搜档网
当前位置:搜档网 › 新型锂离子电池用电解质盐LiODFB的研制及其性质

新型锂离子电池用电解质盐LiODFB的研制及其性质

锂电池电解液基础知识

锂离子电池电解液 1 锂离子电解液概况 电解液是锂离子电池四大关键材料(正极、负极、隔膜、电解液)之一,号称锂离子电池的“血液”,在电池中正负极之间起到传导电子的作用,是锂离子电池获得高电压、高比能等优点的保证。电解液一般由高纯度的有机溶剂、电解质锂盐(六氟磷酸锂,LiFL6)、必要的添加剂等原料,在一定条件下,按一定比例配制而成的。 有机溶剂是电解液的主体部分,与电解液的性能密切相关,一般用高介电常数溶剂与低粘度溶剂混合使用;常用电解质锂盐有高氯酸锂、六氟磷酸锂、四氟硼酸锂等,但从成本、安全性等多方面考虑,六氟磷酸锂是商业化锂离子电池采用的主要电解质;添加剂的使用尚未商品化,但一直是有机电解液的研究热点之一。 自1991年锂离子电池电解液开发成功,锂离子电池很快进入了笔记本电脑、手机等电子信息产品市场,并且逐步占据主导地位。目前锂离子电池电解液产品技术也正处于进一步发展中。在锂离子电池电解液研究和生产方面,国际上从事锂离子电池专用电解液的研制与开发的公司主要集中在日本、德国、韩国、美国、加拿大等国,以日本的电解液发展最快,市场份额最大。 国内常用电解液体系有EC+DMC、EC+DEC、EC+DMC+EMC、EC+DMC+DEC等。不同的电解液的使用条件不同,与电池正负极的相容性不同,分解电压也不同。电解液组成为lmol/L LiPF6/EC+DMC+DEC+EMC,在性能上比普通电解液有更好的循环寿命、低温性能和安全性能,能有效减少气体产生,防止电池鼓胀。EC/DEC、EC/DMC电解液体系的分解电压分别是4.25V、5.10V。据Bellcore研究,LiPF6/EC+DMC与碳负极有良好的相容性,例如在Li x C6/LiMnO4电池中,以LiPF6/EC+DMC为电解液,室温下可稳定到4.9V,55℃可稳定到4.8V,其液相区为-20℃~130℃,突出优点是使用温度范围广,与碳负极的相容性好,安全指数高,有好的循环寿命与放电特性。

锂离子电池固态聚合物电解质研究进展(英文)

邵 将等:纺织陶瓷基复合材料力学性能研究进展· 123 · 第35卷第1期 锂离子电池固态聚合物电解质研究进展 唐子龙1,胡林峰1,张中太1,粟付芃2 (1. 清华大学材料科学与工程系,新型陶瓷与精细工艺国家重点实验室,北京 100084; 2. 北京城建天宁耐火有限责任公司,北京 100053) 摘要:电解质是制备高功率密度和高能量密度、长循环寿命的锂离子电池的重要材料之一,而聚合物电解质是实现全固态锂离子电池的关键技术。总结近几年来为提高聚合物电解质电导率所作研究的新进展,并提出了今后的研究方向。 关键词:固态聚合物电解质;离子电导率;锂离子二次电池 中图分类号:TQ172 文献标识码:A 文章编号:0454–5648(2007)01–0123–06 RESEARCH PROGRESS OF SOILD POLYMER ELECTROLYTES FOR LITHIUM ION BATTERIES TANG Zilong1,HU Linfeng1,ZHANG Zhongtai1,SU Fupeng2 (1. State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084; 2. Beijing Urban Construction Tianning Fire Protection Co., LTD., Beijing 100053, China) Abstract: Electrolytes are a key material for developing lithium ion batteries with high power and energy density and a long life cycle. Polymer electrolytes are one of the most important materials used in solid state lithium ion batteries. This paper presents a review of new progress in recent years in research to enhance the ionic conductivity of polymer electrolytes. The trend of this development is also reviewed. Key words: soild polymer electrolyte; ionic conductivity; lithium secondary battery Since the lithium secondary battery was first pro-duced by the Sony Corporation in 1990, Lithium secon-dary batteries have rapidly taken over the whole market in high performance rechargeable batteries.[1] Lithium ion secondary batteries are widely used in the electronic prod-ucts, such as mobile telephones, notebook personal com-puters (PCs), and digital cameras. Lithium ion batteries, which have high energy density and safe performance, also have excellent prospects for application in the fields of electric vehicles (EV), hybrid electric vehicles (HEV), aviation technology and high energy storage apparatuses.[2] Compared with other batteries, lithium ion batter-ies have many advantages, such as high discharge volt-age and energy density, good cyclability and no envi-ronment pollution. A schematic diagram of a lithium secondary battery is shown in Fig.1. As the public’s awareness of environmental protection has awakened, research on new green lithium batteries has grown. Electrolytes are the key component for lithium ion bat-teries. However, the application of liquid electrolytes is limited by unsatisfactory safety and cyclability and bad thermodynamic stability. In general, solid polymer elec-trolytes (SPEs) have the advantages such as no leakage of electrolytes, low density, safety, and ease of production. There has been increasing interest in the development of polymer electrolytes in recent years, which indicates the development direction of lithium battery electrolytes. Since Fenton et al. [3] found that the complex of polyenthylene oxide (PEO) and alkaline salts had the property of ionic conductivity in 1973, there has been much research on solid-state lithium-ion electrolytes. In 1979, Armand reported that PEO-LiX based electrolyte had a high ionic conductivity of 10–5 S/cm at temperatures between 40℃ to 60℃. [4] Moreover, it was easy to be prepared as a film, this aroused a worldwide interest in polymer electrolytes(PEs). PEs should have the following 收稿日期:2006–04–28。修改稿收到日期:2006–09–25。 基金项目:国家自然科学基金(50472005,50372033);清华大学基础研究基金(JC2003040)资助项目。 第一作者:唐子龙(1966~),男,副教授。Received date:2006–04–28. Approved date: 2006–09–25. First author: TANG Zilong (1966—), male, associate professor. E-mail: tzl@https://www.sodocs.net/doc/aa11358673.html, 第35卷第1期2007年1月 硅酸盐学报 JOURNAL OF THE CHINESE CERAMIC SOCIETY Vol. 35,No. 1 January,2007

