搜档网
当前位置:搜档网 › 常用函数的基本性质

常用函数的基本性质

常用函数的基本性质
常用函数的基本性质

一些常用函数的基本性质 一、

一次函数:y kx b =+

1、当0k >时,函数图象必经过一、三象限,函数在(,)-∞+∞为单调递增函数;

2、当0k <时,函数图象必经过二、四象限,函数在(,)-∞+∞为单调递减函数。 二、

二次函数:2(0)y ax bx c a =++≠

1、对称轴2b

x a

=-

, (1) 当0a >时,抛物线图像开口向上,在2b

x a

=-

时,y 取得最小值;并且x 的值离对称轴越远,y 的取值就越大;函数在(,)2b

a

-∞-单调递减,在

(,)2b

a

-+∞单调递增。 (2) 当0a <时,抛物线图像开口向下,在2b

x a

=-时,y 取得最大值;并且x

的值离对称轴越远,y 的取值就越小;函数在(,)2b

a

-∞-单调递增,在

(,)2b

a

-+∞单调递减。 2、2(0)y ax bx c a =++≠对应的方程为2(0)ax bx c a ++≠, (1)当判别式:24b ac ?=-0>时,函数与x 轴有两个不同的交点 (2)当判别式:24b ac ?=-0=时,函数与x 轴有两个相等的交点 (3)当判别式:24b ac ?=-0<时,函数与x 轴没有交点

3、韦达定理:1212,b c

x x x x a a

+=-?=

三、指数函数的定义

函数x y a = (0a >且1a ≠)叫做指数函数,其中x 是自变量. 指数函数的图象和性质

图象过定点,即当. 在在

图象过定点,即当时,

上是增函数上是减函数

高一数学竞赛培训讲座之函数的基本性质

函数的基本性质 基础知识: 函数的性质通常是指函数的定义域、值域、解析式、单调性、奇偶性、周期性、对称性等等,在解决与函数有关的(如方程、不等式等)问题时,巧妙利用函数及其图象的相关性质,可以使得问题得到简化,从而达到解决问题的目的. 关于函数的有关性质,这里不再赘述,请大家参阅高中数学教材及竞赛教材:陕西师范大学出版社 刘诗雄《高中数学竞赛辅导》、刘诗雄、罗增儒《高中数学竞赛解题指导》. 例题: 1. 已知f(x)=8+2x -x 2,如果g(x)=f(2-x 2 ),那么g(x)( ) A.在区间(-2,0)上单调递增 B.在(0,2)上单调递增 C.在(-1,0)上单调递增 D.在(0,1)上单调递增 提示:可用图像,但是用特殊值较好一些.选C 2. 设f(x)是R 上的奇函数,且f(x +3)=-f(x),当0≤x≤ 23时,f(x)=x ,则f(2003)=( ) A.-1 B.0 C.1 D.2003 解:f(x +6)=f(x +3+3)=-f(x +3)=f(x) ∴ f(x)的周期为6 f(2003)=f(6×335-1)=f(-1)=-f⑴=-1 选A 3. 定义在实数集上的函数f(x),对一切实数x 都有f(x +1)=f(2-x)成立,若f(x)=0仅有 101个不同的实数根,那么所有实数根的和为( ) A.150 B.2303 C.152 D.2 305 提示:由已知,函数f(x)的图象有对称轴x = 23 于是这101个根的分布也关于该对称轴对称.

即有一个根就是23,其余100个根可分为50对,每一对的两根关于x =2 3对称 利用中点坐标公式,这100个根的和等于 23×100=150 所有101个根的和为 23×101=2303.选B 4. 实数x ,y 满足x 2=2xsin(xy)-1,则x 1998+6sin 5 y =______________. 解:如果x 、y 不是某些特殊值,则本题无法(快速)求解 注意到其形式类似于一元二次方程,可以采用配方法 (x -sin(xy))2+cos 2(xy)=0 ∴ x=sin(xy) 且 cos(xy)=0 ∴ x=sin(xy)=±1 ∴ siny=1 xsin(xy)=1 原式=7 5. 已知x =9919+是方程x 4+bx 2+c =0的根,b ,c 为整数,则b +c =__________. 解:(逆向思考:什么样的方程有这样的根?) 由已知变形得x -9919= ∴ x 2-219x +19=99 即 x 2-80=219x 再平方得x 4-160x 2+6400=76x 2 即 x 4-236x 2+6400=0 ∴ b=-236,c =6400 b + c =6164 6. 已知f(x)=ax 2+bx +c(a >0),f(x)=0有实数根,且f(x)=1在(0,1)内有两个实数根, 求证:a >4. 证法一:由已知条件可得 △=b 2-4ac≥0 ① f⑴=a +b +c >1 ②

