搜档网
当前位置:搜档网 › 真菌多糖研究进展_结构_特性及制备方法

真菌多糖研究进展_结构_特性及制备方法

真菌多糖研究进展_结构_特性及制备方法
真菌多糖研究进展_结构_特性及制备方法

常见病原菌

葡萄球菌属 金黄色葡萄球菌 生物学特性: 1.形态:G+,球形,葡萄状,0.4~1.2 m 2.培养:色素、耐盐 3.抗原构造:SPA 4.分类:金黄色葡萄球菌;表皮葡萄球菌;腐生葡萄球菌 5.抵抗力:强;易耐药 致病性: 1、致病物质:血浆凝固酶;溶血素;杀白细胞素;肠毒素 2、所致疾病:化脓性炎症;食物中毒;假膜性肠炎 防治原则:注意个人卫生;严格无菌操作;加强食品监督;合理使用抗生素。 链球菌 乙型溶血性链球菌 生物学特性: 1、形态:G+,球形,链状,0.5~1.0 m 2、培养:血平板 3、分类: 1) 根据溶血现象分: 甲型溶血性链球菌:草绿色溶血环。条件致病菌 乙型溶血性链球菌:透明宽大溶血环。致病性强 丙型链球菌:无溶血环。无致病性 2) 依细胞壁多糖抗原不同分:A、B、C、D等20个群,致病链球菌株90%属A群 4、抵抗力:不强 致病性: 1、致病物质: (1)菌体表面物质:M蛋白;脂磷壁酸 (2)毒素: 1)链球菌溶血素: SLO:对氧敏感,免疫原性强,感染后血中可出现溶血毒素O抗体; SLS:对氧稳定; 免疫原性弱,与溶血环有关 2)致热外毒素(红疹毒素或猩红热毒素) (3)侵袭性酶:透明质酸酶;链激酶;链道酶。 使链球菌的感染容易扩散且脓汁稀薄。 2、所致疾病 (1)乙型溶血性链球菌:化脓性疾病;中毒性疾病(猩红热);超敏反应性疾病如风湿热、急性肾小球肾炎(2)甲型溶血性链球菌: 条件致病菌,引起亚急性细菌性心内膜炎 防治原则: 1、讲究卫生,及时治疗病人和带菌者,减少传染源。 2、彻底治疗咽峡炎、扁桃体炎,以防止急性肾小球肾炎、风湿热、亚急性细菌性心内膜炎。 3、治疗链球菌感染性疾病首选青霉素G。 肺炎链球菌 生物学特性: 1、形态:G+ ,矛头状,钝端相对,成双排列,荚膜 2、培养:血平板,自溶现象 3、生化反应:胆汁溶菌试验阳性,菊糖分解试验阳性 4、抗抗力:弱 致病性: 主要致病物质:荚膜

真菌多糖的研究概况

真菌多糖的研究概况 郭凯,原雪 (中国药科大学生命科学与技术基地 ,江苏南京, 210038) E-mail:smallrians@https://www.sodocs.net/doc/aa15990774.html, 摘要:真菌多糖具有重要的药用价值,尤其是其免疫调节功能,在抗肿瘤、保肝、抗氧化等方面发挥重要的药理作用。本文对近年来真菌多糖免疫调节功能及药理作用的研究做一概述,为进一步研究和开发利用真菌多糖提供参考。 关键字:真菌多糖,免疫调节功能,药理作用 多糖(polysacharides,PS)是一种广泛存在于植物、动物和微生物组织中,具有多种生物活性的天然大分子化合物,是生命有机体的重要组成部分。真菌多糖是从真菌子实体、菌丝体、发酵液中分离出的,能够控制细胞分裂分化,调节细胞生长衰老的一类活性多糖[1]。与动、植物多糖不同的是真菌多糖分子单体之间,大多以β (1→3)与β(1→6)糖苷键结合,形成链状分子,具有螺旋状的立体构型[2]。 近年来对真菌多糖化学结构和生物活性的深入研究已经取得了丰硕的成果。实验证明真菌多糖具有很广泛的免疫调节作用,在抗肿瘤、抑制癌细胞、保肝、降血压、降血脂、抗血栓、抗辐射等方面起着重要的作用。目前已经广泛应用于临床。本文就近几年的研究成果做一总结。 1.免疫调节功能 目前普遍认为多糖的广泛免疫调节功能是其发挥药理作用的基础,研究已经深入到了分子和受体水平,发现多糖在机体免疫反应中的作用相当于抗原,可以激活多种免疫细胞,还能促进细胞因子生成,激活补体系统,促进抗体产生,对免疫系统发挥多方面的调节作用。 1.1巨噬细胞 巨噬细胞在机体的免疫系统中占有极其重要的地位,它担负着吞噬病原微生物,处理抗原并提呈给淋巴细胞,启动特异性免疫应答并参与免疫调节等作用,是多糖作用的最主要靶点。真菌多糖能明显提高巨噬细胞的吞噬能力。唐庆九[3]等实验表明灵芝多糖可刺激小鼠巨噬细胞分泌TNF-α和IL-1β,产生NO,并可增强巨噬细胞的吞噬能力。这可能是其增强机体免疫力的主要机制之一。马兴铭[4]等实验表明小鼠腹腔注射猪苓多糖、茯苓多糖、灵芝多糖100mg/kg,能显著提高正常小鼠腹腔巨噬细胞的吞噬指数,加强小鼠腹腔巨噬细胞的非特异性吞噬能力。 1.2淋巴细胞 近年来大量临床医学试验表明,冬虫夏草能刺激和恢复T淋巴细胞和B淋巴细胞,增强淋巴细胞的转化作用[5]。用香菇多糖给小鼠皮下注射,可促进小鼠溶血空斑及外周血E-玫瑰环形成,增加体内淋巴细胞转换率,显著的增强对刀豆球蛋白(ConA)诱导的淋巴细胞增殖[6]。灵芝多糖具有促进同种异型抗原刺激的淋巴细胞转化作用,其作用机制是通过间接诱导 DNA多聚酶α的产生,促进免疫细胞中 DNA的合成,从而促进细胞的增殖,加速免疫应答的过程[7]。 1.3网状内皮系统 绝大多数的真菌多糖能刺激动物机体网状内皮系统(RES)的吞噬功能,使之释放一些细胞因子如肿瘤坏死因子(TNF)和白细胞介素(IL)来杀死肿瘤细胞,有效增强巨噬细胞