锂离子电池电解液简介

锂离子电池电解液简介 一、电解液概况 电解液是锂离子电池四大关键材料(正极、负极、隔膜、电解液)之一,号称锂离子电池的“血液”,在电池中正负极之间起到传导电子的作用,是锂离子电池获得高电压、高比能等优点的保证。电解液一般由高纯度的有机溶剂、电解质锂盐(六氟磷酸锂,LiFL6)、必要的添加剂等原料,在一定条件下,按一定比例配制而成的。 有机溶剂是电解液的主体部分,与电解液的性能密切相关,一般用高介电常数溶剂与低粘度溶剂混合使用;常用电解质锂盐有高氯酸锂、六氟磷酸锂、四氟硼酸锂等,但从成本、安全性等多方面考虑,六氟磷酸锂是商业化锂离子电池采用的主要电解质;添加剂的使用尚未商品化,但一直是有机电解液的研究热点之一。 二、电解液组成 2.1有机溶剂 有机溶剂是电解液的主体部分,电解液的性能与溶剂的性能密切相关。锂离子电池电解液中常用的溶剂有碳酸乙烯酯(EC)、碳酸二乙酯(DEC)、碳酸二甲酯(DMC)、碳酸甲乙酯(EMC)等,一般不使用碳酸丙烯酯(PC)、乙二醇二甲醚(DME)等主要用于锂一次电池的溶剂。PC用于二次电池,与锂离子电池的石墨负极相容性很差,充放电过程中,PC 在石墨负极表面发生分解,同时引起石墨层的剥落,造成电池的循环性能下降。但在EC 或EC+DMC复合电解液中能建立起稳定的SEI膜。通常认为,EC与一种链状碳酸酯的混合溶剂是锂离子电池优良的电解液,如EC+DMC、EC+DEC等。相同的电解质锂盐,如LiPF6或者LiC104,PC+DME体系对于中间相炭微球C-MCMB材料总是表现出最差的充放电性能(相对于EC+DEC、EC+DMC体系)。但并不绝对,当PC与相关的添加剂用于锂离子电池,有利于提高电池的低温性能。 2.2 电解质锂盐 LiPF6是最常用的电解质锂盐,是未来锂盐发展的方向。尽管实验室里也有用LiClO4,、LiAsF6等作电解质,但因为使用LiC104 的电池高温性能不好,再加之LiCl04本身受撞击容易爆炸,又是一种强氧化剂,用于电池中安全性不好,不适合锂离子电池的工业化大规模使用。 2.3添加剂 添加剂的种类繁多,不同的锂离子电池生产厂家对电池的用途、性能要求不一,所选择的添加剂的侧重点也存在差异。一般来说,所用的添加剂主要有三方面的作用: (1)改善SEI膜的性能 (2)降低电解液中的微量水和HF酸 (3)防止过充电、过放电 三、锂离子电池电解液种类 3.1液体电解液 电解质的选用对锂离子电池的性能影响非常大,它必须是化学稳定性能好尤其是在

