搜档网
当前位置:搜档网 › 嵌入式电机控制系统(硬件)

嵌入式电机控制系统(硬件)

嵌入式电机控制系统设计(硬件)

摘要

随着我国工业的日益发展,电机在许多工矿、机械企业得到广泛的应用,本嵌入式电机控制系统是运用单片机控制的变频调速系统,控制对象主要是三相交流电动机,控制思想是用转差频率进行控制,通过改变程序来达到控制转速的目的。

系统以AT89C52为控制核心,主要采用变频调速技术,结合所学的单片机技术,实现系统的功能要求。系统的总体结构主要由主回路,sa4828大规模集成spwm变频器电路,键盘显示电路,光电隔离电路,检测保护电路,驱动电路,串口通信电路。

主要电路芯片由51系列单片机at89c52, Intel8279通用键盘/显示器,SPWM 波产生电路SA4828芯片,以及驱动芯片IR2304等。

由于设计中电动机功率不大,所以整流器采用不可控电路,电容器滤波;逆变器采用电力晶体管三相逆变器,结构清晰,成本大大降低。

关键词AT89C51单片机;SA4828变频器;IR2304;整流器;三相异步电动机

平顶山工学院2008届本科毕业设计论文

Abstract

With the increasing development of China's industry, the electrical in many mining, machinery enterprises have wide application, the embedded motor control system is to use the SCM Control Frequency Control System, control is primarily aimed at three-phase AC motor, control thinking Use slip frequency control, by changing the speed control procedures to achieve the objective.

AT89C52 for the control system to the core, mainly VVVF technology, integration of the microcontroller technology, to achieve the function of the system requirements. The overall structure of the main system by the main circuit, sa4828 large-scale integrated circuit spwm converter, the keyboard show circuit, photoelectric circuit isolation, detection protection circuit, driving circuit, serial communication circuits. The main circuit chip from 51 MCU at89c52, Intel8279 universal keyboard / display, SPWM wave generated SA4828 circuit chips, and driver chips, and so on.

As the design of electrical power do not, so do not use controlled rectifier circuits, capacitors filter; inverter with three-phase power inverter transistor, a clear structure, the cost much lower.

Key words:AT89C51 SCM; SA4828 converter; IR2304; rectifier;

three-phase asynchronous motor

目录

摘要..............................................................................................................................................................................I ABSTRACT ............................................................................................................................................................ I I 第1章绪论 (1)

1.1课题来源 (1)

1.2嵌入式电机控制系统的概述 (1)

1.3本文完成的主要工作 (4)

第2章嵌入式电机控制系统设计方案设计 (5)

2.1嵌入式电机调速系统 (5)

2.1.1嵌入式电机控制方式的选择 (5)

2.1.2 调节器的选择 (7)

2.1.3嵌入式电机控制系统启动方法的选择 (8)

2.1.4嵌入式电机控制系统制动方法的选择 (9)

2.2键盘显示部分 (9)

2.3电压电流检测与保护部分 (9)

2.4通信部分 (10)

2.5转速测量部分 (10)

2.6嵌入式电机控制系统的总体方案确定 (10)

第3章嵌入式电机控制系统硬件电路设计 (11)

3.1系统硬件电路总框图及原理图 (11)

3.2系统主要原器件简介 (12)

3.2.1单片机AT89C52简介 (12)

3.2.2变频器Sa4828简介 (12)

3.2.3键盘显示芯片INTEL8279简介 (14)

3.2.4 IR2304半桥驱动集成电路 (16)

3.2.5串口通信Max232芯片简介 (18)

3.3系统主回路的设计及参数计算 (19)

3.4嵌入式控制系统单元模块的设计 (23)

3.4.1 SPWM控制信号的产生及变频器的设置 (23)

3.4.2 键盘显示模块设计 (24)

3.4.3单片机串口模块设计 (25)

3.4.4 速度检测电路设计 (26)

3.4.5光电隔离及驱动电路设计 (27)

3.4.6故障检测及保护电路设计 (28)

第四章系统软件的设计 (29)

4.1程序框图及其介绍 (29)

4.1.1主程序 (29)

4.1.2故障检测处理程序 (29)

4.1.3键盘处理程序如下图: (30)

嵌入式电机控制系统设计(硬件)

4.1.4 转速调节 (31)

4.1.5下位机接收数据流程图 (31)

4.1.6下位机发送数据程序流程图 (32)

PI调节器程序框图如下图22所示 (32)

4.2部分子程序 (34)

4.2.1 SA4828初始化子程序 (34)

4.2.2 调速子程序 (34)

结束语 (36)

参考文献 (37)

嵌入式电机控制系统设计(硬件)