真菌的生物学特性

木霉菌属于半知菌亚门、丝孢纲、丝孢目,粘孢菌类,是一类普遍存在的真菌。绿色木霉是木霉菌中具有重要经济意义的一种,目前在工业、农业和环境科学等方面有着广泛的用途。绿色木霉在自然界分布广泛,常腐生于木材、种子及植物残体上。绿色木霉能产生多种具有生物活性的酶系,如:纤维素酶、几丁质酶、木聚糖酶等。绿色木霉是所产纤维素酶活性最高的菌株之一,所产生的纤维素酶的降解作用,目前日益受到重视,国内外对这方面的研究也很多。同时,绿色木霉又是一种资源丰富的拮抗微生物,在植物病理生物防治中具有重要的作用。它的作用机制有以下几种:产生抗生素;重寄生作用,这是木霉菌作为拮抗菌最重要的机制;溶菌作用;竞争作用。 纤维单胞菌属拉丁学名[Cellulomonas (Bergey et al.,1923),Clark,1952] 在幼龄培养物中细胞为细长的不规则杆菌,0.5~0.6μm×2.0~5.0μm,直到稍弯,有的呈V字状排列,偶见分支但无丝状体。老培养物的杆通常变短,有少数球状细胞出现。革兰氏阳性,但易褪色。常以一根或少数鞭毛运动。不生孢,不抗酸。兼性厌氧,有的菌株在厌氧条件下可生长但很差。在蛋白胨-酵母膏琼脂上的菌落通常凸起,淡黄色。化能异养菌,可呼吸代谢也可发酵代谢。从葡萄糖和其他碳水化合物在好氧和厌氧条件下都产酸。接触酶阳性。能分解纤维素。还原硝酸盐到亚硝酸盐。最适生长温度30℃。广泛分布于土壤和腐败的蔬菜。 康宁木霉菌丝有隔膜,蔓延生长,广铺于固体培养基上,菌外观为浅绿,黄绿或绿色,反面无色,分生孢子.梗为菌丝的短侧枝,其上对生或互生分枝,分枝上又可继续分枝,形成2级,3级分枝,分枝末端即为瓶状梗.分生孢子由小梗相继生出面,靠黏液把它们聚成球形或近球形的孢子头,分生孢子卵形成椭圆形,壁光滑.单个孢子近无色,形成堆状为绿色,与此相似的还有绿色木霉! 此菌有很强的纤维素霉及纤维,二糖淀粉酶等,它能利于农副产品,如麦杆,木材,木屑等纤维素原料,使之转变为糖质原料 佛州侧耳子实体覆瓦状丛生。菌盖直径3~12cm,低温时白色,高温时带青蓝色转黄色至白色,初半球形,边缘完整,后平展成扇形或浅漏斗形,边缘不齐或有深刻。菌肉稍薄,白色。菌褶浅黄白色,干时变淡黄色,稍密集至稍稀疏,延生,常在菌柄上形成脉络状。菌柄侧生(有孢菌株),或偏心生至中央生(无孢菌株),细长,内实,白色,长3~7cm,粗1~2cm,基部有时有白色绒毛。孢子印白色;孢子近柱形,6~9μm×2.5~3μm。 黑曲霉半知菌亚门,丝孢纲,丝孢目,丛梗孢科,曲霉属真菌中的一个常见种。 分生孢子梗自基质中伸出,直径15~20pm,长约1~3mm,壁厚而光滑。顶部形成球形顶囊,其上全面覆盖一层梗基和一层小梗,小梗上长有成串褐黑色的球状分生孢子。孢子直径2.5~4.0μm。分生孢子头球状,直径700~800μm,褐黑色。菌落蔓延迅速,初为白色,后变成鲜黄色直至黑色厚绒状。背面无色或中央略带黄褐色。有时在新分离的菌株中能找到白色、圆形、直径约1mm的菌核。分生孢子头褐黑色放射状,分生孢子梗长短不一。顶囊球形,双层小梗。分生孢子褐色球形。 广泛分布于世界各地的粮食、植物性产品和土壤中。是重要的发酵工业菌种,可生产淀粉酶、酸性蛋白酶、纤维素酶、果胶酶、葡萄糖氧化酶、柠檬酸、葡糖酸和没食子酸等。有的菌株还可将羟基孕甾酮转化为雄烯。生长适温37℃,最低相对湿度为88%,能引致水分较高的粮食霉变和其他工业器材霉变。 侧孢霉是一种嗜热丝状真菌,具有分解纤维素的特性.固体PDA培养条件下进行形态观察表明,所采用的嗜热侧孢霉菌株,菌丝丛枝状、有隔,分生孢子浅褐色,顶生或侧生.利用ITS序列

多糖结构总结

多糖结构总结

————————————————————————————————作者:————————————————————————————————日期: ?

1 红外分析(IR ) 从硒化壳聚糖[图1(b)]与壳聚糖[图1(a)]的数据和图形对比可以看出,亚硒酸根主要连接在C 2的氨基本上和C 6的羟基上,主要是由以下的光谱图形和光谱 数据变化得到证明:壳聚糖C 2的氨基硒化后,NH 的弯曲振动由1594.52c m-1变为1523.29cm -1,壳聚糖C2 位氨基上未脱干净的乙酰基的羰基振动峰为

1650.32cm -1,而硒化壳聚糖C 2位上未脱干净的乙酰基的羰基振动峰为163 2.88cm -1,可能是受到C 6位的羟基上亚硒酸基的影响;同样由于硒化壳聚糖C 2位氨基上和C 6位羟基上亚硒酸根的影响,壳聚糖C -O 伸缩振动峰由 1079.45cm -1变为1090.41c m-1。同时,在800.00c m-1处观察到亚硒酸酯的Se=O 双键的振动峰。上述红外分析结果表明:壳聚糖与亚硒酸可能是通过C6位上的酯化反应和C2位上氨基的静电作用完成的。(硒化壳聚糖的制备及其表征) 从羧甲基壳聚糖与硒化羧甲基壳聚糖的红外光谱图图3、图4的对比中可以看出, 亚硒酸根主要连接在C2位的羧甲基和C 6的羟基上。主要由以下光谱图形和光谱数据变化得到证明: 羧甲基壳聚糖1627cm -1处的-COOH 反对称吸收峰在硒化羧甲基壳聚糖中红移至1599cm -1, 这可能是羧甲基壳聚糖中的-CO OH 与亚硒酸钠发生反应, 从而使键力削弱。1119cm -1处的C-O 伸缩振动在硒化羧甲基壳聚糖中红移至1064cm -1, 说明C6上的羟基也参与了硒化反应。此 外, 在硒化羧甲基壳聚糖的红外光谱中观测到位于806.125cm -1的Se=O 双键振动峰。(硒化羧甲基壳聚糖的合成及表征) 2.X-射线衍射 X 射线衍射法是研究多糖的结晶构型的有效方法。多糖通常是不能结晶的,但在适宜的条件下,它可以微晶态存在。所以进行衍射分析的样品必须通过外界的诱导使其中相当部分呈现微晶态。进行衍射的香菇多糖样品一般先制成碱性溶液,然后在水中透析,进一步处理制备。孙艳等将从香菇中分离而得的多糖经X2衍射分析,确定其立体结构为右手心三度螺旋,晶格为六角形, 晶格常数a