6类基本初等函数的图形及性质(考研数学基础)_完美版

基本初等函数及图形 (1) 常值函数(也称常数函数) y =c (其中c 为常数) (2) 幂函数 μ x y =,μ是常数; (3) 指数函数 x a y = (a 是常数且01a a >≠,),),(+∞-∞∈x ; (4) 对数函数 x y a log =(a 是常数且01a a >≠,),(0,)x ∈+∞; 1. 当u 为正整数时,函数的定义域为区间) ,(+∞-∞∈x ,他们的图形都经过原点,并当 u>1时在原点处与X 轴相切。且u 为奇数时,图形关于原点对称;u 为偶数时图形关于Y 轴对称; 2. 当u 为负整数时。函数的定义域为除去x=0的所有实数。 3. 当u 为正有理数m/n 时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞+∞)。函数的图形均经过原点和(1 ,1). 如果m>n 图形于x 轴相切,如果m1时函数为单调增,当a<1时函数为单调减. 2. 不论x 为何值,y 总是正的,图形在x 轴上方. 3. 当x=0时,y=1,所以他的图形通过(0,1)点. 1. 他的图形为于y 轴的右方.并通过点(1,0) 2. 当a>1时在区间(0,1),y 的值为负.图形位于x 的下方, 在区间(1, +∞),y 值为正,图形位于x 轴上方.在定义域是单调增函数. a<1在实用中很少用到/

正弦函数 x y sin =,),(+∞-∞∈x ,]1,1[-∈y , 余弦函数 x y cos =,),(+∞-∞∈x ,]1,1[-∈y , 正切函数 x y tan =, 2π π+ ≠k x ,k Z ∈,),(+∞-∞∈y , 余切函数 x y cot =,πk x ≠,k Z ∈,),(+∞-∞∈y ;

《1.3 函数的基本性质》测试题

《1.3 函数的基本性质》测试题 一、选择题 1.下列函数中,是奇函数的为( ). A. B. C. D. 考查目的:考查函数奇偶性的定义. 答案:A. 解析:的定义域是,∴ ,∴,∴是奇函数. 2.已知函数在内单调递减,则的取值范围是( ). A. B. C. D. 考查目的:主要考查函数的单调性、二次函数、一次函数的图象和性质. 答案:C.

解析:函数在内单调递减,则须在上单调递减和在上单调递减,且,∴ ,∴. 3.已知奇函数在区间上的图像如图,则不等式的解集是( ). A. B. C. D. 考查目的:主要考查奇函数的图象特点,以及利用图象解题. 答案:B. 解析:奇函数的图象关于原点对称,画出函数的图象,由图得,选B. 二、填空题

4.设是定义在上的奇函数,当时,,则 . 考查目的:本题考查函数的奇偶性以及函数值的求法. 答案:-3. 解析:. 5.已知,则函数的单调增区间是. 考查目的:考查函数单调区间的概念及二次函数的单调性. 答案: 解析:抛物线的开口向下,对称轴为直线,故函数 在递增,在递减,所以函数的单调增区间是. 6.函数,当时,恒成立,则实数的取值范围是. 考查目的:考查利用函数的奇偶性和单调性解题. 答案:. 解析:∵函数在上是奇函数且为单调增函数,∴由 得,∴,∵,∴恒成立,∴.

三、解答题 7.函数对于任意的,都有,若时,,求证:是上的单调递减函数. 考查目的:主要考查利用函数的单调性定义证明函数的单调性. 解析:任取,则,由时,,得,根据,有,所以,即,所以是上的单调递减函数. 8.已知函数是定义在R上的偶函数,且当≤0时,. ⑴现已画出函数在轴左侧的图像,如图所示,请补出完整函数的图像,并根据图像写出函数的增区间; ⑵写出函数的解析式和值域. 考查目的:主要考查奇偶函数图象的画法,分段函数解析式,根据图象写函数的单调区间. 解析:⑴根据偶函数图像关于轴对称补出完整函数图像(如图).

高中必修第一册数学《3.2 函数的基本性质》获奖说课教案教学设计

【新教材】3.2.2 奇偶性(人教A 版) 《奇偶性》内容选自人教版A 版第一册第三章第三节第二课时;函数奇偶性是研究函数的一个重要策略,因此奇偶性成为函数的重要性质之一,它的研究也为今后指对函数、幂函数、三角函数的性质等后续内容的深入起着铺垫的作用. 课程目标 1、理解函数的奇偶性及其几何意义; 2、学会运用函数图象理解和研究函数的性质; 3、学会判断函数的奇偶性. 数学学科素养 1.数学抽象:用数学语言表示函数奇偶性; 2.逻辑推理:证明函数奇偶性; 3.数学运算:运用函数奇偶性求参数; 4.数据分析:利用图像求奇偶函数; 5.数学建模:在具体问题情境中,运用数形结合思想,利用奇偶性解决实际问题。 重点:函数奇偶性概念的形成和函数奇偶性的判断; 难点:函数奇偶性概念的探究与理解. 教学方法:以学生为主体,采用诱思探究式教学,精讲多练。 教学工具:多媒体。 一、 情景导入 前面我们用符号语言准确地描述了函数图象在定义域的某个区间上“上升”(或“下降”)的性质.下面继续研究函数的其他性质. 画出并观察函数21()()2||()()= f x x g x x f x x g x x ==-=和、和的图像,你能发现这两个函数图像