目前的锂电池成本主要是隔膜和电解液

目前锂电池成本主要是隔膜和电解液 现在生产的锂离子电池的电芯的关键材料有四种:正极、负极、电解液、隔膜,其中锂离子电池中的正、负极材料中国的生产技术并不落后,不但满足国内生产需要,还向世界各地出口。但是,隔膜、电解液却有部分进口。这个问题正在逐步得到缓解,因为国内生产厂家增多,技术也逐步趋于成熟。 需要进口的原因是,产品的制造尚未达到精益求精的地步,或者是生产装备设计不足夠完美,所采购的原材料不能适应优质产品的需求,制造工艺水平没有及时提高,产品的基础研究没有持续发展有了成功之处就停止不前等等。 总的来说:目前,中国锂离子电池产业发展,是任何国家都拤不了脖子的。 中国需要努力的是更加精益求精,制造出更先进的设备,生产出更加优秀的成品,综合成本始终保持市场竞争力,进一步加强锂离子电池的基础研究和创新。 锂电池电芯的关键材料有四种:正极、负极、电解液、隔膜,在组装成动力电池时,又可以分离出组装配件这一材料大类。对于动力电池而言,使用进口电解液和隔膜推高了和继续推高着动力锂电池的成本,从而导致国内相关行业的止步不前甚至倒退。 目前隔膜、电解液、正极材料、负极材料这四个部分总共占到动力电池成本的85%,分别约为25%、15%、30%、15%,从部分进口的电解液材料来看,六氟磷酸锂是生产电解液的最主要原材料,其占电解液成本的50%左右。目前全球范围内只有中国、日本实现了六氟磷酸锂产业化,国内只有少数企业能生产,但产能相对较少,品质与国外也存在一定的差距。这导致我国的六氟磷酸锂主要使用进口产品,价格制定权为外企所左右。 而另一种技术含量更高的锂电池隔膜材料进口依赖度更高一些,这是因为有些国产隔离膜相比国外优秀隔离膜的主要区别在国产的一致性差,使用某些国产隔离膜会导致电池质量不稳定,特别是动力锂电池领域要求内部每个电芯的参数必须高度统一,而国内一些企业目前还没有完全解决。国内很多企业上马锂离子动力电池时仅仅看市场,还要选择国内企业配套技术水平,甚至选择

锂离子电池电解液

锂电池电解液特性 锂电池电解液是电池中离子传输的载体。一般由锂盐和有机溶剂组成。 基本信息 中文名称锂电池电解液 组成锂盐和有机溶剂 含义离子传输的载体 分类电池 锂电池电解液主要成分介绍 1.碳酸乙烯酯:分子式: C3H4O3 透明无色液体(>35℃),室温时为结晶固体。沸点:248℃/760mmHg , 243-244℃/740mmHg;闪点:160℃;密度:1.3218;折光率:1.4158(50℃);熔点:35-38℃;本品是聚丙烯腈、聚氯乙烯的良好溶剂。可用作纺织上的抽丝液;也可直接作为脱除酸性气体的溶剂及混凝土的添加剂;在医药上可用作制药的组分和原料;还可用作塑料发泡剂及合成润滑油的稳定剂;在电池工业上,可作为锂电池电解液的优良溶剂 2.碳酸丙烯酯分子式:C4H6O3 无色无气味,或淡黄色透明液体,溶于水和四氯化碳,与乙醚,丙酮,苯等混溶。是一种优良的极性溶剂。本产品主要用于高分子作业、气体分离工艺及电化学。特别是用来吸收天然气、石化厂合成氨原料其中的二氧化碳,还可用作增塑剂、纺丝溶剂、烯烃和芳烃萃取剂等。 毒理数据:动物实验经口服或皮肤接触均未发现中毒.大鼠经口LD50=2,9000 mg/kg. 本品应储存于阴凉、通风、干燥处,远离火源,按一般低毒化学品规定储运。 3.碳酸二乙酯分子式:CH3OCOOCH3 无色液体,稍有气味;蒸汽压1.33kPa/23.8℃;闪点25℃(可燃液体能挥发变成蒸气,跑入空气中。温度升高,挥发加快。当挥发的蒸气和空气的混合物与火源接触能

够闪出火花时,把这种短暂的燃烧过程叫做闪燃,把发生闪燃的最低温度叫做闪点。闪点越低,引起火灾的危险性越大。);熔点-43℃;沸点125.8℃;溶解性:不溶于水,可混溶于醇、酮、酯等多数有机溶剂;密度:相对密度(水=1)1.0;相对密度(空气=1)4.07;稳定性:稳定;危险标记7(易燃液体);主要用途:用作溶剂及用于有机合成 ①健康危害 侵入途径:吸入、食入、经皮吸收。 健康危害:本品为轻度刺激剂和麻醉剂。吸入后引起头痛、头昏、虚弱、恶心、呼吸困难等。液体或高浓度蒸气有刺激性。口服刺激胃肠道。皮肤长期反复接触有刺激性。 ②毒理学资料及环境行为 毒性:估计能通过胃肠道、皮肤和呼吸道进入机体表现为中等度毒性。刺激性比碳酸二甲酯大。 急性毒性:LD501570mg/kg(大鼠经口);人吸入20mg/L(蒸气)×10分钟,流泪及鼻粘膜刺激。 生殖毒性:仓鼠腹腔11.4mg/kg(孕鼠),有明显致畸胎作用。 危险特性:易燃,遇明火、高热有引起燃烧的危险。其蒸气比空气重,能在较低处扩散到相当远的地方,遇明火会引着回燃。 燃烧(分解)产物:一氧化碳、二氧化碳。 ③泄漏应急处理 迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿消防防护服。尽可能切断泄漏源。防止进入下水道、排洪沟等限制性空间。小量泄漏:用或其它惰性材料吸收。也可以用不燃性分散剂制成的乳液刷洗,洗液稀释后放入废水系统。大量泄漏:构筑围堤或挖坑收容。用泡沫覆盖,降低蒸气灾害。用防爆泵转移至槽车或专用收集器内,回收或运至废物处理场所处置。 ④防护措施 呼吸系统防护:空气中浓度较高时,建议佩戴自吸过滤式防毒面具(半面罩)。 眼睛防护:戴安全防护眼镜。 身体防护:穿防静电工作服。

