搜档网
当前位置:搜档网 › 高分子水凝胶简介(20200728185117)

高分子水凝胶简介(20200728185117)

高分子水凝胶

高分子水凝胶 凝胶是指溶胀的三维网状结构高分子。即聚合物分子间相互连结,形成空间网状结构,而在网状结构的孔隙中又填充了液体介质。 药用的凝胶大部分是水凝胶(hydrogel),它们通过制剂的形式进入体内后吸收体液自发形成。水凝胶是指一种在水中能显著溶胀、保持大量水分的亲水性凝胶,为三维网络结构,多数水凝胶网络中可容纳高分子本身重量的数倍至数百倍的水,它不同于疏水性的高分子网络如聚乳酸和聚乙醇酸(只有有限的吸水能力,吸水量不到10%)。水凝胶中的水有两种存在状态。靠近网络的水与网络有很强的作用力,这种水在极低温度下又有冻结的和不冻结之分,而离网络比较远的水与普通水性质相似称为自由水。 影响水凝胶形成的主要因素有浓度、温度和电解质。每种高分子溶液都有一个形成凝胶的最小浓度,小于这个浓度则不能形成凝胶,大于这个浓度可加速凝胶。对温度来说,温度低,有利于凝胶,分子形状愈不对称,可胶凝的浓度越小,但也有些高分子材料加热后胶凝,低温变成溶液。电解质对胶凝的影响有促进作用也有阻止作用,其中阴离子起主要作用。 水凝胶从来源分类,可分为天然水凝胶和合成水凝胶;从性质来分类,可分为电中性水凝胶和离子型水凝胶,离子型水凝胶又可分为阴离子型、阳离子型和两性电解质型水凝胶。 根据水凝胶对外界刺激应答情况不同,水凝胶又可分为两类:①传统的水凝胶,这类水凝胶对环境的变化,如PH或温度变化不敏感;②环境敏感水凝胶,这类水凝胶对温度或PH 等环境因素的变化所给予的刺激有非常明确和显著的应答。 不同结构、不同化合物的水凝胶具有不同的物理化学性质如溶胀性、触变性、环境敏感性和黏附性等: (一)溶胀性:水凝胶在水中可显著溶胀。溶胀性是指凝胶吸收液体后自身体积明显增大的现象,这是弹性凝胶的重要特性,凝胶的溶胀可分为两个阶段:第一阶段是溶剂分子钻入凝胶中与大分子相互作用形成溶剂化层,此过程很快,伴有放热效应和体积收缩现象(指凝胶体积的增加比吸收的液体体积小);第二阶段是液体分子的继续渗透,这时凝胶体积大大增加。溶胀的大小可用溶胀度(swelling capacity)来衡量。 (二)环境敏感性:又称智能水凝胶,根据环境变化的类型不同,环境敏感水凝胶又分为如下几种类型:温敏水凝胶、PH敏水凝胶、盐敏水凝胶、光敏水凝胶、电场响应水凝胶、形状记忆水凝胶。非离子型水凝胶溶胀性只取决于聚合物的化学组成,而与外界环境无关。(三)黏附性:或称黏着或黏接等。一般指的是同种或两种不同的物体表面相黏接的现象。除非其中之一为具有黏附性的材料,或者两个表面能通过物理、化学作用而产生黏附性,否则就要用到胶黏剂。在现代新型的药物制剂中为了通过黏附作用达到长效、缓释和靶向给药的目的,往往使用聚合物水凝胶,以达到在生物体上黏附的目的。 由于水凝胶具有良好的生物相容性,对药物的释放具有缓释、控释作用及可吸水膨润等优点,引起了众多研究者的浓厚兴趣,在中药领域也逐渐得以研究应用.如把一些传统的中药散

高分子水凝胶综述

高分子水凝胶综述 摘要 在这篇综述中,笔者以高分子水凝胶为探究的领域,围绕其产生、发展、应用等诸方面,浅层次地加以论述。论文大体的探讨方式是这样:首先以高分子水凝胶的出现为基点,考察其定义的由来以及与吸水树脂之间的关系;然后以高分子水凝胶潜在应用价值的属性为导向线,对其进行分类,讨论相应的制备方法和水凝胶性能各类表征方法;接着突出强调环境敏感性水凝胶的制备及响应原理;而水凝胶实际应用及缺陷则作为最后系统概括。 关键词:高分子水凝胶应用性能制备 产生、定义与比较 高分子水凝胶的合成可以追溯到20世纪50年代后期,Wichterle和Lim合成了第一个医用甲基丙烯酸羟乙酯(HEMA)水凝胶[1]。对于高分子水凝胶的定义,各个文献报道的都很接近,即由带有化学或物理交联的亲水性高分子链形成的三维固体网络[2],在水环境下高分子水凝胶能够发生吸水溶胀,甚至有的吸水能超过其自重好多倍(图1) 图1凝胶吸水溶胀前与溶胀后的比较(左侧为吸水溶胀后,右侧为吸水溶胀前)