()()()()0f x f x f x f x -=?--=()()()()0 f x f x f x f x -=-?+-= 有什么共同特征码? 要求:让学生自由发言,教师不做判断。而是引导学生进一步观察.研探. 二、 预习课本,引入新课 阅读课本82-84页,思考并完成以下问题 1.偶函数、奇函数的概念是什么? 2.奇偶函数各自的特点是? 要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。 三、 新知探究 1.奇函数、偶函数 (1)偶函数(even function ) 一般地,对于函数f(x)的定义域内的任意一个x ,都有f(-x)=f(x),那么f(x)就叫做偶函数. (2)奇函数(odd function ) 一般地,对于函数f(x)的定义域内的任意一个x ,都有f(-x)=f(x),那么f(x)就叫做奇函数. 2、奇偶函数的特点 (1)具有奇偶性的函数的定义域具有对称性,即关于坐标原点对称,如果一个函数的定义域关于坐标原点 不对称,就不具有奇偶性.因此定义域关于原点对称是函数存在奇偶性的一个必要条件。 (2)具有奇偶性的函数的图象具有对称性.偶函数的图象关于轴对称,奇函数的图象关于坐标原点对称;反之,如果一个函数的图象关于轴对称,那么,这个函数是偶函数,如果一个函数的图象关于坐标原点对 称,那么,这个函数是奇函数. (3)由于奇函数和偶函数的对称性质,我们在研究函数时,只要知道一半定义域上的图象和性质,就可以 得到另一半定义域上的图象和性质. (4)偶函数: ,

五大基本初等函数性质及其图像

五、基本初等函数及其性质和图形 1.幂函数 函数称为幂函数。如,, ,都是幂函数。没有统一的定义域,定义域由值确定。如 ,。但在内 总是有定义的,且都经过(1,1)点。当 时,函数在上是单调增加的,当时,函数在内是单调减少的。下面给出几个常用的幂函数: 的图形,如图1-1-2、图1-1-3。 图1-1-2

图1-1-3 2.指数函数 函数称为指数函数,定义域 ,值域;当时函数为单调增加 的;当时为单调减少的,曲线过点。高等 数学中常用的指数函数是时,即。以与 为例绘出图形,如图1-1-4。 图1-1-4 3.对数函数

函数称为对数函数,其定义域 ,值域。当时单调增加,当 时单调减少,曲线过(1,0)点,都在右半平面 内。与互为反函数。当时的对数 函数称为自然对数,当时,称为常用对数。以为例绘出图形,如图1-1-5。 图1-1-5 4.三角函数有 ,它们都是周期函 数。对三角函数作简要的叙述: (1)正弦函数与余弦函数:与定义域都是,值域都是。它们都是有界函数,周期都是,为奇函数,为偶函数。图形为图1-1-6、图1-1-7。

图1-1-6正弦函数图形 图1-1-7余弦函数图形 (2)正切函数,定义域,值 域为。周期,在其定义域内单调增加的奇函数,图形为图1-1-8 图1-1-8 (3)余切函数,定义域,值域为 ,周期。在定义域内是单调减少的奇函数,图形如图1-1-9。

图1-1-9 (4)正割函数,定义域,值域为,为无界函数,周期的偶函数,图形如图1-1-10。 图1-1-10 (5)余割函数,定义域,值域为 ,为无界函数,周期在定义域为奇函 数,图形如图1-1-11。

函数的基本性质知识点归纳与题型总结

函数的基本性质知识点归纳与题型总结 一、知识归纳 1.函数的奇偶性 2.函数的周期性 (1)周期函数 对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数f(x)为周期函数,称T为这个函数的周期. (2)最小正周期 如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期. 解题提醒: ①判断函数的奇偶性,易忽视判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件. ②判断函数f(x)的奇偶性时,必须对定义域内的每一个x,均有f(-x)

=-f (x )或f (-x )=f (x ),而不能说存在x 0使f (-x 0)=-f (x 0)或f (-x 0)=f (x 0). ③分段函数奇偶性判定时,误用函数在定义域某一区间上不是奇偶函数去否定函数在整个定义域上的奇偶性. 题型一 函数奇偶性的判断 典型例题:判断下列函数的奇偶性: (1)f (x )=(x +1) 1-x 1+x ; (2)f (x )=? ???? -x 2+2x +1,x >0, x 2+2x -1,x <0; (3)f (x )=4-x 2 x 2; (4)f (x )=log a (x +x 2+1)(a >0且a ≠1). 解:(1)因为f (x )有意义,则满足1-x 1+x ≥0, 所以-1<x ≤1, 所以f (x )的定义域不关于原点对称, 所以f (x )为非奇非偶函数. (2)法一:(定义法) 当x >0时,f (x )=-x 2+2x +1, -x <0,f (-x )=(-x )2+2(-x )-1=x 2-2x -1=-f (x ); 当x <0时,f (x )=x 2+2x -1, -x >0,f (-x )=-(-x )2+2(-x )+1=-x 2-2x +1=-f (x ).