第八章-电解质溶液

第八章 电解质溶液 一、基本内容 电解质溶液属第二类导体,它之所以能导电,是因为其中含有能导电的阴、阳离子。若通电于电解质溶液,则溶液中的阳离子向阴极移动,阴离子向阳极移动;同时在电极/溶液的界面上必然发生氧化或还原作用,即阳极上发生氧化作用,阴极上发生还原作用。法拉第定律表明,电极上起作用的物质的量与通入的电量成正比。若通电于几个串联的电解池,则各个电解池的每个电极上起作用的物质的量相同。 电解质溶液的导电行为,可以用离子迁移速率、离子电迁移率(即淌度)、离子迁移数、电导、电导率、摩尔电导率和离子摩尔电导率等物理量来定量描述。在无限稀释的电解质溶液中,离子的移动遵循科尔劳乌施离子独立移动定律,该定律可用来求算无限稀释的电解质溶液的摩尔电导率。此外,在浓度极稀的强电解质溶液中,其摩尔电导率与浓度的平方根成线性关系,据此,可用外推法求算无限稀释时强电解质溶液的极限摩尔电导率。 为了描述电解质溶液偏离理想稀溶液的行为,以及解决溶液中单个离子的性质无法用实验测定的困难,引入了离子强度、离子平均活度、离子平均质量摩尔浓度和平均活度因子等概念。对稀溶液,活度因子的值可以用德拜-休克尔极限定律进行理论计算,活度因子的实验值可以用下一章中的电动势法测得。 二、重点与难点 1.法拉第定律:nzF Q =,式中法拉第常量F =96485 C·mol -1。若欲从含有M z +离子的溶液中沉积出M ,则当通过的电量为Q 时,可以沉积出的金属M 的物质的量n 为: F Q n Z += ,更多地将该式写作F Q n Z =,所沉积出的金属的质量为:M F Q m Z = ,式中M 为金属的摩尔质量。 2.离子B 的迁移数:B B B Q I t Q I ==,B B 1t =∑ 3.电导:l A κl A R G ρ=?== 11 (κ为电导率,单位:S·m -1) 电导池常数:cell l K A = 4.摩尔电导率:m m V c κ Λκ== (c :电解质溶液的物质的量浓度, 单位:mol·m -3, m Λ的单位:2 -1 S m mol ??) 5.科尔劳乌施经验式:m m (1ΛΛ∞=-

锂离子电池综述

锂离子电池电解质添加剂(综述) 作者信息 摘要 这篇文章综述了应用在锂离子电池上面的电解质添加剂。根据添加剂的功能,他们可以分为六类:(1)固体电解质界面膜形成剂、(2)阴极保护剂、(3)六氟磷酸锂(LiPF6)盐稳定剂、(4)安全保护剂、(5)锂沉积剂、(6)其他(溶解增强剂、铝腐蚀抑制剂和润湿剂)。下面将说明和讨论每种分类添加剂的功能和机理。 关键词:电解质、添加剂、固体电解质表面膜、负荷过载、锂离子电池 目录 1. 引言 2.SEI 形成剂 2.1 SEI 形成介绍 2.2还原型添加剂 2.3反应型添加剂 2.4 SEI形貌修饰剂 3.阴极保护剂 4.LiPF6盐稳定剂 5.安全保护剂 5.1 过载保护剂 5.2阻燃添加剂 6.Li沉淀剂 7.其他 7.1 离子救助剂 7.2 Al防蚀剂 7.3 湿润剂和粘性稀释剂 8.总结 参考文献 1、引言 电解质添加剂的使用是提升锂离子电池性能最经济有效的方式之一。通常,无论从质量或是体积上来说,电解质中添加剂的量不超过5%,然而它的存在显著的提升了锂离子电池的循环能力和循环寿命。为了得到更好的电池性能,添加剂能够:1,促进固体电解质界面膜(SEI)在石墨表面的形成;2,在SEI膜的形成与长期循环过程中减少不可逆容量和气体的产生;3,增强LiPF6在有机电解质溶剂中的热稳定性;4,保护阴极材料不被溶解和过载;5,提升电解质的离子导电性、粘度、对聚烯烃分离器的湿润性等物理性质。为了电池的安全性,添加剂能够:1,降低有机电解质的可燃性;2,提供过载保护或提升过载限度;3,在非正常情况下终止电池的运作。本文总结了这些添加剂并讨论了他们在提升锂离子电池性能方面上的功能。