同时,笔者发现,高分子水凝胶与吸水树脂之间的关联需要被加以认知。吸水树脂本身就是一种新型功能高分子材料,具有亲水基团,能吸收大量水分而又能保持水分不外流。当水分子通过扩散作用及毛细作用进入到树脂中时,形成的树脂即称为高分子水凝胶。也就是说,吸水树脂是高分子水凝胶的前身,且当树脂经吸水后才成为水凝胶。 此外,对于高分子水凝胶的吸水并且保水的机理也需要加以阐述。从化学结构上来分析,凝胶是分子中含有亲水性基团和疏水性基团的交联型高分子。在凝胶的交联网格里,必然存在很多疏水性基团朝外,亲水性基团朝里的结构,在这样的结构下,亲水性基团与水分子以氢键等方式进行结合,疏水性基团在外头形成的屏障可以有效地间隔不同的内亲水网格,起到容纳水分子容器的作用(图 2)。 O OH R O O H R O O H R O O H R O OH R O OH R O OH R O H H 图2 凝胶保持水分子示意图 图2中,右下侧的疏水性基团是朝内的,这表明凝胶亲水性网格结构内部也是含有非亲水性基团的;而水分子与亲水链上的氧之间形成了氢键。 此外,还能说明一个问题:理论上能够和亲水性基团之间发生水合而吸附在高分子聚合物周围的水分子,其厚度最多不过2~3层,第一层水分子是由亲水性基团与水分子形成的配位键或氢键的水合水,第二层或第三层则是水分子和水合水形成的氢键结合层,作用力随层数的增加而不断减弱。而凝胶之所以能够吸收更多的水分,原因就在于其交联网格结构。这样的结构是包裹式的,以立体三维式取代了平面式,而且链上亲水性基团的复杂交错,给容纳水分提供了优良的环境。

吸水高分子水凝胶

高分子水凝胶 那些貌似或神似刘谦小子的民间版非著名魔术师,信誓旦旦以娱乐民众为己任,在他们素常的节目单中,大多会设置以下环节:观众排排坐定,这位表演者先奉献一通似是而非的插科打诨,比如说本人自幼年起就在学着把有的东西变作没有,或者把没有的东西变作有,苦苦钻研数年,而今终于有了小成,说着说着拍拍手,让助手或者主持人上杯子,摆好了,又要了一壶水,然后往杯子里倒将下去,一边念念有词,说你可要看好了,笃悠悠把杯子倒扣过来,哇噻,竟然没有水流出耶…… 特别声明一下:该魔术十分适合朋友聚会之类,其他较为严肃的场合比如春晚或赈灾晚不建议使用,否则于全国人民面前穿帮丢脸,后果自负。 一般来说,看到以上场景我总是默默地低下头来,以免嘴角不屑的讥笑打击了表演者的自信心,因为在一个学材料专业出身的非著名观察家看来,要做到把水变没有了实在是太容易的一件事,他只需要在杯底放一片SAP就行了。SAP乃Super Absorbent Polymer 的缩写,意为超强吸水性聚合物,或者也被叫做高吸水树脂、超强吸水性高分子。别急,不必被这些名字给镇住了,得到这个听起来很高级的魔术道具其实毫不麻烦,你只要去超市买一包纸尿裤就行了。 好,暖场部分结束,还是让我们言归正传,从头来看看本文真正主角SAP的身世吧。 在早期,人类日常生活中凡涉及吸湿、吸水、止血之用,只能依赖于棉花、纸帛等天然纤维,但显然它们干的活并不那么让人满意:除却吸水量不是很大(最多也就是20倍左右)之外,还有一个非常大的缺陷,就是吸完之后,若受到压挤,液体还是会回渗出来,有时会造成意想不到的污染。 度过了漫漫长夜,对超吸水材料的呼声日渐高涨,美国农业部的Northern Regional Laboratory实验室1961年成功申请了一个专利,称他们用一种“接枝”的特殊聚合手法,做出了一种丙烯酸单体合成的高分子聚合物,它的奇妙之处是能够吸收400倍于己身质量的水!更妙的是,吸进去的水不会因为外界压力的作用而回渗。这一发明立刻吸引了全世界工业家的目光,强生、陶氏、杜邦……等巨头纷纷往上面砸钱,于是合成、加工等各项技艺都开始精进,原被寄望于改良土壤保湿性的新型功能材料进入日常民用也指日可待。而日本的商业公司为了避开美国人的专利,自行开发出另外一些其他单体合成的超吸水性聚合物,鉴于丙烯酸、丙烯酸胺、乙烯醇类单体都已经得到了较充分的开发,他们就结合原有的这些体系,在淀粉、羟甲基纤维素和丙烯酸/马来酸酐体系中下了一些功夫。1978年,UniCharm 开创性地首度将这种材料用于女用卫生巾,而1982年左右,欧洲市场上出现了加有这种材料的婴儿纸尿裤,此后UniCharm和美国的P&G都很快开始了这方面的研发。