求函数解析式的六种常用方法

求函数解析式的九种常用方法 一、换元法 已知复合函数f [g (x )]的解析式,求原函数f (x )的解析式, 把g (x )看成一个整体t ,进行换元,从而求出f (x )的方法。 例1 已知f (x x 1 +)= x x x 112 2++,求f (x )的解析式. 解: 设 x x 1+= t ,则 x= 1 1-t (t ≠1), ∴f (t )= 1 11)11(1 )11(22-+-+-t t t = 1+2)1(-t +(t -1)= t 2-t+1 故 f (x )=x 2 -x+1 (x ≠1). 评注: 实施换元后,应注意新变量的取值范围,即为函数的定义域. 二、配凑法 例2 已知f (x +1)= x+2x ,求f (x )的解析式. 解: f (x +1)= 2 )(x +2x +1-1=2)1(+x -1, ∴ f (x +1)= 2 )1(+x -1 (x +1≥1),将x +1视为自变量x ,则有 f (x )= x 2 -1 (x ≥1). 评注: 使用配凑法时,一定要注意函数的定义域的变化,否则容易出错. 三、待定系数法 已知函数解析式的类型,可设其解析式的形式,根据已知条件建立关于待定系数的方程,从而求出函数解析式的方法。 例3 已知二次函数f (x )满足f (0)=0,f (x+1)= f (x )+2x+8,求f (x )的解析式. 解:设二次函数f (x )= ax 2 +bx+c ,则 f (0)= c= 0 ①

f (x+1)= a 2)1(+x +b (x+1)= ax 2 +(2a+b )x+a+b ② 由f (x+1)= f (x )+2x+8 与①、② 得 ???=++=+822b a b b a 解得 ?? ?==. 7,1b a 故f (x )= x 2 +7x. 评注: 已知函数类型,常用待定系数法求函数解析式. 四、消去法(方程组法) 例4 设函数f (x )满足f (x )+2 f ( x 1 )= x (x ≠0),求f (x )函数解析式. 分析:欲求f (x ),必须消去已知中的f (x 1),若用x 1 去代替已知中x ,便可得到另一个方程,联立方 程组求解即可. 解:∵ f (x )+2 f ( x 1 )= x (x ≠0) ① 由x 1代入得 2f (x )+f (x 1)=x 1 (x ≠0) ② 解 ①② 构成的方程组,得 f (x )=x 32 -3 x (x ≠0). 评注:方程组法求解析式的关键是根据已知方程中式子的特点,构造另一个方程 练习:已知定义在R 上的函数满足 ,求 的解析式。 五、特殊值法 例5 设是定义在R 上的函数,且满足f (0)=1,并且对任意的实数x ,y ,有 f (x -y )= f (x )- y (2x -y+1),求f (x )函数解析式. 分析:要f (0)=1,x ,y 是任意的实数及f (x -y )= f (x )- y (2x -y+1),得到 f (x )函数解析式,只有令x = y. 解: 令x = y ,由f (x -y )= f (x )- y (2x -y+1) 得 f (0)= f (x )- x (2x -x+1),整理得 f (x )= x 2+x+1.

函数的基本性质解析

1 第二讲 函数的性质(一) 一、函数的单调性 1.单调函数的定义 增函数 减函数 定义 设函数f (x )的定义域为I .如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2 当x 1f (x 2) ,那么就说函数f (x )在区间D 上是减函数 图象描述 自左向右看图象逐渐上升 自左向右看图象逐渐下降 2.单调区间的定义 若函数y =f (x )在区间D 上是 或,则称函数y =f (x )在这一区间上具有(严格的)单调性, 叫做y =f (x )的单调区间. 3、单调性的判定方法 (1)定义法: 利用定义证明函数f(x)在给定的区间D 上的单调性的一般步骤: ○ 1 任取x 1,x 2∈D ,且x 1