天然植物多糖的结构及活性研究进展

2007年第1期 3月出版 李尔春* (陕西师范大学食品工程系,西安710062) 天然植物多糖的结构及活性研究进展 Rsearchprogressonnaturalplant polysaccharidestructureandbiologicalactivity *李尔春,男,1984年出生,陕西师范大学食品科学与工程系 在读生。 收稿日期:2006-12-14 LiEr-chun* (Departmentoffoodengineering,Shanxinormaluniversity,Xi'an710062,China) 摘要主要介绍了天然植物多糖的结构及生物活性功能,如抗肿瘤、免疫调节、抗疲劳、降血糖、抗病毒、抗氧化等,展望了其发展前景。关键词 植物多糖 结构 生物活性 AbstactsThenaturalplantpolysaccharidestructureandthebiologicalactivityfunctionweremainlyintro-duced,liketheanti-tumor,theimmunoregulation,an-tifatigue,hypoglycemic,theanti-virus,antioxidationandsoon.Itsprospectsfordevelopmentwerealsoforecasted.keywordsPlantpolysaccharidesStructureBiolog-icalactivities 多糖是指由十个以上单糖通过苷键连接而成的聚合物,他们除了作为植物的贮藏养料和骨架成分外,有些植物体内的多糖类化合物还在抗肿瘤、抗心血管疾病、抗衰老等方面具有独特的生理活性。多糖是重要的高分子化合物,但由于其单糖的组成种类和连接位置多,再加上端基碳的构型等问题,使得对多糖类化合物的研究难度加大,长时间以来未受到重视,发展比蛋白质和核酸晚。近年来由于多糖类化合物的特殊生理活性,使得对于糖复合物和多糖类化合物的研究得到了快速发展。 1多糖的结构与测定方法 从自然界分离得到的多糖是非常复杂的大混合 物,包括生物大分子的混合、不同多糖(中性多糖、酸性多糖或杂多糖) 的混合、同种多糖大小分 子的混合,因此必须采取适合特点的方法分离分级纯化,否则结构不易确定。同一样品采用不同分级方法,常有不同结果。植物的不同部位,因功能不同,其中的多糖也是各色各样的,必须分开来研究。例如人参的根、茎、叶、果中的多糖,虽都含有中性杂多糖、酸性杂多糖组分,但其组成与结构却是不同的。 多糖与蛋白质一样也具有一、二、三、四级结构。多糖的一级结构是指糖基的组成,糖基排列顺序,相邻糖基的连接方式,异头碳构型以及糖链有无分支,分支的位置与长短等。多糖的二级结构是指多糖主链间以氢键为主要次级键而形成的有规则的构象。多糖的三级结构和四级结构是指以二级结构为基础,由于糖单位之间的非共价相互作用,导致二级结构在有序的空间里产生的有规则的构象。多糖的结构测定包括纯度测定、分子量测定、单糖组成的鉴定、糖连接位置的测定、糖链连接顺序的测定、苷键构型及氧环的测定。 多糖一级结构的分析方法很多,主要分为三大 类, 即化学分析法、仪器分析法和生物学方法。① 化学分析方法。主要有:水解法、高碘酸氧化、 Smith降解、甲基化反应等。②仪器分析法。与化 学分析法相比,仪器分析法具有快速、准确、灵敏、操作方便等优点,是糖链分析不可缺少的手段。用于糖链结构分析的仪器方法主要有紫外光谱法、红外光谱法、气相色谱法、高效液相色谱法、质谱法、核磁共振法等。除了传统的分析技术,现代分析技术的出现和发展以及仪器之间的联用,大大推动了糖链结构的研究工作。③生物学分析法。主要包括:酶学方法和免疫学方法。 食品工程FOODENGINEERING 44

各种细菌的生物学特性

金黄色葡萄球菌 形态与染色:G+,球形葡萄串状排列,无特殊结构。无鞭毛无芽胞,一般不形成荚膜。 菌落特点:呈圆形,表面光滑、凸起、湿润、边缘整齐、有光泽、不透明的白色或金黄色菌落,周围有β溶血环 培养基:营养要求不高,琼脂平板、血平板均可。 生化反应:β溶血(+),触酶试验(+),能分解葡萄糖、麦芽糖、蔗糖,产酸不产气,分解甘露醇(致病菌)。 a群链球菌(化脓性链球菌) 形态染色:G+,球菌链状排列,可有荚膜,无芽胞,无鞭毛,有菌毛。 菌落特点:在血平板上可形成灰白色、圆形、凸起、有乳光的细小菌落,菌落周围出现透明溶血环。 培养基:营养要求较高,加有血液、血清等成分的培养基。 生化反应:β溶血(+),触酶(-),分解葡萄糖,产酸不产气,不分解菊糖,不被胆汁溶解肺炎链球菌 形态与染色:G+,矛头状尖向外双球菌,有荚膜 ,无鞭毛,无芽胞。 菌落特点:在固体培养基上形成小圆形、隆起、表面光滑、湿润的菌落,菌落周围有草绿色溶血环。随着培养时间延长,细菌产生的自溶酶裂解细菌,使血平板上的菌落中央凹陷,边缘隆起成“脐状” 培养基:营养要求较高,加有血液、血清等成分的培养基。 生化反应:分解葡萄糖、麦芽糖、乳糖、蔗糖等,产酸不产气。对菊糖发酵,大多数新分离株为阳性。肺炎链球菌自溶酶可被胆汁或胆盐激活,使细菌加速溶解,故常用胆汁溶菌试验与甲型链球菌区别。 淋病奈瑟菌 形态与染色:G-,双球菌 ,肾形,似一对咖啡豆,无芽胞,无鞭毛,有菌毛,新分离菌株有荚膜。 菌落特点:菌落凸起、圆形、灰白色或透明、表面光滑的细小菌落。 培养基:专性需氧,营养要求高,多用巧克力培养基 生化反应:氧化酶、触酶试验阳性,对糖类的生化活性最低,只能氧化分解葡萄糖,产酸不产气。 脑膜炎奈瑟菌 形态染色:G-菌,呈肾形或豆形,两菌相对呈双球状,无鞭毛,无芽胞,新分离的菌株有多糖荚膜和菌毛。 菌落特点:无色、圆形、凸起、光滑、透明、似露滴状的小菌落。 培养基:专性需氧,在普通琼脂培养基上不能生长。需在巧克力色血琼脂培养基上。 生化反应:绝大多数菌株能分解葡萄糖和麦芽糖,产酸不产气(因淋病奈瑟菌不分解麦芽糖,借此可与淋球菌区别),不分解乳糖、甘露醇、半乳糖和果糖,触酶试验阳性,氧化酶试验阳性。能产生自容酶。 大肠杆菌(大肠埃希菌) 形态染色:G-菌,短杆状,有周身鞭毛和周身菌毛,无芽胞。 菌落特点:灰白色,圆形,湿润,有的可出现溶血环,中等大小S型菌落。 培养基:无特殊要求,琼脂平板、血平板均可。 生化反应:β溶血+,能发酵葡萄糖、乳糖等多种糖类,产酸并产气。吲哚试验阳性、甲基红反应阳性、VP试验阴性、枸橼酸盐(IMViC)试验阴性。