敏感性高分子及水凝胶

敏感性高分子及水凝胶 摘要:本文介绍了几类敏感性高分子及其水凝胶。主要包括pH 敏感水凝胶、温度敏感水凝胶、温度及pH 双重响应水凝胶、光响应水凝胶、磁场响应水凝胶等的性质及其研究进展。简要介绍了敏感性高分子及其水凝胶的性质、制备方法、应用及其发展前景。 1 引言 近年来,随着信息,生命,环境,航空航天等领域科学技术的飞速发展,人们对材料性能的要求越来越高。因此,一批性能特异的新功能材料相继问世,敏感性材料就是其中的一类。对环境具有可感知,可响应,并具有功能发现能力的高分子和水凝胶被称之为环境敏感性高分子(environment sensitive polymers)和环境敏感性水凝胶(environment sensitive hydro gels)[ 1]。与传统的高分子和水凝胶不同,这类高分子和水凝胶的某些物理或化学性质可因环境条件的变化而发生突变。因此,这类高分子也被称为“刺激响应性高分子(stimuli-responsive polymers)”、“灵巧性高分子(smart polymers)”或“智能性高分子(intelligent polymers)”,相应的水凝胶被称为“刺激响应性水凝胶(stimuli-responsive hydro gels)”、“灵巧性水凝胶(smart hydro gels)” 和“智能性水凝胶(intelligent hydro gels)”[2]。 与高分子不同,凝胶是一类可保持一定几何外形,同时具有固体和液体某些性质的胶体分散体系。它是软物质(soft materials)存在的一种重要形式,是介于固体和液体之间的一种物质形态。凝胶体系由胶凝剂(gelators)所形成的三维网络结构和固定于其中的大量溶剂组成。敏感性水凝胶[3] 是一种亲水性高分子交联网络,它能够感知外界环境的微小变化(例如温度、pH、离子强度、光、电场和磁场等) ,并通过自身体积的膨胀和收缩来响应外界的刺激. 敏感性水凝胶的上述特点使其在药物控制释放、物质分离提纯、活性酶包埋和生物材料培养等方面有广泛应用前景。 2 敏感性高分子及其水凝胶的种类和性质 1989 年,高木俊宜[4]最先提出了智能材料(intelligent materials)概念。随后,美国的Newnham 教授提出了与之类似的灵巧材料(smart materials)概 1 念。敏感性高分子和敏感性水凝胶是智能材料家族中的重要成员。 凝胶有不同的分类方法。根据溶剂的不同,凝胶分为有机凝胶(organgels)和水凝胶(hydrogels)。以适当的方式脱除溶剂后的凝胶为干凝胶(xerogels)。根据凝胶的大小不同,有(宏观)凝胶和微凝胶(microgels)之分。根据凝胶对环境条件变化响应的不同,凝胶分为传统凝胶和敏感性凝胶。根据凝胶力学性能的不同,凝胶分为弹性凝胶和刚性凝胶。同样,根据维系凝胶三维网络结构力的本性不同,凝胶分为物理凝胶和化学凝胶。 敏感性高分子水凝胶在受到刺激时,其性质会发生突变。根据刺激信号的不同,相应的水凝胶被称为化学物质敏感性水凝胶、pH 敏感性水凝胶、温敏性水凝胶、光敏性水凝胶等。敏感性水凝胶的研究涉及学科众多,具有显著的多学科交叉特点,是当今最具有挑战的高技术研究前沿领域之一。 2.1 敏感性高分子及其水凝胶的种类 2.1.1 温度敏感性高分子及其水凝胶 温敏性高分子是研究最多,也是最重要的一类敏感性高分子。这类水凝胶结构中具有一定比例的亲水性和疏水性基团,温度的变化可以影响这些基团的疏水作用和大分子链之间的氢键作用,从而改变水凝胶的网络结构,产生体积相变。温敏水凝胶有高温收缩和低温收缩两种类型[5]。 聚N-异丙基丙烯酰胺(PNIPA)是典型的高温收缩型水凝胶,对其响应机理的一般解释是,当温度升高时疏水相相互作用增强,使凝胶收缩。线型聚N-异丙基丙烯酸酰[PNIPAM]是一种典型的温敏性高分子,在水溶液中具有独特的热行为,其大分子链上同