高中数学必修1函数的基本性质

高中数学必修1函数的基本性质 1.奇偶性 (1)定义:如果对于函数f (x )定义域内的任意x 都有f (-x )=-f (x ),则称f (x )为奇函数;如果对于函数f (x )定义域内的任意x 都有f (-x )=f (x ),则称f (x )为偶函数。 如果函数f (x )不具有上述性质,则f (x )不具有奇偶性.如果函数同时具有上述两条性质,则f (x )既是奇函数,又是偶函数。 注意: ○ 1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质; ○ 2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也一定是定义域内的一个自变量(即定义域关于原点对称)。 (2)利用定义判断函数奇偶性的格式步骤: ○ 1 首先确定函数的定义域,并判断其定义域是否关于原点对称; ○ 2 确定f (-x )与f (x )的关系; ○ 3 作出相应结论: 若f (-x ) = f (x ) 或 f (-x )-f (x ) = 0,则f (x )是偶函数; 若f (-x ) =-f (x ) 或 f (-x )+f (x ) = 0,则f (x )是奇函数。 (3)简单性质: ①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y 轴对称; ②设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上: 奇+奇=奇,奇?奇=偶,偶+偶=偶,偶?偶=偶,奇?偶=奇 2.单调性 (1)定义:一般地,设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1f (x 2)),那么就说f (x )在区间D 上是增函数(减函数); 注意: ○ 1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; ○ 2 必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1

基本初等函数图像及性质大全

一、一次函数与二次函数 (一)一次函数 (1)二次函数解析式的三种形式 ①一般式:2 ()(0)f x ax bx c a =++≠ ②顶点式:2 ()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠ (2)求二次函数解析式的方法 ①已知三个点坐标时,宜用一般式. ②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便. (3)二次函数图象的性质

①.二次函数2 ()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2x a =- 顶点坐标是2 4(,)24b ac b a a -- ②当0a >时,抛物线开口向上,函数在(,]2b a -∞- 上递减,在[,)2b a -+∞上递增,当2b x a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递 增,在[,)2b a -+∞上递减,当2b x a =- 时,2max 4()4ac b f x a -=. 二、幂函数 (1)幂函数的定义 一般地,函数y x α =叫做幂函数,其中x 为自变量,α是常数. (2)幂函数的图象

过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1). 三、指数函数 (1)根式的概念:如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根. (2)分数指数幂的概念 ①正数的正分数指数幂的意义是:0,,,m n a a m n N +=>∈且1)n >.0的正分数 指数幂等于0. ②正数的负分数指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. (3)运算性质

高中数学-函数的基本性质小结

函数的基本性质【教学目标】 【教学重点】

函数的基本性质及应用 【教学难点】 函数关系的建立、用函数的性质解决简单的实际问题与领悟数学思想方法。 【教学过程】: 一.知识整理 1.基本思想 (1)函数主要研究两个变量的相互联系,故涉及到两个变量的相互作用、相互影响的问题,大多可用函数的观点来解决。 (2)研究函数的主要途径是函数的图象和基本性质(以图象说明性质)。 2.主要问题: (1)函数图象的基本作法:a.分段 b.平移 c.对称 d.伸缩 (2)函数单调性的求法:a.图象 b.单调运算 c.复合函数 d.定义 (3)函数最值(或范围)的求法:a.图象 b.单调性 c.不等式 d.复合函数 e.换元 f.数形结合 (4)反函数求法:①解出x =φ(y),②调换x,y, ③写出反函数定义域 3.函数的基本性质 函数定义:在某个变化过程中有两个变量x,y,如果对于x在某个实数集合D内的每一个确定的值,按照某个对应法则f,y都有唯一确定的实数值与之对应,那么y就是x函数,记作y = f (x),x∈D,x叫做自变量,x的取值范围D叫做函数的定义域,和x 的值相对应的y的值叫做函数值,函数值的集合叫做函数的值域。 函数的相等:定义域相同,对应法则相同 函数图象:以自变量x的值为横坐标,与x的值对应的y的值为纵坐标所构成的点集,即{(x,y)|y = f (x), x∈D} a.定义域:自变量x的取值范围;亦为函数图象上点的横坐标的集合 b.值域:因变量y的取值范围;亦为函数图象上点的纵坐标的集合 c.奇偶性:如果对于函数f(x)的定义域D内的任意实数a,都有f(-a)= f(a),则称函数 f(x)为偶函数; 如果对于函数f(x)的定义域D内的任意实数a,都有f(-a)=-f(a),则称函数f(x) 为奇函数;

(完整word版)六大基本初等函数图像与性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数) y =C(其中C 为常数); α

1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称; 2)当α为负整数时。函数的定义域为除去x=0的所有实数; 3)当α为正有理数 n m 时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1); 4)如果m>n 图形于x 轴相切,如果ma ,1≠a ),定义域是R ; [无界函数] 1.指数函数的图象: 2. 1)当1>a 时函数为单调增,当10<

3.(选,补充)指数函数值的大小比较* N ∈a ; a.底数互为倒数的两个指数函数 x a x f =)(, x a x f ? ? ? ??=1)( 的函数图像关于y 轴对称。 b.1.当1>a 时,a 值越大,x a y = 的图像越靠近y 轴; b.2.当10<∈>=n Z n m a a a n m n m (2)) 1,,,0(1 1*>∈>= =- n Z n m a a a a n m n m n m y x f x x x x g ? ? ?=1)(