锂离子电池固态电解质制备及性能研究【开题报告】

开题报告 应用化学 锂离子电池固态电解质制备及性能研究 一、选题的背景与意义 锂无机固态电解质(ion conductor)又称锂快离子导体(super ion conductor),按其晶体结构分为晶态电解质和非晶态电解质。晶态电解质又称导电陶瓷,目前已研究的有钙钛矿(ABO3)型结构锂离子电解质、NASICON型结构锂离子电解质、LISICON型结构锂离子电解质等;非晶态电解质又称玻璃态电解质,目前已研究的有氧化物玻璃态锂离子电解质、硫化物玻璃态锂离子电解质等[1-5]。其导电机制是,锂无机固态电解质具有载流子,在导电过程中伴随着Li+的迁移,并且导电能力跟温度有密切关系。图1.列举了部分重要的晶态和非晶态无机固态电解质的离子电导率[3]。 图1. 部分重要的晶态和非晶态无机固态电解质的离子电导率的Arrhenius曲线Fig. 1. Arrhenius plot of ionic conductivity of important crystalline and amorphous inorganic solid lithium ion conductor. NaA(PO)(A =Ge, Ti and Zr)发现于1968年。这个结构被描述成AO6 NASICON晶体结构IV 243 正八面体和PO4正四面体组成的共价键结构[A2P3O12]-,形成3D相互联系通道和两种分布导电离子间隙位置(M·和M··)。导电离子越过瓶颈从一个位置移动到另一个位置,瓶颈的大小取决于两种间隙位置(M·和M··)的骨架离子性质和载体浓度。结果是,NASICON类型化合物的结构和电化学性质随着骨架组成的不同而变化。比如,在化学通式为LiA’IV2-x A’’IV x(PO4)3的化合物,晶胞参数a 和 LiGe(PO)。通过三价阳离子(Al, Cr, Ga, Fe, c取决于A’IV和A’’IV阳离子大小。已获得的最小晶胞是 243 Sc, In, Lu, Y, La)取代八面体中的Ti4+位置,可以提高陶瓷的烧结性能,降低晶粒边界电阻,提高材

实验四 电解质溶液

实验四电解质溶液 一、实验目的 1.了解强弱电解质电离的差别及同离子效应。 2.学习缓冲溶液的配制方法及其性质。 3.熟悉难溶电解质的沉淀溶解平衡及溶度积原理的应用。 4.学习离心机、酸度计、pH试纸的使用等基本操作。 二、实验原理 1.弱电解质的电离平衡及同离子效应 对于弱酸或弱碱AB,在水溶液中存在下列平衡:AB A++B-,各物质浓度关系满足K? = [A+]·[B-]/[ AB],K?为电离平衡常数。在此平衡体系中,若加入含有相同离子的强电解质,即增加A+或B-离子的浓度,则平衡向生成AB分子的方向移动,使弱电解质的电离度降低,这种效应叫做同离子效应。 2.缓冲溶液 由弱酸及其盐(如HAc-NaAc)或弱碱及其盐(如NH3·H2O-NH4Cl)组成的混合溶液,能在一定程度上对抗外加的少量酸、碱或水的稀释作用,而本身的pH值变化不大,这种溶液叫做缓冲溶液。 3.盐类的水解反应 盐类的水解反应是由组成盐的离子和水电离出来的H+或OH-离子作用,生成弱酸或弱碱的过程。水解反应往往使溶液显酸性或碱性。如:弱酸强碱盐(碱性)、强酸弱碱盐(酸性)、弱酸弱碱盐(由生成弱酸弱碱的相对强弱而定)。通常加热能促进水解,浓度、酸度、稀释等也会影响水解。 4.沉淀平衡 (1)溶度积 在难溶电解质的饱和溶液中,未溶解的固体及溶解的离子间存在着多相平衡,即沉淀平衡。K sp?表示在难溶电解质的饱和溶液中,难溶电解质的离子浓度(以其化学计量数为幂指数)的乘积,叫做溶度积常数,简称溶度积。根据溶度积规则可以判断沉淀的生成和溶解。若以Q表示溶液中难溶电解质的离子浓度(以其系数为指数)的乘积,那么,溶液中Q>K sp?有沉淀析出或溶液过饱和;Q=K sp?溶液恰好饱和或达到沉淀平衡;Q

液态电解质对锂离子电池安全性能的影响因素

液态电解质对锂离子电池安全性能影响因素 摘要:锂离子电池的安全安全问题成为近年来制约其迅速发展的瓶颈。那么要如何才能解决其安全问题呢?本文从影响电池安全性能的因素出发,以液态电解质为例,从优化电解液的组成到使用特殊的添加剂等方面论述了液态电解质与电池安全问题的关系。 引言 锂离子电池由于具有能量密度高、输出电压高、循环寿命长、环境污染小等优点,在小型数码电子产品中获得了广泛应用,在电动汽车、航空航天等领域也具有广阔的应用前景。然而,近年来用于手机、数码相机和笔记本电脑中的锂离子电池爆炸伤人事件已经屡见不鲜,锂离子电池的安全问题引起人们广泛的关注。目前安全问题已成为制约锂离子电池向大型化、高能化方向发展的瓶颈。 一、引起锂离子电池安全问题的主要原因 1、电池系统的安全问题。锂离子电池作为一个系统,其安全问题主要源于滥用情况下热失控的发生。电池系统的热失控即为系统产生的热量大于释放的热量而导致热量积累,温度迅速升高的过程。锂离子电池发生热失控,主要是由电极和电解液间的化学反应引起的。 2、易燃的电解质。锂离子电池具有较高的能量密度,在于其较高的输出电压。在通常的正负极材料的工作电位下,水溶液难以稳定使用,所以锂离子电池电解液使用有机溶剂。而有机溶剂通常极易燃烧,特别是电解液中的线型碳酸酯具有较高的蒸气压和较低的闪点,使锂离子电池在安全性上背上了沉重的负担。 3、电池材料的热稳定性。锂离子电池安全性能的另一个更重要的方面即是其热稳定性。在一些滥用状态下,如高温、过充电、针刺穿透以及挤压等情况下,导致电极和有机电解液的强烈相互作用,如有机电解液的剧烈氧化、还原或正极分解产生的氧气进一步与有机电解液反应等,这些反应产生的大量热量如不能及时散失到周围环境中,必将导致热失控的产生,最终导致电池的燃烧、爆炸。 二、改善电池安全性能的途径 电池安全性能的改善主要途径有: 1、使电池系统更稳定,以避免热失控的发生; 2、使用更安全的电解液体系,即使热失控发生,也不会因为易燃电解质存在而导致电池燃烧或者爆炸。