PVA水凝胶的制备及研究综述

PVA水凝胶的制备与研究 关键词:PVA水凝胶制备研究表征应用 摘要:简要评述了聚乙烯醇水凝胶的制备方法,评述了PV A水凝胶的研究现状与前景展望,详细介绍了本课题传统PV A水凝胶及温敏性凝胶的制备测试方法,总结了凝胶的应用,并展望了未来PV A水凝胶的发展趋势。 高分子凝胶是基础研究以及技术领域的一种重要材料。凝胶是指溶胀了的高分子聚合物相互联结,形成三维空间网状结构,又在网状结构的空隙中填充了液体介质的分散体系。近几年,高分子水性凝胶(又被称为水凝胶)的研究获得了极大的重视。水凝胶是一种网络结构中含有大量水而不溶于水的高分子聚合物,具有良好的柔软性、弹性、储液能力和生物相容性,在生物医学和生物工程中具有广泛的用途。 常见的水凝胶有聚酰胺水凝胶、聚乙烯醇水凝胶、聚N-异丙基丙烯酰胺温敏性水凝胶等。本课题主要针对于PV A水凝胶。 1 PV A水凝胶的制备 PV A水凝胶的制备按照交联的方法可分为化学交联和物理交联。化学交联又分辐射交联和化学试剂交联两大类。辐射交联主要利用电子束、γ射线、紫外线等直接辐射PV A溶液,使得PV A分子问通过产生自由基而交联在一起。化学试剂交联则是采用化学交联剂使得PV A分子间发生化学交联而形成凝胶,常用的交联剂有醛类、硼酸、环氧氯丙烷以及可以与PV A通过配位络台形成凝胶的重金属盐等等。物理交联主要是反复冷冻解冻法。 1.1 物理交联法 通过物理交联法制备聚乙烯醇水凝胶,报道中最多的是使用“冷冻-熔融法”和“冻结-部分脱水法”两种方法。 反复冻融法是将一定浓度的PV A水溶液在-10~-40℃冷冻1d左右,再在25℃条

件下解冻1~3h,即形成物理交联的PV A水凝胶。将其反复冷冻、解冻几次后,就可以使其一些物理性能和机械性能等有很大的改善。冷冻使水溶液中的PV A的分子链在某一时刻的运动状态“冻结”下来,接触着的分子链可以发生相互作用及链缠结,通过范德华力和氢键等的物理作用紧密结合,在某一微区不在分开,成为“缠结点”。重新冻结时又有新的有序微区形成,这些微区称为“物理交联点”。用冷冻-解冻的办法可以促进分子运动,重新排列,通过分子链的折叠获得具有半结晶或者结晶结构的水凝胶。其示意图如下所示: 冻结-部分脱水法是将PV A水溶液冷冻后置于真空下脱去10%~20%的水,所得到的水凝胶的结构与性能类似于反复冻结法。 物理交联法形成的PVA水凝胶其共同点是分子链间通过氢键和微晶区形成 三维网络,即物理交联点,这些交联点随温度等外界条件的变化而变化。例如将