植物多糖的研究进展

植物多糖的研究进展 【摘要】多糖又称多聚糖,是由单糖缩合成的多聚物,广泛分布于自然界中,是一类重要的活性物质。从20世纪50年代对真菌多糖抗癌效果的发现以来,人们开始了对多糖的化学、物理、生物学系列的研究。目前已有报道的天然多糖化合物约有300多种,广泛存在于植物、动物和微生物组织中。近年来,由于植物多糖具有免疫调节、抗肿瘤、抗衰老、降血糖等多种生物活性、毒副作用小和不易造成残留等优点[1-2],对植物多糖的研究呈现逐渐增多的趋势。中国幅员辽阔,自然条件复杂,孕育着丰富的植物资源,为开发利用植物多糖奠定了深厚的物质基础。目前,对植物多糖的研究多集中在药理作用等方面,而对植物多糖进一步的分离纯化、结构测定、结构和功能关系及在食品、农业、工业方面的开发应用等研究工作较少。笔者参阅了部分资料,对植物多糖的结构、提取方法、药理作用及在保健品、食品、农业等领域的应用作一简要综述,旨在为今后中国植物多糖的综合利用和开发奠定技术和理论基础。 【关键词】多糖;功能;提取纯化 1 植物多糖的组成和结构 多糖是由超过10个以上、通常由几百甚至几千个单糖分子聚合而成的一类化合物。由醛糖或酮糖通过糖苷键连接而成,糖苷键分为α型和β型2种。植物多糖的糖链结合以β-1,3或β-1,6键为主,有的多糖还带有分支,带有分支链的多糖具有抗肿瘤活性。而α型连接的多糖生理活性较弱。但有研究表明[3],α型连接的多糖也具有较强的抗肿瘤活性。多糖与蛋白质一样具有一、二、三、四级结构。一级结构是指糖基的组成,糖基排列顺序,相邻糖基的连接方式,异头碳构型以及糖链有无分支,分支的位置与长短等。二级结构是指多糖主链间以氢键为主要次级键而形成的有规则的构象。三级和四级结构是指以二级结构为基础,由于糖单位之间的非共价相互作用,导致二级结构在有序的空间里产生的有规则的构象。研究表明,同是β-1,3连接的多糖即使其一级结构完全相同,但由于二级和三级结构不同,其生理活性差异也很大[4-5]。因此,多糖的活性与其高级结构密切相关。 2 多糖提取纯化方法的研究进展 2.1植物多糖的提取方法 2.1.1水煎煮法 水煎煮法是多糖提取的传统方法,是用水作为溶剂煎煮提取多糖。因为多糖在冷水中溶解度较低,一般要在70-90热水中回流提取2~3h,将提取液真空浓缩后加入乙醇将多糖析出。目前多数国内文献采用水煎煮法提取多糖,如盛家荣等[6]采用此法从板蓝根中提取多糖,李志洲等[7]采用该法提取大枣多糖。该法

细菌的生物学特性

细菌就是一种具有细胞壁的单细胞微生物,在适宜条件下,能进行无性二分裂繁殖,其形态与结构相对稳定。掌握细菌形态结构特征,对鉴别细菌,研究致病性,诊断疾病与防治原则等都有 重要意义。 第一节细菌大小与形态 一细菌的大小 细菌体积微小,一般要用光学显微镜放大几百倍到一千倍左右才能观察到。通常以微米(μm)为测量其大小的单位。细菌种类不同,大小差异很大,同一种细菌在不同生长环境中,或在同一生长环境的不同生长繁殖阶段,其大小也有差别。 二细菌的形态 细菌的基本形态有球状、杆状及螺旋状,根据形态特征将细菌分为球菌、杆菌与螺形菌三大 类、 (一)球菌(coccus) 球菌单个菌细胞基本上呈球状。按细菌生长繁殖时的分裂平面及分裂后排列方式不同,可将球菌分为: 1、双球菌:细菌在一个平面分裂,分裂后两个菌细胞成双排列,如肺炎链球菌。 2、链球菌:细菌由一个平面分裂,分裂后菌细胞连在一起,呈链状,如乙型溶血性链球菌。 3葡萄球菌:细菌在多个不规则的平面上分裂,分裂后菌细胞聚集在一起似葡萄串状,如金黄色葡萄球菌。 4、四联球菌:细菌在两个相互垂直的平面上分裂,分裂后四个菌细胞联在一起。 5、八叠球菌:细菌在上下、前后与左右三个相互垂直的平面上分裂,分裂后八个菌细胞联在一起。 (二)杆菌(bacillus) 杆菌呈杆状,多数为直杆状,也有稍弯的。不同杆菌的大小、长短、粗细差异很大。大杆菌如 炭疽杆菌长3~10μm,中等的如大肠杆菌长2~3μm,小的如流感杆菌长0、7~1、5μm。菌体粗短呈卵园形的称为球杆菌;菌体末端膨大成棒状,称棒状杆菌;菌体常呈分枝生长趋势,称为分枝杆菌,大多数杆菌就是单个、分散排列的,但有少数杆菌分裂后菌细胞连在一起呈链状,称为链杆菌。 (三)螺形菌(spirillar bacterium) 螺形菌菌细胞呈弯曲或旋转状,可分为两类: 1、弧菌:菌细胞只有一个弯曲呈弧形或逗点状,如霍乱弧菌。 2、螺菌:菌细胞有多个弯曲,如鼠咬热螺菌。弯曲呈“S”或海鸥形者如空肠弯曲菌、幽门螺 杆菌等。 第二节细菌的结构与化学组成 细菌的基本结构有细胞壁、细胞膜、细胞质与核质四个部分组成。某些细菌除具有其基本结 构外,还有荚膜、鞕毛、菌毛、芽胞等特殊结构。 一、基本结构 (一)细胞壁(cell wall) 细胞壁位于细菌的最外层,就是一层质地坚韧而略有弹性的膜状结构,其化学组成比较复杂,并随不同细菌而异。用革兰染色法可将细菌分为革兰阳性菌与革兰阴性菌两大类。两类细菌细胞壁的共有组分为肽聚糖,但各自还有其特殊组成成分。 1、肽聚糖(peptidoglycan) 细菌细胞壁的基本结构就是肽聚糖,又称粘肽。它就是原核生物细 胞所特有的物质,不同种类的细菌,其组成与连接的方式亦有差别。革兰阳性菌的肽聚糖由聚 糖骨架、四肽侧链与五肽交联桥三部分组成(图11-3,a),革兰阴性菌的肽聚糖由聚糖骨架与四 肽侧链两部分组成(图11-3,b)。

多糖结构总结

多糖结构总结.