电解质溶液试题

电解质溶液试题 一.选择题 在以下溶液中溶解度递增次序为: (a) ·dm -3 NaNO 3 (b) ·dm -3 NaCl (c) H 2O (d) ·dm -3Ca(NO 3)2 (e) ·dm -3 NaBr (A) (a) < (b) < (c) < (d) < (e) (B) (b) < (c) < (a) < (d) < (e) (C) (c) < (a) < (b) < (e) < (d) (D) (c) < (b) < (a) < (e) < (d) 2.在298 K 无限稀释的水溶液中,下列离子摩尔电导率最大的是: (A) La 3+ (B) Mg 2+ (C) NH 4+ (D) H + 3. 0.001 mol ·kg -1 K 3[Fe(CN)6]水溶液的离子强度为: (A) ×10-3 mol ·kg -1 (B) ×10-3 mol ·kg -1 (C) ×10-3 mol ·kg -1 (D) ×10-3 mol ·kg -1 4. 在浓度为 c 1的 HCl 与浓度 c 2的 BaCl 2混合溶液中,H +离子迁移数可表示成: (A) m (H +)/[m (H +) + m (Ba 2+) + 2?m (Cl -)] (B) c 1?m (H +)/[c 1?m (H +)+ 2c 2?m ( Ba 2+)+ (c 1+ 2c 2)m (Cl -)] (C) c 1?m (H +)/[c 1?m (H +) + c 2?m (Ba 2+) + m (Cl -)] (D) c 1?m (H +)/[c 1?m (H +) + 2c 2?m (Ba 2+) + 2c 2?m (Cl -)] 5. 在10 cm 3 浓度为 1 mol ·dm -3 的KOH 溶液中加入10 cm 3水,其电导率将: (A) 增加 (B) 减小 (C) 不变 (D) 不能确定 其摩尔电导率将 (A) 增加 (B) 减小 (C) 不变 (D) 不能确定 6. 已知()12221089.4291,--∞???=Λmol m S K O H m ,此时(291K)纯水中的 m (H +)= m (OH -)=×10-8 mol ·kg -1,则该温度下纯水的电导率 为: (A) ×10-9 S ·m -1 (B) ×10-6 S ·m -1 (C) ×10-9 S ·m -1 (D) ×10-6 S ·m -1 7. 电解熔融NaCl 时,用10 A 的电流通电5 min ,能产生多少金属钠 (A) 0.715 g (B) 2.545 g (C) 23 g (D) 2.08 g 8. 德拜-休克尔理论用于解释: (A) 非理想气体引力 (B) 强电解质行为 (C) 氢键 (D) 液体的行为 9. 对于同一电解质的水溶液,当其浓度逐渐增加时,何种性质将随之增加 (A) 在稀溶液范围内的电导率 (B) 摩尔电导率 (C) 电解质的离子平均活度系数 (D) 离子淌度 10. 德拜-休克尔理论及其导出的关系式是考虑了诸多因素的,但下列因素中哪点是它不 曾包括的 (A) 强电解质在稀溶液中完全解离 (B) 每一个离子都是溶剂化的 (C) 每一个离子都被电荷符号相反的离子所包围 (D) 溶液与理想行为的偏差主要是由离子间静电引力所致 11. 在 Hittorff 法测迁移数的实验中,用 Ag 电极电解 AgNO 3溶液,测出在阳极部AgNO 3的浓度增加了 x mol ,而串联在电路中的 Ag 库仑计上有 y mol 的 Ag 析出,则Ag +离 子迁移数为: (A) x /y (B) y /x (C) (x -y )/x (D) (y -x )/y 12. 在无限稀释的电解质溶液中,正离子淌度∞+U ,正离子的摩尔电导率() +∞+M m ,λ和法拉