高强韧与响应型高分子水凝胶研究进展

第34卷第7-8期 2015年8月 中国材料进展 MATERIALS CHINA Vol.34No.7-8 Aug. 2015 收稿日期:2014-11-07 基金项目:中国科学院百人计划;浙江省杰出青年基金项目 (LR13B040001) 第一作者:高国荣,男,1983年生,博士研究生 通讯作者:付俊,男,1977年生,研究员,博士生导师, Email :fujun@https://www.sodocs.net/doc/aa7064490.html, DOI :10.7502/j.issn.1674-3962.2015.07.12 高强韧与响应型高分子水凝胶研究进展 高国荣,杜高来,孙元娜,付 俊 (中国科学院宁波材料技术与工程研究所,浙江宁波315201) 摘要:高分子水凝胶与生物组织的结构和性能比较相似,生物相容性和生物安全性好,被广泛应用于组织工程、药物输 送、创伤敷料等领域,具有非常广阔的应用前景。发展具有高强韧性能和响应功能的高分子水凝胶,是近年来研究的热点和难点。综述了近10年来具有代表性的纳米复合水凝胶、双网络水凝胶、响应型水凝胶等新型高分子水凝胶方面的重要研究进展,总结了其设计与合成的基本原理和方法,介绍了几种典型的高强韧高分子水凝胶的增强增韧机理和能量耗散机制,阐述了基于阳离子、阴离子及两性离子单体的智能响应型高分子水凝胶的应激响应原理和特性。在此基础上,分析讨论了高强韧与响应型高分子水凝胶作为潜在生物材料仍需解决的关键科学问题,并对本领域的发展趋势进行了展望。 关键词:水凝胶;强度;韧性;响应性中图分类号:O631 文献标识码:A 文章编号:1674-3962(2015)07-0571-011 Progress in Tough and Responsive Hydrogels GAO Guorong ,DU Gaolai ,SUN Yuanna ,FU Jun (Ningbo Institute of Materials Technology and Engineering ,Chinese Academy of Sciences ,Ningbo 315201,China ) Abstract :Due to their similarities to bio-tissues ,and excellent biocompatibility and biosafety ,polymer hydrogels have been widely studied for potential applications in tissue engineering ,drug delivery ,and wound dressing ,etc.The develop-ment of tough and responsive hydrogels has recently been a very hot topic with great challenges.In this review ,progresses in the development of novel hydrogels including nanocomposite hydrogels ,double network hydrogels and responsive hydro-gels in last decade are reviewed.Several important design philosophy and synthesis method are accounted.The toughening mechanisms and energy dissipation mechanisms of a few representative strong and tough polymer hydrogels are introduced.Moreover ,some smart and stimuli-responsive hydrogels based on cationic ,anionic ,and zwitteronic monomers are reviewed and discussed in detail.Based on these progresses ,the major challenges of strong ,tough ,and responsive hydrogels as biomaterials are analyzed.Finally ,the perspectives of tough and responsive hydrogels are discussed. Key words :hydrogels ;strength ;toughness ;responsiveness 1前言 高分子水凝胶是含有大量水的三维聚合物网络。大多数高分子水凝胶具有非常高的含水率和优异的生物相容性,得到了广泛地研究和应用(如隐形眼镜和超吸水树脂等)。传统的高分子水凝胶通常是化学交联形成的。化学交联剂分散不均一,导致凝胶网络不均匀,凝胶非 常脆弱易碎,大大地限制了其应用[1-2] 。为了克服传统 凝胶机械性能的缺陷,人们设计并合成了多种多样的具 有新型网络结构的凝胶 [3] 。代表性的思路有4种:①以 “活动的交联点”代替共价交联点,减少因共价键不均匀分布而导致的应力集中和网络结构破坏,代表性的研究进展包括“滑链环”(Slide-Ring )水凝胶[4],以“8”字形聚轮烷作为交联点,聚合物链从交联剂上下两个空腔穿过。在外力作用下,分子链通过位置调整使得应力均 匀分布在凝胶网络上。②在水凝胶中引入“牺牲键”[5] , 通过 “牺牲键”的断裂或破坏吸收能量,从而提高凝胶的强度和韧性,双网络水凝胶(Double Network Hydro-gels )是典型代表[5]。这类凝胶主要是由性质相差较大的、互穿或半互穿的两个网络构成。在应力下,第一网