IR红外分析()1 的数据和图形对比可以看出,亚硒酸根[图1(a)]从硒化壳聚糖[图1(b)]与壳聚糖主要是由以下的光谱图形和光谱数据C的羟基上,主要连接在C的氨基本上和62-1变为C的氨基硒化后,NH的弯曲振动由1594.52cm变化得到证明:壳聚糖2-1为基的酰的干未基位C聚1523.29cm,壳糖氨上脱净乙基羰振动峰2

-1,而硒化壳聚糖C位上未脱干净的乙酰基1650.32cm的羰基振动峰为2-1,可能是受到C位的羟基上亚硒酸基的影响;同样由于硒化壳聚糖1632.88cm6C位氨基上和C位羟基上亚硒酸根的影响,壳聚糖C-O伸缩振动峰由62-1-1-1处观察到亚硒酸酯的800.00cm1090.41cmSe=O1079.45cm。同时,在变为双键的振动峰。上述红外分析结果表明:壳聚糖与亚硒酸可能是通过C位上的6酯化反应和C位上氨基的静电作用完成的。(硒化壳聚糖的制备及其表征) 2 的对比中可以图4、从羧甲基壳聚糖与硒化羧甲基壳聚糖的红外光谱图图3主要由以下光谱图形C的羟基上。看出, 亚硒酸根主要连接在C位的羧甲基和62-1反对称吸收峰在羧甲基壳聚糖: 1627cm-COOH处的和光谱数据变化得到证明-1

与亚1599cm-COOH, 这可能是羧甲基壳聚糖中的硒化羧甲基壳聚糖中红移至-1伸缩振动在硒化羧甲基壳处的C-O1119cm硒酸钠发生反应, 从而使键力削弱。-1在硒化羧上的羟基也参与了硒化反应。此外, 聚糖中红移至1064cm, 说明 C6-1(硒化羧806.125cm甲基壳聚糖的红外光谱中观测到位于双键振动峰。的Se=O 甲基壳聚糖的合成及表征) 2.X-射线衍射,X射线衍射法是研究多糖的 结晶构型的有效方法。多糖通常是不能结晶的但在适宜的条件下,它可以微晶态存在。所以进行衍射分析的样品必须通过外界的诱导使其中相当部分呈现微晶态。进行衍射的香菇多糖样品一般先制成碱进一步处理制备。孙艳等将从香菇中分离 而得的多糖经,性溶液,然后在水中透析a=b=1. 晶格为六角形确定其立体结构为右手心三度螺旋衍射分析X2,,, 晶格常数 5nm, c =0. 6nm。ZhangP等经X-衍射分析表明:天然香菇多糖具β三股绳 状螺旋型立体结构,但加入尿素或二甲亚砜后立体构型改变,转变为单绳螺旋结 构。(香菇多糖结构分析和构效关系研究进展) 3.拉曼光谱法 拉曼光谱在检测多糖分子的振动相同原子的非极性键和异头物方面效果较好。它侧重于探测多糖生物大分子的空间结构,如平铺折叠或螺旋状等。研究 -1-1926cm954和有很强的拉曼吸收,此外在-D 表明,α螺旋直链淀粉在 865cm-1内对多糖的类500-1500cm有C-O-C 糖苷键的伸缩振动吸收,拉曼 光谱在处 型和糖苷的连接方式的检测灵敏,比红外光谱表现出了更高的分辨率,许多复杂-1区域内。的拉曼吸收谱带都在低于600cm 2.1 Seleno-LP的拉曼光谱 -1-1附近的吸收峰亚硒酸酯中和Seleno-LP的激光拉曼光谱在 911cm699cmSe=O和Se-OH的伸缩振动,而LP在这两处均没有吸收峰。这证实了seleno-LP中存在Se=O键。(兰州百合多糖硒酸酯的合成及表征)

植物多糖的研究进展

植物多糖的研究进展 11食品科学余勇 11720525 摘要:植物多糖具有多种生物活性,近年来已成为研究热点。本文综述了植物多糖的提取分离、结构鉴定的方法及其主要生物活性,并展望了其发展前景。 关键词:植物多糖提取分离生物活性 多糖是普遍存在于自然界中的由许多相同或不同的单糖通过糖苷键连接在一起的多聚化合物,是维持生命活动正常运转的基本物质之一。根据单糖的组成可分为同多糖和杂多糖。同多糖指由相同单糖构成的多糖,如淀粉、纤维素等;杂多糖由不同的单糖组成,结构上还可能与蛋白质或者核酸等结合形成结合型多糖。植物多糖是多糖的重要组成部分。植物多糖在早期的天然产物化学研究中,因活性不明显,常作为无效成分弃去。由于生物学、化学等学科的飞速发展,自2O世纪8O年代来,人们对植物多糖的生物活性有了新的认识。科学实验研究显示,植物多糖具有许多生物活性功能,包括免疫调节、抗肿瘤、降血糖、降血脂、抗辐射、抗菌、抗病毒、保护肝脏等,且对机体毒副作用小。因此,对植物多糖的研究开发已成为医药保健品行业热门领域。如香菇多糖、灵芝多糖、云芝多糖已在国内临床上广泛应用。而其他一些植物多糖正在深入研究,如桑黄多糖、猪苓多糖、人参多糖、枸杞多糖等。 1 植物多糖的提取、分离和鉴定 1.1 植物多糖的提取 多糖是极性大分子,所以从植物中提取多糖,一般采用不同温度的水稀碱或稀盐溶液提取。由于水提时间长且效率低,酸碱提易破坏多糖的立体结构及活性。因此,发展高效,维持多糖结构和生物活性的方法至关重要。涂国云等采用酶法提取多糖,即采用复合酶一热水浸提相结合的方法,复合酶多采用一定的果胶酶、纤维素酶及中性蛋白酶,此法具有条件温和、杂质易除和提高效率等优点。同一原料,分别用水、酸、碱、盐或酶法提取,所得多糖往往是不同的。 1.2 植物多糖的分离纯化 利用不同多糖分子大小和溶解度不同而分离。常用季铵盐沉淀法和有机溶剂沉淀法。如安络小皮伞粗多糖的纯化方法,在多糖溶液中加入不同浓度乙醇溶液。得到多个多糖;还可用葡聚凝胶(Sephadex)琼脂糖凝胶(Sepharose)以不同浓度的盐溶液和缓冲溶液作为脱色剂,采用凝胶柱层析法使不同大小的多糖分子得到分离纯化,但该方法不适宜粘多糖分离。