从解析式和图像看函数的性质高一数学总结练习含答案解析D

1.2.3 从图象看函数的性质 1.2.4 从解析式看函数的性质 1.单调函数的定义 函数值y随自变量x的①而增大的函数叫作②;函数值y随自变量x的增大而③的函数叫作④. 单调递增,单调递减通常称为递增或递减.递增函数和递减函数统称为单调函数. 2.奇偶函数的几何定义 若函数的图象绕原点旋转180°后和自己重合,则称这类函数是⑤.若函数的图象是以y轴为对称轴的轴对称图形,则称这类函数是⑥. 3.函数的最值 (1)上界与下界:设D为函数f(x)的定义域,如果有实数B使得f(x)⑦B对一切x∈D成立,则称B是函数的一个上界;如果有实数A使得f(x)⑧A对一切x∈D成立,则称A是f(x)的一个下界. (2)有上界又有下界的函数叫作有界函数,否则函数称为无界函数. (3)函数的最大(小)值的定义: 如果有a∈D,使得不等式f(x)≤f(a)对一切x∈D成立,就说f(x)在x=a处取得最大值M=f(a),称M 为f(x)的最大值,a为f(x)的最大值点.如果有a∈D,使得不等式f(x)≥f(a)对一切x∈D成立,就说f(x)在x=a处取得最小值M=f(a),称M为f(x)的最小值,a为f(x)的最小值点. 4.函数的单调性 (1)递增、递减函数 条件一般地,设函数f(x)的定义域为D:如果对于定义域D内某个区间I上的⑨两个自变量的值x 1 ,x 2 ,当x 1

论在区间I上是 函数 图 示 (2)单调区间 如果一个函数在某个区间上是递增函数或是递减函数,就说这个函数在这个区间上具有单调性,该区间称为这个函数的单调区间. (3)定义法证明函数的单调性 在函数单调性的定义中,记x=x 1,x+h=x 2 ,条件x 1 0,f(x 1 )0,f(x 1)>f(x 2 )可以写成f(x+h)-f(x)<0.差式f(x+h)-f(x)叫作函数在区间I上的 .如果不加说明,总认为h>0.这样,差分为正的函数就是递增函数,差分为负的函数就是递减函数. 一、函数单调性的判断与证明 1.(2011上海改编,★★☆)下列函数中,在区间(-∞,0)上单调递增,且在区间(0,+∞)上单调递减的函数为( ) A.y=1 x2B.y=1 x C.y=x2 D.y=x3 思路点拨对选项B,C中的函数,直接利用反比例函数和二次函数的单调性判断即可;对选项A,D中的函数,需利用单调性的定义判断. 2.(2014安徽师大附中期中,★★☆)已知函数f(x)=x-1 x+1 ,判断f(x)在(0,+∞)上的单调性并用定义证明. 思路点拨取值作差变形定号下结论

知识讲解_指数函数及其性质_基础

指数函数及其性质 编稿:丁会敏 审稿:王静伟 【学习目标】 1.掌握指数函数的概念,了解对底数的限制条件的合理性,明确指数函数的定义域; 2.掌握指数函数图象: (1)能在基本性质的指导下,用列表描点法画出指数函数的图象,能从数形两方面认识指数函数的性质; (2)掌握底数对指数函数图象的影响; (3)从图象上体会指数增长与直线上升的区别. 3.学会利用指数函数单调性来比较大小,包括较为复杂的含字母讨论的类型; 4.通过对指数函数的概念、图象、性质的学习,培养观察、分析归纳的能力,进一步体会数形结合的思想方法; 5.通过对指数函数的研究,要认识到数学的应用价值,更善于从现实生活中发现问题,解决问题. 【要点梳理】 要点一、指数函数的概念: 函数y=a x (a>0且a ≠1)叫做指数函数,其中x 是自变量,a 为常数,函数定义域为R. 要点诠释: (1)形式上的严格性:只有形如y=a x (a>0且a ≠1)的函数才是指数函数.像23x y =?,12x y =, 31x y =+等函数都不是指数函数. (2)为什么规定底数a 大于零且不等于1: ①如果0a =,则000x x ?>??≤??x x 时,a 恒等于, 时,a 无意义. ②如果0a <,则对于一些函数,比如(4)x y =-,当11 ,,24 x x = =???时,在实数范围内函数值不存在. ③如果1a =,则11x y ==是个常量,就没研究的必要了. 要点诠释:

(1)当底数大小不定时,必须分“1a >”和“01a <<”两种情形讨论。 (2)当01a <<时,,0x y →+∞→;当1a >时,0x y →-∞→。 当1a >时,a 的值越大,图象越靠近y 轴,递增速度越快。 当01a <<时,a 的值越小,图象越靠近y 轴,递减的速度越快。 (3)指数函数x y a =与1 x y a ?? = ??? 的图象关于y 轴对称。 要点三、指数函数底数变化与图像分布规律 (1) ① x y a = ②x y b = ③x y c = ④x y d = 则:0<b <a <1<d <c 又即:x ∈(0,+∞)时,x x x x b a d c <<< (底大幂大) x ∈(-∞,0)时,x x x x b a d c >>> (2)特殊函数 11 2,3, (), ()23 x x x x y y y y ====的图像: 要点四、指数式大小比较方法 (1)单调性法:化为同底数指数式,利用指数函数的单调性进行比较. (2)中间量法 (3)分类讨论法 (4)比较法 比较法有作差比较与作商比较两种,其原理分别为: ①若0A B A B ->?>;0A B A B -,或1A B <即可. 【典型例题】 类型一、指数函数的概念 例1.函数2 (33)x y a a a =-+是指数函数,求a 的值. 【答案】2 【解析】由2 (33)x y a a a =-+是指数函数, 可得2331,0,1, a a a a ?-+=?>≠?且解得12, 01,a a a a ==??>≠?或且,所以2a =. 【总结升华】判断一个函数是否为指数函数: (1)切入点:利用指数函数的定义来判断;

函数的基本性质(考点加经典例题分析)

函数的基本性质(考点加经典例题分析)

函数的基本性质 函数的三个基本性质:单调性,奇偶性,周期性 一、单调性 1、定义:对于函数)(x f y =,对于定义域内的自变量的任意两个值2 1 ,x x ,当 2 1x x <时,都有))()()(()(2 1 2 1 x f x f x f x f ><或,那么就 说函数)(x f y =在这个区间上是增(或减)函数。 2、图像特点:在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的。(提示:判断函数单调性一般都使用图像法,尤其是分段函数的单调性。) 3.二次函数的单调性:对函数c bx ax x f ++=2 )() 0(≠a , 当0>a 时函数)(x f 在对称轴a b x 2-=的左侧单调减小,右侧单调增加; 当0

6.函数的单调性的应用: 判断函数)(x f y =的单调性;比较大小;解不等式;求最值(值域)。 例4:求函数12-=x y 在区间]6,2[上的最大值和最小值. 二、奇偶性 1.定义: 如果对于f(x)定义域内的任意一个x,都有)()(x f x f =-,那么函数f(x)就叫偶函数; (等价于:0)()()()(=--?=-x f x f x f x f ) 如果对于f(x)定义域内的任意一个x,都有)()(x f x f -=-,那么函数f(x)就叫奇函数。 (等价于:0)()()()(=+-?-=-x f x f x f x f ) 注意:当0)(≠x f 时,也可用1)()(±=-x f x f 来判断。 2.奇、偶函数的必要条件:函数的定义域在数轴上所示的区间关于原点对 称。 若函数)(x f 为奇函数,且在x=0处有定义,则0)0(=f ; 3.判断一个函数的奇偶性的步骤

函数的基本性质(考点加经典例题分析)

函数的基本性质 函数的三个基本性质:单调性,奇偶性,周期性 一、单调性 1、定义:对于函数)(x f y =,对于定义域内的自变量的任意两个值21,x x ,当21x x <时,都有))()()(()(2121x f x f x f x f ><或,那么就说函数)(x f y =在这个区间上是增(或减)函数。 2、图像特点:在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的。(提示:判断函数单调性一般都使用图像法,尤其是分段函数的单调性。) 3.二次函数的单调性:对函数c bx ax x f ++=2 )()0(≠a , 当0>a 时函数)(x f 在对称轴a b x 2- =的左侧单调减小,右侧单调增加; 当0-x f x f x f x f 或; ⑸根据定义下结论。 例2、判断函数1 2)(-+= x x x f 在)0,(-∞上的单调性并加以证明.

5.复合函数的单调性:复合函数))((x g f y =在区间),(b a 具有单调性的规律见下表: 以上规律还可总结为:“同向得增,异向得减”或“同增异减”。 例3:函数322-+=x x y 的单调减区间是 ( ) A.]3,(--∞ B.),1[+∞- C.]1,(--∞ D.),1[+∞ 6.函数的单调性的应用: 判断函数)(x f y =的单调性;比较大小;解不等式;求最值(值域)。 例4:求函数1 2-= x y 在区间]6,2[上的最大值和最小值. 二、奇偶性 1.定义: 如果对于f(x)定义域内的任意一个x,都有)()(x f x f =-,那么函数f(x)就叫偶函数; (等价于:0)()()()(=--?=-x f x f x f x f ) 如果对于f(x)定义域内的任意一个x,都有)()(x f x f -=-,那么函数f(x)就叫奇函数。 (等价于:0)()()()(=+-?-=-x f x f x f x f ) 注意:当0)(≠x f 时,也可用1) ()(±=-x f x f 来判断。 2.奇、偶函数的必要条件:函数的定义域在数轴上所示的区间关于原点对称。 若函数)(x f 为奇函数,且在x=0处有定义,则0)0(=f ; 3.判断一个函数的奇偶性的步骤 ⑴先求定义域,看是否关于原点对称; ⑵再判断)()(x f x f -=-或)()(x f x f =- 是否恒成立。