高中化学 第八章电解质溶液及电化学系统

第八章电解质溶液及电化学系统 主要内容 1.电解质溶液及电化学系统研究的内容和方法 2.电解质溶液的热力学性质 3.电解质溶液的导电性质 4.电化学系统的热力学 重点 1.重点掌握了解电解质溶液的导电机理,理解离子迁移数、表征电解质溶液导电能力的的物理量(电导率、摩尔电导率)、电解质活度和离子平均活度系数的概念; 2.重点掌握离子氛的概念和德拜—休克尔极限定律; 3.重点掌握理解原电池电动势与热力学函数的关系;掌握能斯特方程及其计算; 难点 1.电解质溶液的导电机理,理解离子迁移数、表征电解质溶液导电能力的的物理量(电导率、摩尔电导率)、电解质活度和离子平均活度系数的概念;2.离子氛的概念和德拜—休克尔极限定律; 3.原电池电动势与热力学函数的关系;能斯特方程及其计算 教学方式 1. 采用CAI课件与黑板讲授相结合的教学方式。 2. 合理运用问题教学或项目教学的教学方法。 教学过程 第8.1节电解质溶液及电化学系统研究的内容和方法

一、电解质溶液及电化学系统研究的内容 1、电解质溶液 ①电解质溶液的热力学性质 电解质由于存在电离,正负离子之间的静电作用力使其偏离理想稀薄溶液所遵从的热力学规律,所以引入了离子平均活度和离子平均活度因子等概念。 思考:理想稀薄溶液所遵从的热力学规律是什么? ②电解质溶液的导电性质 高中阶段就学过电解质溶液的导电性质,为了表征电解质溶液的导电能力,则引入了电导、电导率、摩尔电导率等概念。 2、电化学系统 在两相或数相间存在电势差的系统称为电化学系统。 ①电化学系统的热力学性质 电化学系统的热力学主要研究电化学系统中没有电流通过时系统的性质,即有关电化学平衡的规律。 ②电化学系统的动力学 电化学系统的动力学主要研究电化学系统中有电流通过时系统的性质,即有关电化学反应速率的规律。 二、电化学研究的对象 第8.2节电解质溶液的热力学性质 一、电解质的类型 1、电解质的分类 电解质的定义: 解离:电解质在溶剂中解离成正、负离子的现象。 强电解质: 弱电解质: 强弱电解质的分类除与电解质本身性质有关外,还取决于溶剂的性质。如

新型锂离子固体电解质正式版.doc

摘要 近年来,无机氧化物固体电解质以其安全性,较高的离子电导率吸引许多研究者的兴趣。本论文介绍了近年固体电解质的研究进展,本实验方法选用多数无机氧化物固体电解质的合成方法—传统固相合成法,在空气环境条件下合成Li2O-ZrO2-SiO2体系的无机固体电解质,通过X射线衍射鉴定从980℃到1060℃(每隔20℃)不同烧结温度下本体系无机固体电解质多晶态物相,应用电化学工作站测定AC阻抗,计算不同烧结温度下离子电导率,还测试了电解质片的收缩率,并采用阿基米德排水法测试固体电解质片的密度。阻抗结果显示这种材料在1000℃的烧结温度下,显示了最大的锂离子电导率2.6651×10-3Ω-1cm,收缩率和密度有较好的一致性,烧结温度在1020℃后密度稍微有些降低。比较其他无机氧化物电解质,本体系烧结温度较低,同时获得了较高的锂离子电导率,丰富了无机氧化物电解质体系。 关键词:固体电解质;LZSO(Li2O-ZrO2-SiO2);锂离子电导率

Abstaract In recent years, inorganic oxide solid electrolyte has attracted many researchers interests for its safety, high ionic conductivity. This paper describes research progress of solid electrolytes in recent years, most of the experimental method used in the synthesis of inorganic oxide solid electrolyte method - traditional solid-state synthesis, synthesis in air condition system Li2O-ZrO2-SiO2 inorganic solid electrolyte, by using the X-ray diffraction identified from the 980 ℃to 1060 ℃ (every 20 ℃) under different sintering temperature of the system of multi-crystalline inorganic solid electrolyte , AC impedance measured in air at room temperature by electrochemical work-station , calculated in different sintering temperature lithium ion conductivity, also tested shrinkage ratio of the solid electrolyte pellets, and measured bulk density of solid electrolyte pellets using Archimedes method. Impedance results showed that the material in the sintering temperature of 1000 ℃, showed the largest lithium-ion conductivity 2.6651×10-3Ω-1cm, the shrinkage ratio and bulk density are in good agreement, after 1020 ℃sintering temperature slightly lower density. Compared with other inorganic oxide electrolyte sintering temperature of the system is lower, while access to a high lithium ion conductivity and enriched inorganic oxide electrolyte system. Keywords:solid electrolyte;Li2O-ZrO2-SiO2 ;lithium ion conductivity

锂离子电池电解液材料及生产工艺详解

锂离子电池电解液材料及生产工艺详解液体电解液生产工艺---流程图 电解液生产工艺---精馏和脱水 –对于使用的有机原料分别采取精馏或脱水处理以达到锂电池电解液使用标准。