细菌的生物学特性

细菌就是一种具有细胞壁得单细胞微生物,在适宜条件下,能进行无性二分裂繁殖,其形态与结构相对稳定。掌握细菌形态结构特征,对鉴别细菌,研究致病性,诊断疾病与防治原则等都有重要意义。 第一节细菌大小与形态 一细菌得大小 细菌体积微小,一般要用光学显微镜放大几百倍到一千倍左右才能观察到。通常以微米(μm)为测量其大小得单位。细菌种类不同,大小差异很大,同一种细菌在不同生长环境中,或在同一生长环境得不同生长繁殖阶段,其大小也有差别。 二细菌得形态 细菌得基本形态有球状、杆状及螺旋状,根据形态特征将细菌分为球菌、杆菌与螺形菌三大类、 (一)球菌(coccus) 球菌单个菌细胞基本上呈球状。按细菌生长繁殖时得分裂平面及分裂后排列方式不同,可将球菌分为: 1、双球菌:细菌在一个平面分裂,分裂后两个菌细胞成双排列,如肺炎链球菌。 2、链球菌:细菌由一个平面分裂,分裂后菌细胞连在一起,呈链状,如乙型溶血性链球菌。3葡萄球菌:细菌在多个不规则得平面上分裂,分裂后菌细胞聚集在一起似葡萄串状,如金黄色葡萄球菌。 4、四联球菌:细菌在两个相互垂直得平面上分裂,分裂后四个菌细胞联在一起。 5、八叠球菌:细菌在上下、前后与左右三个相互垂直得平面上分裂,分裂后八个菌细胞联在一起。 (二)杆菌(bacillus) 杆菌呈杆状,多数为直杆状,也有稍弯得。不同杆菌得大小、长短、粗细差异很大。大杆菌如炭疽杆菌长3~10μm,中等得如大肠杆菌长2~3μm,小得如流感杆菌长0、7~1、5μm。菌体粗短呈卵园形得称为球杆菌;菌体末端膨大成棒状,称棒状杆菌;菌体常呈分枝生长趋势,称为分枝杆菌,大多数杆菌就是单个、分散排列得,但有少数杆菌分裂后菌细胞连在一起呈链状,称为链杆菌。 (三)螺形菌(spirillar bacterium) 螺形菌菌细胞呈弯曲或旋转状,可分为两类: 1、弧菌:菌细胞只有一个弯曲呈弧形或逗点状,如霍乱弧菌。 2、螺菌:菌细胞有多个弯曲,如鼠咬热螺菌。弯曲呈“S”或海鸥形者如空肠弯曲菌、幽门螺杆菌等。 第二节细菌得结构与化学组成 细菌得基本结构有细胞壁、细胞膜、细胞质与核质四个部分组成。某些细菌除具有其基本结构外,还有荚膜、鞕毛、菌毛、芽胞等特殊结构。 一、基本结构 (一)细胞壁(cell wall) 细胞壁位于细菌得最外层,就是一层质地坚韧而略有弹性得膜状结构,其化学组成比较复杂,并随不同细菌而异。用革兰染色法可将细菌分为革兰阳性菌与革兰阴性菌两大类。两类细菌细胞壁得共有组分为肽聚糖,但各自还有其特殊组成成分。 1、肽聚糖(peptidoglycan) 细菌细胞壁得基本结构就是肽聚糖,又称粘肽。它就是原核生物细胞所特有得物质,不同种类得细菌,其组成与连接得方式亦有差别。革兰阳性菌得肽聚糖由聚糖骨架、四肽侧链与五肽交联桥三部分组成(图11-3,a),革兰阴性菌得肽聚糖由聚糖骨架与四肽侧链两部分组成(图11-3,b)。

真菌多糖的研究的现状与前景展望

真菌多糖的研究的现状与前景展望 zaq 摘要:真菌多糖因其无毒副作用是目前最有开发前途的保健食品和药品新资源。本文从其提取纯化、构效关系、生物活性以及其真菌多糖的开发利用现状和研究前景等几个方面对其进行简单介绍。 关键词:真菌多糖;提取纯化;构效关系;生物活性 前言: 真菌多糖是从真菌子实体、菌丝体、发酵液中分离出的,由10个以上的单糖以糖苷键连接而成的具有生物活性的高分子多聚物。大量的药理实验表明,真菌多糖化合物具有免疫增强与调节、抗肿瘤、抗病毒、抗凝血、抗衰老等作用,其中对多糖免疫增强作用机制的研究最为成熟,已深入到分子和受体水平[1]。随着对真菌多糖功效的更深入的了解,真菌多糖必将被应用于更多领域,尤其是制药及保健品行业。目前,日本、韩国以及欧美等国在真菌多糖的研究方面处于领先地位。我国的真菌多糖研究近年来也有很大的进展,但对多糖的研究仍多偏重于药用多糖的提取、分离、精制、化学组成等方面,大多数品种尚处于实验阶段或仅用于滋补品和饮料,与国外相比仍有一定的差距。 1 真菌多糖的提取纯化技术 1.1 预处理 为了提高多糖的溶出率以及去除干扰性成分,通常在正式提取之前对样品进行预处理。比如:减小样品粒度—对子实体进行粉碎、对菌丝体进行匀浆、研磨、对细胞或孢子进行超声波破碎和酶解等;用石油醚、乙醚等溶剂除去脂溶性杂质;用85%乙醇除去单糖、低聚糖及苷类[2,3]。 1.2 提取 一般多糖用水作溶剂来提取,可以用冷水也可采用热水浸提法,热水浸提法具有多糖溶出率较高、有机溶剂使用量少、对多糖活性破坏小、操作简便和节约等优点。水提取的多数是中性多糖,用碱提法可以提取含有糖醛酸的多糖,酸性条件往往引起多糖中糖苷键的断裂,提取时应该尽量避免采用酸提法[4]。根据多

香菇的生物学特性

香菇的生物学特性 一、分类和名称 香菇在分类学中隶属于真菌门、担子菌纲、无隔子菌亚纲、伞菌目、白蘑科、香菇属(斗菇属)。 香菇由于树种、光照、温湿度、纬度、海拔高度等生活条件差异、其形态、品种、色泽上亦有变异,目前香菇已有许多符合人们经济目的的品种。例如按季节分,有春、夏、秋、冬出菇种。要根据当地的气候条件,引进适宜的品种培养、驯化使用,通江县属大陆季风性气候,一年四季气候分明,温度、湿度变化大,所以我县主要选用春、秋品种。 二、香菇的形态结构 香菇是由营养器官菌丝体和繁殖器官子实体组成,两者均由无数的菌丝交织而成。 1、菌丝体:菌丝体由孢子萌发而成,白色、绒毛状,有横隔和分支。细胞壁薄,粗2—3微米。菌丝体全是香菇的营养器官,由许多菌丝体连接而成,互相结合呈蛛网状,可以在枯木、木屑和秸杆培养基中漫延生长,不断繁殖,聚合菌丝体,在适宜的温度、湿度、空气、光线条件下,菌丝体会组结成盘状组织,继而分化出菇蕾,逐渐形成子实体,这是香菇菌丝体的重要特征之一。 2、子实体:子实体是香菇繁殖器官(如同高等植物的果实),成熟香菇子实体,象一把撑开的小伞,可以明显地看出有菌盖、菌褶、菌柄三部分。子实体分单生、丛生或群生(图一)。