高三一轮复习函数专题1---函数的基本性质

函数专题1、函数的基本性质 复习提问: 1、如何判断两个函数是否属于同一个函数。 2、如何求一个函数的定义域(特别是抽象函数的定义域问题) 3、如何求一个函数的解析式。(常见方法有哪些) 4、如何求函数的值域。(常见题型对应的常见方法) 5、函数单调性的判断,证明和应用(单调性的应用中参数问题) 6、函数的对称性(包括奇偶性)、周期性的应用 7、利用函数的图像求函数中参数的范围等其他关于图像问题 知识分类 一、函数的概念:函数的定义含有三个要素,即定义域A 、值域C 和对应法则f .当函数的定义域及从定义域到值域的对应法则确定之后,函数的值域也就随之确定.因此,定义域和对应法则为函数的两个基本条件,当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数. 1、试判断以下各组函数是否表示同一函数? (1)f (x )=2x ,g (x )=33x ; (2)f (x )= x x | |,g (x )=? ??<-≥;01,01x x (3)f (x )=1212++n n x ,g (x )=(12-n x )2n - 1(n ∈N *); (4)f (x )=x 1+x ,g (x )=x x +2; (5)f (x )=x 2-2x -1,g (t )=t 2-2t -1. 二、函数的定义域(请牢记:凡是说定义域范围是多少,都是指等式中变量x 的范围) 1、求下列函数的定义域: (1)y=-221x +1(2)y=422--x x (3)x x y +=1 (4)y=241+-+-x x (5)y= 3 1 42-+ -x x (8)y=3-ax (a为常数) 2、(1)已知f (x )的定义域为 [ 1,2 ] ,求f (2x -1)的定义域; (2)已知f (2x -1)的定义域为 [ 1,2 ],求f (x )的定义域; 3、若函数)(x f y =的定义域为[ 1,1],求函数 )41(+=x f y ) 41 (-?x f 的定义域 5、已知函数682-+-= k x kx y 的定义域为R ,求实数k 的取值范围。 三、函数的解析式 求函数解析式常用的几种方法:待定系数法、换元法(代换法)、解方程法、 1、换元(或代换)法: 1、已知,1 1)1(2 2x x x x x f ++=+求)(x f .

高中数学最全必修一函数性质详解及知识点总结及题型详解

(经典)高中数学最全必修一函数性质详解及知识点总结及题型详解 分析 一、函数的概念与表示 1、映射:(1)对映射定义的理解。(2)判断一个对应是映射的方法。一对多不是映射,多对一是映射 集合A ,B 是平面直角坐标系上的两个点集,给定从A →B 的映射f:(x,y)→(x 2+y 2,xy),求象(5,2)的原象. 3.已知集合A 到集合B ={0,1,2,3}的映射f:x →11 -x ,则集合A 中的元素最多有几个?写出元素最多时的集合A. 2、函数。构成函数概念的三要素 ①定义域②对应法则③值域 函 数 解 析 式 的 七 种 求 法 待定系数法:在已知函数解析式的构造时,可用待定系数法。 例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f 配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。 例2 已知221 )1(x x x x f +=+ )0(>x ,求 ()f x 的解析式 三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。与配凑法一样,要注意所换元的定义域的变化。 例3 已知x x x f 2)1(+=+,求)1(+x f 四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法。 例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式

五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过 解方程组求得函数解析式。例5 设,)1 (2)()(x x f x f x f =-满足求)(x f 例6 设)(x f 为偶函数,)(x g 为奇函数,又,1 1 )()(-= +x x g x f 试求)()(x g x f 和的解析式 六、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。 例7 已知:1)0(=f ,对于任意实数x 、y ,等式)12()()(+--=-y x y x f y x f 恒成立,求)(x f 七、递推法:若题中所给条件含有某种递进关系,则可以递推得出系列关系式,然后通过迭加、迭乘或者迭代等运算求得函数解析式。 例8 设)(x f 是+N 上的函数,满足1)1(=f ,对任意的自然数b a , 都有ab b a f b f a f -+=+)()()(,求 )(x f 1、求函数定义域的主要依据: (1)分式的分母不为零;(2)偶次方根的被开方数不小于零,零取零次方没有意义; (3 2(1) ()x 已知f 的定义域是[-2,5],求f(2x+3)的定义域。 (2) (21)x x 已知f -的定义域是[-1,3],求f()的定义域 1求函数值域的方法 ①直接法:从自变量x 的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数; ②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式; ③判别式法:运用方程思想,依据二次方程有根,求出y 的取值范围;适合分母为二次且x ∈R 的分式; ④分离常数:适合分子分母皆为一次式(x 有范围限制时要画图); ⑤单调性法:利用函数的单调性求值域; ⑥图象法:二次函数必画草图求其值域; ⑦利用对号函数

相关主题