本次设计电源主电路及其参数,采用从后向前的逆向设计思想。首先根据系统输出要求,设计了后级DC/DC型Buck电路的参数。接着设计了前级不控整流电路以及工频变压器的参数。考虑到主电路启动运行时的安全性,在主电路中加入了软启动电路; (2) 本次DC/DC变换器的建模并没有采用传统的状态空间平均方法,而是采用更为简单、直观的平均开关建模方法,建立了Buck变换器小信号交流模型。最后,推到出了开关变换器的传递函数模型,并给出了Buck电路闭环控制框图。

1 设计主电路及其参数 1.1主电路设计 根据题目要求,系统为单相交流220V/50Hz 输入,直流24V/200W 输出。对于小功率单相交流输入的场合,由于二极管不控整流电路简单,可靠性高,产生的高次谐波较少,广泛应用于不间断电源(UPS)、开关电源等场合。所以初步确定本系统主电路拓扑为:前级AC-DC 电路为电源经变压器降压后的二极管不控整流,后级DC-DC 电路为Buck 斩波电路,其中Buck 电路工作在电感电流连续模式(CCM ),前后级之间通过直流母线和直流电容连接在一起。系统主电路结构如图1-1所示。 AC 220V/50Hz L C 1 C 2R D S 图1-1 系统主电路结构图 1.2主电路参数设计 本次设计电源主电路参数,采用从后向前的逆向设计思想。先对后级DC/DC 型Buck 电路的参数进行设计,接着对前级不控整流电路以及工频变压器的参数进行设计。下面分别对后级的Buck 电路和前级经变压器降压后的不控整流电路各参数进行分析设计。 1.2.1 输出电阻计算 根据系统电路参数:220,50;24;200i o U V Hz U V P W ===,可计算: 输出电流: /200/248.33O O I P U W V A ==≈ (1-1) 负载等值电阻: /24/8.33 2.88O O R U I V A ==≈Ω (1-2)

微纳系统仿真大作业

1. 用有限差分法和有线元方法把以下问题变成数值方程,并说明两种方法的异同: 2(,)0x y ??= 边界条件: (,0)(,1)0;(0,)(1,)1; x x y y ????==== 解: (1) 有限差分法 2(,)0x y ??= 即为20xx yy u u u ?=+=,其中(),u x y ?= 将定义域等分,步长均为h ,则 ()()()()()()222,,,,4,u x h y u x h y u x y h u x y h u x y u O h h ++-+++--?=+ 略去高阶无穷小,由20xx yy u u u ?=+=得 ()()()()(),,,,4,0u x h y u x h y u x y h u x y h u x y ++-+++--= 定义域离散,离散点为(),i j x y ,则上式可化为 ()()()()(),,,,4,0i j i j i j i j i j u x h y u x h y u x y h u x y h u x y ++-+++--= 定义域为01,01x y ≤≤≤≤,因为本题只是为了说明原理,故将其简单等分为33?单元,节点编号从()()0,02,2到。 则 1,1,,1,1,40i j i j i j i j i j u u u u u +-+-+++-= 其位移矢量为

()()()()()()()()()0,00,10,21,01,11,22,02,12,24110141101410141101411011410141011410140u u u u u u u u u ????-??????????-????????????-??????-????????????=-??????-????????????-????????-??????????-?????????? 由边界条件 (,0)(,1)0;(0,)(1,)1; x x y y ????==== 可知()()()()0,00,22,02,2,,,u u u u 有冲突,可以区位均值即()()()()0,00,22,02,20.5u u u u ====,而()()1,11,20u u ==,()()0,12,10u u ==,带入化简即可求得()1,1u (2) 有限元法 使用有限元法的计算流程为: 求解区域离散化; 构造插值函数形成分段光滑的坐标函数系; 用 Ritz 方法求解微分方程 对2(,)0x y ??=构造函数 ()221,2x y dxdy x x ???????????∏=+???? ? ????????????? ?? 首先将整个区域离散为三角形的子区域如下图, 三角形微小子区域中的值由三 角形节点值的插值结果表示,即 (),i i j j k k x y N N N ????=++

机械系统建模与仿真方法1

机械系统建模与仿真 机理建模法 所谓机理模型,实际上就是采用由一般到特殊的推理理演绎方法,对巳知结构、参数的物理系统运用相应的物理定律或定理,经过合理分析简化建立起来描述系统各物理员动、静态变化性能的数学模型。 因此,机理建模法主要是通过理论分析推导方法建立系统模型。根据确定元件或系统行为所遵循的自然机理,如常用的物质不灭定律(用于液位、压力调节等)、能量守恒定律(用于温度调节等)、牛顿第二定律(用于速度、加速度调节等)、基尔霍夫定律(用于电气网络)等等,对系统各种运功规律的本质进行描述,包括质量、能量的变换和传递等过程,从而建立起变量间相互制约又相互依存的精确的数学关系。通常情况下,是给出微分方程形式或其派生形式——状态方程、传

递函数等。 实验建模法 所谓实验建模法,就是采用出特殊到一般的逻辑归纳方法,根据一定数量的在系统运行过程中的实测、观察的物理量数据,运用统计规律、系统辨识等理论合理估计出反映系统各物理量相互制约关系的数学模型。其主要依据是来自系统的大量实测数据.出此义称之为实验测定法。 当对所研究系统的内部结构和特性尚不清楚、甚至无法了解时,系统内部的机理变化规律就不能确定,通常称之为·黒箱”或“灰箱”问题,机理建模法也就无法应用。而根据所测到的系统输入输出数据,采用一定方法进行分析及处理来获得数学模型的统计模型法正好适应这种情况。通过对系统施加激励,观察和测取其响应,了解其内部変量的特性,并建立能近似反映同样变化的模拟系统的数学模型,就相当于建立起实际系统的数学描述(方程、曲线或图表等)。 (1)频率特性法 频率特性法是研究控制系统的一种应用广泛的工程实用方法。其特点在是通过建立系统频率响应与正弦输入信号之间的稳态特性关系,不仅可以反映系统的稳态性能,而且可以用来研究系统的稳定性和暂态性能;可以根据系统的开环频率特性,判别系统闭环后的各种性能;可以较方便地分析系统参数对动态性能的影响,并能大致指出改善系统性能的途径。 (2)系统辨识法 系统辨识法是现代控制理论与系统建模中常用的方法,它是依据测量到的输人与输出数据来建方静态与动态系统的数学模型,但其输出响应不局限于频率响应,阶压响应或脉冲响应等时间响应都可作为反映系统模型静态与动态特性的重要信息;而且,确定模型的过程更依赖于各种高效率的最优算法以及如何保证所测取数据的可靠性。因

相关主题