菌盖:又叫菇盖、菇伞,圆形,位于香菇的顶部,半肉质,肥厚,直径3一10厘米,有时达20厘米。幼小时边缘开头内卷呈半球形,菌盖边缘与菌柄间有毛状菌膜连接,而后菌盖平展呈伞状。 在低温、干燥气候的作用下菌盖上面分裂成菊花状的裂纹,露出白色的菌肉组织,称花菇。 菌褶:又叫菇叶、菇鳃,位于菌盖下,呈辐射状排列,白色、柔软、刀片状结构,褶子表面的子实体层上,生有许多担子;每个担子上生着4个孢子,数目众多的担子,能产生大量的担孢子。 菌柄:又叫菇柄,菇脚,生于菌盖下边,圆柱形或稍扁,是支撑菌盖、菌褶和输送养料的器官。幼时柄上有纤毛。子实体开伞后,菌柄残留环形白色膜状物,称菌环,它不久便会自行消失。 1、菌盖 2、菌褶 3、菌环 4、菌柄 5、菌丝束 三、香菇的生活史 香菇的孢子成熟后,从菌褶中弹射出来,随风飘散,当落到被砍伐的适合香菇生长的树皮缝里或木屑堆里,得到一定的温度和湿度,孢子就会生出芽管,芽管进行顶端生长并分枝发育成菌丝。由于这种菌丝没有核,叫第一次菌丝。两根性别不同的第一次菌丝丁肌质结合后,组成每个细胞含有一个核的菌丝,也叫做第二次菌丝。两个单核

梭杆菌生物学特性

梭杆菌生物学特性 (一)分类 梭杆菌属(Fusobacterium)是临床较常见的革兰阴性无芽胞厌氧杆菌,因其形态细长、两端尖细如梭形而得名。本属菌共有21个种和7个亚种,临床标本中常见的有具核梭杆菌、坏死梭杆菌、死亡梭杆菌和溃疡梭杆菌。代表菌是具核梭杆菌。DNAG+C含量为26~34mol%。 (二)临床意义 梭杆菌是寄生于人类口腔、上呼吸道、肠道和泌尿生殖道的正常菌群,可引起各种软组织感染,是口腔感染(如奋森溃疡性咽峡炎)、肺脓肿及胸腔等感染的常见病原菌。也可从肠道感染、尿路感染、手术感染灶以及血液等多种临床标本中分离到。在临床感染中以具核梭杆菌最常见。坏死梭杆菌是毒力很强的厌氧菌,是扁桃体周围脓肿中最常分离到的厌氧菌,也是Lemierre综合征(又称咽峡后脓毒症)的致病菌。 (三)生物学特性 梭杆菌为革兰阴性杆菌,菌体纤细长丝状,常呈多形性。典型的形态特征为梭形,两端尖细、中间膨大,大小(5~l0)μm~1μm,有时菌体中有革兰阳性颗粒存在。无鞭毛、无芽胞。 严格厌氧,在厌氧血平板上生长良好,经48小时培养后,菌落直径l~2mm,圆形、凸起、灰白色、光滑、透明或半透明。典型菌株呈不规则圆形、面包屑样,用透视光观察菌落常显示珍珠样光斑点。一般不溶血。陈旧菌落的周围常可见一扩散环,但菌落呈R型。 (四)微生物学检验 梭杆菌的鉴定特征:革兰阴性棱杆菌,两端尖细,中间膨大,呈梭状。菌落呈面包屑样。大部分菌种对胆汁敏感,在20%胆汁中不生长。本菌生化反应较弱,多数不发酵糖类,少数菌株对葡萄糖、果糖可出现弱发酵反应。大多数菌种吲哚阳性,脂酶试验阴性,不分解七叶苷,不还原硝酸盐。对卡那霉素和多黏菌素敏感,对万古霉素耐药。梭杆菌主要代谢产物是丁酸,很少或不产生异丁酸和异戊酸,而拟杆菌不产生丁酸,可产生异丁酸和异戊酸,纤毛菌产生大量乳酸而不产生丁酸,可通过气液相色谱分析加以鉴别。

植物多糖生物活性的研究进展

植物多糖生物活性的研究进展(作者: _________ 单位:___________ 邮编: ___________ ) 【关键词】多糖类;植物,药用;生物类 多糖广泛分布于自然界的多种生物体中,尤其是动物细胞膜、植物细胞壁和微生物细胞壁中,是一类由醛糖或酮糖通过糖苷键连接而成的天然高分子多聚物,是构成生命体的分子基础之一。多糖在自然界中储量丰富,主要分为植物多糖、动物多糖以及微生物多糖3类[1]。自I960年以来,人们陆续发现多糖具有多种药理活性,它不仅可以作为广谱免疫促进剂调节机体免疫功能,还可以在抗肿瘤、抗病毒、抗氧化、降血糖、抗辐射等方面发挥广泛的药理作用[2拟.7]。迄今为止,已有300多种多糖类化合物从天然产物中分离出来,其中从植物中提取的水溶性多糖最为重要[8]。因为它药理活性强,来源广泛,细胞毒性低,安全性强,毒副作用较小,已引起医药界的广泛关注,并成为当今生命科学研究的热点之一。 1植物多糖的生物学功能 1.1免疫调节作用Yang等研究发现,在针对小鼠腹腔巨噬细胞的体内和体外试验中,当归多糖均可显著提高一氧化氮(NO )生成

量, 提高细胞溶酶体酶活性[9]。另外,他们还发现L拟硝基拟精氨酸甲酯(NG A nitro 拟L拟arginine methyl ester , L拟NAME)即一种诱导 型NC合酶(iNOS)抑制剂,可有效抑制巨噬细胞中当归多糖诱导的NO 的增殖,说明当归多糖是在iNOS基因表达的诱导下刺激巨噬细胞产生NO的。Cheung等从冬虫夏草中提取得到虫草多糖(UST2000)并对产物进行了成分分析和体外药理活性研究[10]。虫草多糖主要由葡萄糖、甘露糖和半乳糖组成,比例为 2.4 : 2 : 1;体外试验中,虫草多 糖可显著促进细胞增殖和白细胞介素的分泌;另外,虫草多糖可短暂诱导胞外信号调控酶的磷酸化而使其激活、提高巨噬细胞的吞噬活性 并提高酸性磷酸酯酶的活性。结果表明,虫草多糖在触发免疫应答方面具有极其重要的作用。 1.2抗肿瘤活性自从1950年发现酵母多糖具有抗肿瘤活性以来,研究人员已分离出许多具有抗肿瘤活性的植物多糖。Lins等经 过血液实验、生物化学实验和组织病理学分析得知,在体外实验中,红藻硫酸多糖无显著细胞毒性,但体内实验显示出明显的抗肿瘤活性,并且可以增强5拟氟尿嘧啶诱发的免疫应答,说明红藻硫酸多糖由于它的免疫学性质而具有抗肿瘤活性[11]。Yamasaki等通过体外实验研究发现,云芝多糖可增强肿瘤细胞的生长抑制和细胞凋亡,降低肿瘤细胞的扩散能力,从而发挥抗肿瘤功效[12]。 1.3抗菌抗病毒活性Wang等研究发现,匍扇藻粗多糖具有显著抗I