【CN110016148A】高分子导电水凝胶材料及其制备方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910239903.8(22)申请日 2019.03.27 (71)申请人 澳门大学 地址 中国澳门凼仔大学大马路澳门大学(72)发明人 孙国星 胡小赛 李宗津 (74)专利代理机构 成都超凡明远知识产权代理 有限公司 51258 代理人 魏彦 洪玉姬(51)Int.Cl. C08J 3/075(2006.01)C08F 120/06(2006.01)C08K 3/34(2006.01)C08G 73/02(2006.01)C08F 120/56(2006.01)C08G 61/12(2006.01) C08G 73/06(2006.01)C08F 138/02(2006.01)C08K 3/22(2006.01)C08K 3/04(2006.01)C08K 3/24(2006.01)C08K 7/00(2006.01)C08L 1/04(2006.01)C08L 33/02(2006.01)C08L 33/26(2006.01)C08L 79/02(2006.01)C08L 79/04(2006.01)C08L 65/00(2006.01)C08L 49/00(2006.01) (54)发明名称 高分子导电水凝胶材料及其制备方法(57)摘要 本发明涉及高分子水凝胶领域,具体而言,涉及一种高分子导电水凝胶材料及其制备方法。其包括导电高分子、高分子聚合物和交联剂,所述高分子聚合物通过交联剂与聚合物单体原位聚合形成网状水凝胶骨架,而后所述导电高分子通过高分子导电单体原位聚合沉积于所述网状水凝胶骨架上;所述交联剂为硅酸钙盐与水反应后形成的纳米材料该水凝胶材料具有优异的机械性能和高的导电性能,在柔性可拉伸传感器等 领域有广阔的发展前景。 权利要求书1页 说明书7页 附图7页 CN 110016148 A 2019.07.16 C N 110016148 A

探究水凝胶材料的制备方法

龙源期刊网 https://www.sodocs.net/doc/aa7064490.html, 探究水凝胶材料的制备方法 作者:张晓春刘嘉豪梁飞 来源:《中国化工贸易·上旬刊》2018年第04期 摘要:水凝胶是一类兼具应用价值和经济效益的新型功能高分子材料,由于其具有良好 的生物相容性和亲水性,在生物医学领域有着广泛的应用。重点研究物理水凝胶和化学水凝胶的制备方法,为环境敏感水凝胶提供研究基础。环境敏感型水凝胶因为这种特殊的性质,被广泛应用在药物控制释放材料、传感器、形状记忆材料等,使得智能水凝胶在生物医药、仿生工程等领域拥有广泛的前景。 关键词:水凝胶;制备方法;环境敏感 水凝胶是指具有三维网络结构的水溶性高分子中引入一部分疏水基团和亲水残基,亲水残基与水分子结合,将水分子连接在网状内部,而疏水残基遇水膨胀的交联聚合物,水凝胶可以吸收自身重量的上千倍的水,且仅溶胀不溶解。由于水凝胶具有良好的生物相容性和亲水性,形态柔软类似生物体组织,目前在生物医学领域,如药物控释、细胞的固定化载体、生物分子、组织工程和传输体系等,有着广泛的应用。根据水凝胶的网络的交联方式,可分为物理凝胶和化学凝胶。 1 水凝胶材料的制备 1.1 物理凝胶的制备 物理凝胶通过物理作用如氢键、静电作用、链的缠绕等分别或者共同形成的。制备物理凝胶通常采用下列几种方法: ①缔合交联。两亲性高分子聚合物是指具有不同极性链段的高分子,具有表面活性,可以通过疏水相互作用等在水中自组装形成水凝胶及胶束等有序结构,接枝共聚物有丙烯酸接枝聚N-异丙基丙烯酰胺(PNIPAM)、改性淀粉接枝聚乙烯醇(PVA)等,多嵌段共聚物有左旋聚乳酸(PLLA)和PEO的三嵌段共聚物(PLLA-PEO-PLLA)、聚环氧丙烷(PPO)和PEO的共聚物(PEO-PPO-PEO)、聚乙二醇(PEG)和聚乳酸/轻基乙酸(PLGA)的共聚物(PEG-PLGA-PEG)、聚氨醋(PU)和PAA的共聚物等。 ②离子交联。向带有中正电荷的高分子或者负电荷的高分子中加入交联剂就可以得到由离子交联而形成的水凝胶,离子桥的形成使高分子链连结成一个三维网络,如海藻酸可在Ca+存在下交联形成开放的三维网状结构。 ③氢键和疏水相互作用。纤维素、壳聚糖等可以通过氢键交联作用而形成凝胶。例如,室温下的纤维素可以溶解于尿素和NaOH的混合溶液中,纤维素分子与混合溶液分子之间形成的

相关主题