–在精馏或脱水阶段,需要对有机溶剂检测的项目有:纯度、水分、总醇含量。 液体电解液生产工艺---产品罐 –在对有机溶剂完成精馏或脱水后,检测合格后经过管道进入产品罐、等待使用。 –根据电解液物料配比,在产品罐处通过电子计量准确称取有机溶剂。 –如果产品罐中的有机溶剂短时间未使用,需要再次对其进行纯度、水分、总醇含量的检测,继而根据生产的需要准确进入反应釜。 体电解液生产工艺---反应釜 –依据物料配比和加入先后顺序,有机溶剂依次加入反应釜充分搅拌、混匀,然后通过锂盐专用加料口或手套箱加入所需的锂盐和电解液添加剂。 –在加入物料开始到结束,应控制反应釜的搅拌速度、釜内温度等。不同的物料配比搅拌混匀的时间不同,但都必须使电解液混合均匀,此时对电解液检测的项目有:水分、电导率、色度、酸度 液体电解液生产工艺---灌装 –经检测合格的液体电解液被灌入合格的包装桶,充入氩气保护,最终进入仓库等待出厂。 –由于电解液自身的物理、化学性质等因素,入库的电解液应在短时间内使用,防止环境等因素导致电解液的变质 液体电解液---使用注意事项 –电解液桶有氩气保护,有一定压力,在使用中切勿拆卸气相阀头和液相阀头,也不允许随意按下快开接头的凸头,以免造成泄漏或其它危险。接管时一定要戴防护眼罩,使用时一定要使用专用快开接头

–检测合格的电解液建议一次性用完,开封的电解液很容易因为没有气氛保护等原因而变质,请客户在使用过程中注意及时充入氩气保护,防止变色电解液不建议使用玻璃器皿盛放,玻璃的主要成分是氧化硅,氧化硅和氢氟酸反应生成腐蚀性、易挥发的气体四氟化硅,此气体有毒会对人造成伤害 –现场可以使用的电解液容器和管道材料包括:不锈钢、塑料PP/PE、四氟乙烯等 –本产品对人体有害,有轻微刺激和麻醉作用。使用过程中避免身体直接接触 液体电解液的组成 –有机溶剂 –锂盐 –添加剂 有机溶剂---有机溶剂的选择标准 –有机溶剂对电极应该是惰性的,在电池的充放电过程中不与正负极发生电化学反应 –较高的介电常数和较小的黏度以使锂盐有足够高的溶解度,从而保证高的电导率 –熔点低、沸点高,从而使工作温度范围较宽 –与电极材料有较好的相容性,即电极能够在电解液中表现出优良的电化学性能 –电池循环效率、成本、环境因素等方面的考虑 液体电解液的组成---有机溶剂 –碳酸酯 –醚 –含硫有机溶剂

锂离子电池的电解质

锂离子电池的电解质 目前使用和研究的电解质包括液态有机电解质?凝胶型聚合物电解质和全固态电解质?而商品化的锂离子电池多数使用液态有机电解质和凝胶型聚合物电解质?有机电解液是由有机溶剂和电解质锂盐组成的非水液体电解质?用于锂离子电池体系的液态有机电解质应满足以下要求: (1)锂离子电导率高,在较宽的温度范围内电导率在3×10-3~2×10-2S/cm; (2)电化学窗口宽,即在较宽的电压范围内稳定(对于锂离子电池而言,要稳定在4.5V)而不发生分解反应,即具有良好的氧化稳定性; (3)化学稳定性强,即与电池体系的电极材料如正极?负极?集流体?隔膜?胶黏剂等基本不发生反应; (4)在较宽的温度范围内保证成液态,一般温度范围为-40~ +70℃; (5)对离子具有较好的溶剂化性能; (6)没有毒性,蒸气压低,使用安全; (7)能尽量促进电极可逆反应的进行,与电极之间有良好的相容性;

(8)制备容易,成本低? (一)液体电解质 电解质的选用对锂离子电池的性能影响非常大,它必须是化学稳定性好尤其是在较高的电位下和较高温度环境中不易发生分解,具有较高的离子导电率( >10-3S/cm),而且正?负极材料必须是惰性的?不能腐蚀电极?由于锂离子电池充放电电位较高而且阳极材料嵌有化学活性较大的锂,所以电解质必须采用有机化合物而不能含有水?但有机物离子导电率都不好,所以要在有机溶剂中加入可溶解的导电盐以提高离子导电率? 目前锂离子电池主要是用液态电解质,其溶剂为无水有机物,如EC(ethylcarbonate)?PC(propylenecarbon-ate)? DMC(dimethylcarbonate)?DEC(diethylcarbonate),多数采用混合溶剂,如EC2DMC和PC2DMC等? 导电盐有LiClO4?LiPF6?LiBF6?LiAsF6和LiOSO2CF3,它们导电率大小依次为LiAsF6>LiPF6>LiClO4>LiBF6>LiOSO2CF3?LiClO4因具有较高的氧化性容易出现爆炸等安全性问题,一般只局限于实验研究中;LiAsF6离子导电率较高易纯化且稳定性较好,但含有有毒的As,使用受到限制;LiBF6化学及热稳定性不好且导电率不高;LiOSO2CF3导电率差且对电极有腐蚀作用,较少使用;虽然LiPF6会发生分解反应,但具有较高的离子导电率,因此目前锂离子电池基本上是使用LiPF6?目

相关主题