细菌的生物学特性

细菌是一种具有细胞壁的单细胞微生物,在适宜条件下,能进行无性二分裂繁殖,其形态和结构相对稳定。掌握细菌形态结构特征,对鉴别细菌,研究致病性,诊断疾病和防治原则等都有重要意义。 第一节细菌大小与形态 一细菌的大小 细菌体积微小,一般要用光学显微镜放大几百倍到一千倍左右才能观察到。通常以微米(μm)为测量其大小的单位。细菌种类不同,大小差异很大,同一种细菌在不同生长环境中,或在同一生长环境的不同生长繁殖阶段,其大小也有差别。 二细菌的形态 细菌的基本形态有球状、杆状及螺旋状,根据形态特征将细菌分为球菌、杆菌和螺形菌三大类. (一)球菌(coccus) 球菌单个菌细胞基本上呈球状。按细菌生长繁殖时的分裂平面及分裂后排列方式不同,可将球菌分为: 1.双球菌:细菌在一个平面分裂,分裂后两个菌细胞成双排列,如肺炎链球菌。 2.链球菌:细菌由一个平面分裂,分裂后菌细胞连在一起,呈链状,如乙型溶血性链球菌。3葡萄球菌:细菌在多个不规则的平面上分裂,分裂后菌细胞聚集在一起似葡萄串状,如金黄色葡萄球菌。 4.四联球菌:细菌在两个相互垂直的平面上分裂,分裂后四个菌细胞联在一起。 5.八叠球菌:细菌在上下、前后和左右三个相互垂直的平面上分裂,分裂后八个菌细胞联在一起。 (二)杆菌(bacillus) 杆菌呈杆状,多数为直杆状,也有稍弯的。不同杆菌的大小、长短、粗细差异很大。大杆菌如炭疽杆菌长3~10μm,中等的如大肠杆菌长2~3μm,小的如流感杆菌长0.7~1.5μm。菌体粗短呈卵园形的称为球杆菌;菌体末端膨大成棒状,称棒状杆菌;菌体常呈分枝生长趋势,称为分枝杆菌,大多数杆菌是单个、分散排列的,但有少数杆菌分裂后菌细胞连在一起呈链状,称为链杆菌。 (三)螺形菌(spirillar bacterium) 螺形菌菌细胞呈弯曲或旋转状,可分为两类: 1.弧菌:菌细胞只有一个弯曲呈弧形或逗点状,如霍乱弧菌。 2.螺菌:菌细胞有多个弯曲,如鼠咬热螺菌。弯曲呈“S”或海鸥形者如空肠弯曲菌、幽门螺杆菌等。 第二节细菌的结构与化学组成 细菌的基本结构有细胞壁、细胞膜、细胞质和核质四个部分组成。某些细菌除具有其基本结构外,还有荚膜、鞕毛、菌毛、芽胞等特殊结构。 一、基本结构 (一)细胞壁(cell wall) 细胞壁位于细菌的最外层,是一层质地坚韧而略有弹性的膜状结构,其化学组成比较复杂,并随不同细菌而异。用革兰染色法可将细菌分为革兰阳性菌和革兰阴性菌两大类。两类细菌细胞壁的共有组分为肽聚糖,但各自还有其特殊组成成分。 1.肽聚糖(peptidoglycan) 细菌细胞壁的基本结构是肽聚糖,又称粘肽。它是原核生物细胞所特有的物质,不同种类的细菌,其组成与连接的方式亦有差别。革兰阳性菌的肽聚糖由聚糖

真菌的生物学形态特征

真菌的生物学形态特征 与细菌相比,真菌的大小、形态、结构和化学组成均有很大的差异。真菌比细菌大几倍至几十倍,可以用普通光学显微镜观察。真菌的细胞是典型的真核细胞,真菌细胞具有细胞壁、细胞膜、细胞核、细胞器及细胞质。真菌细胞壁主要化学成分为几丁质(chitin)和1,3-葡聚糖,而细菌细胞壁主要化学成分为肽聚糖。真菌按形态可分为单细胞和多细胞两类。单细胞真菌主要为酵母菌(yeast)和酵母样菌(veast-1ike),菌体呈圆形或卵圆形,其形成的菌落为酵母型或类酵母型,临床常见的有念珠菌属和新生隐球菌。多细胞真菌由菌丝和孢子组成,菌丝伸长分支,交织成团形成菌丝体(mycelium),并长有各种孢子,这类真菌称为丝状菌(filamentous fungus),俗称霉菌(mold)。其形成的菌落为丝状型。对人致病的有皮肤癣菌等。有些真菌可因营养、温度、氧气等环境条件的改变,而两种形态发生互变,称为二相性(dimorphic)。真菌的菌落形态、颜色变化及真菌不同生长时期的镜下特征是正确鉴定真菌的重要依据。 (一)真嚣的镜下形态 多细胞真菌的菌丝和孢子随真菌种类不同而形态不同,是鉴别真菌的重要依据。 1.菌丝菌丝是由孢子出芽形成的。孢子在环境适宜的条件下长出芽管,逐渐延长呈丝状即菌丝(hyphae)。当菌丝不断生长、分支并交织成团时,被称为菌丝体(mycelium)。孽警粤结构不同可分为有隔菌丝和无隔菌丝。有隔菌丝(septate hyphae)是由横隔将管状尊构的菌丝分隔成一连串多细胞样的丝状体,如曲霉、青霉和毛癣菌等大多数丝状真菌的菌丝属于此类:无隔菌丝(nonseptate hyphae)无隔膜,整条菌丝为单个细胞,细胞质内有多个细胞核,根霉和毛霉的菌丝属于此类。菌丝在人工培养基中生长,按其着生情况可分为营乔丽丝(vegetative hyphae)和气生菌丝(aerial hyphae)。菌丝向下生长,深入培养基内获取营养的菌丝称为营养菌丝:而从培养基表面长出向空中伸展的菌丝称为气生菌丝。部分气生菌丝发育到一定阶段可衍化为具有繁殖能力的繁殖菌丝(reproductive hyphae)。菌缝可有多种形态,如螺旋状、球拍状、结节状、鹿角状、梳状和关节状等,它们有助于真菌的鉴别。 2.孢子孢子是真菌的繁殖结构,分为有性孢子和无性孢子两类。有性孢子是由同一里体璧不同菌体上的两个细胞融台经减数分裂形成。无性孢子由菌丝上的细菌直接分化或出芽形成,是病原性真菌传播和延续后代的主要方式。真菌孢子抵抗力不强,加热60~70℃短时间即死亡。真菌孢子与细菌芽胞不同,其区别见表22-1。

相关主题