第1章绪论

1.1课题来源

随着我国工业的日益发展,电机在许多工矿、机械等企业得到广泛的应用,其可分为:直流电动机、伺服电动机,步进电动机,交流电动机等。首先是直流电动机,它的优点主要在于调速范围广,静差小,稳定性能好以及具有良好的动态性能。尽管如此,直流调速系统却解决不了直流电动机本身的换向问题和在恶劣环境下的不适应问题,同时制造大容量,高转速以及高电压直流电动机也十分困难,这就限制了直流传动系统的进一步发展。伺服电动机和步进电动机出现的较晚,一般运用于特别精确的自动控制系统中。交流电动机在1885年出现,交流电动机因其结构简单,运行可靠,价格低廉,维修方便,故而应用面很广,几乎所有的调速传动都采用交流电动机,特别是三相交流电动机,使用范围更加广泛。但随着经济的发展,现代的工况企业都要求电机的容量大,调速范围宽,启动快速频繁,效率高。而且要求自动化控制水平高,可视化好的要求,传统的电机控制已经满足不了现代工业的发展要求,虽有专业的可编程器件,但它的成本太高,而且专业性比较强,不容易扩展,有逐渐被嵌入式系统代替的趋势,故本设计采用单片机及外围器件构成嵌入式电机控制系统,具有调速范围,可视化强,基本上达到了现代工业生产上的需要,大大提高了生产效率,成本大大降低。1.2嵌入式电机控制系统的概述

嵌入式系统是以应用为中心,以计算机技术为基础,并且软硬件可裁剪,适用于应用系统对功能、可靠性、成本、体积、功耗有严格要求的专用计算机系统。它一般由嵌入式微处理器、外围硬件设备、嵌入式操作系统以及用户的应用程序等四个部分组成,用于实现对其他设备的控制、监视或管理等功能。

嵌入式系统一般指非PC系统,它包括硬件和软件两部分。硬件包括处理器微处理器、存储器及外设器件和I/O端口、图形控制器等。软件部分包括操作系统软件(要求实时和多任务操作)和应用程序编程。有时设计人员把这两种软件组合在一起。应用程序控制着系统的运作和行为;而操作系统控制着应用程序编程与硬件的交互作用。

嵌入式系统的特点与定义不同,它是由定义中的三个基本要素衍生出来的。

平顶山工学院2008届本科毕业设计论文

不同的嵌入式系统其特点会有所差异。

与“嵌入性”的相关特点:由于是嵌入到对象系统中,必须满足对象系统的环境要求,如物理环境(小型)、电气/气氛环境(可靠)、成本(价廉)等要求。

与“专用性”的相关特点:软、硬件的裁剪性;满足对象要求的最小软、硬件配置等。

与“计算机系统”的相关特点:嵌入式系统必须是能满足对象系统控制要求的计算机系统。与上两个特点相呼应,这样的计算机必须配置有与对象系统相适应的接口电路。

另外,嵌入式设备与嵌入式系统不同,不要与之相混淆。嵌入式设备是指内部有嵌入式系统的产品、设备,例如,内含单片机的家用电器、仪器仪表、工控单元、机器人、手机、PDA等。

嵌入式系统虽然起源于微型计算机时代,然而,微型计算机的体积、价位、可靠性都无法满足广大对象系统的嵌入式应用要求,因此,嵌入式系统必须走独立发展道路。这条道路就是芯片化道路。将计算机做在一个芯片上,从而开创了嵌入式系统独立发展的单片机时代。

在探索单片机的发展道路时,有过两种模式,即“Σ模式”与“创新模式”。“Σ模式”本质上是通用计算机直接芯片化的模式,它将通用计算机系统中的基本单元进行裁剪后,集成在一个芯片上,构成单片微型计算机;“创新模式”则完全按嵌入式应用要求设计全新的,满足嵌入式应用要求的体系结构、微处理器、指令系统、总线方式、管理模式等。Intel公司的MCS-48、MCS-51就是按照创新模式发展起来的单片形态的嵌入式系统(单片微型计算机)。MCS-51是在MCS-48探索基础上,进行全面完善的嵌入式系统。历史证明,“创新模式”是嵌入式系统独立发展的正确道路,MCS-51的体系结构也因此成为单片嵌入式系统的典型结构体系。

单片机诞生于20世纪70年代末,经历了SCM、MCU、SoC三大阶段。SCM即单片微型计算机(Single Chip Microcomputer)阶段,主要是寻求最佳的单片形态嵌入式系统的最佳体系结构。“创新模式”获得成功,奠定了SCM与通用计算机完全不同的发展道路。在开创嵌入式系统独立发展道路上,Intel公司功不可没。

嵌入式电机控制系统设计(硬件)

MCU即微控制器(Micro Controller Unit)阶段,主要的技术发展方向是:不断扩展满足嵌入式应用时,对象系统要求的各种外围电路与接口电路,突显其对象的智能化控制能力。它所涉及的领域都与对象系统相关,因此,发展MCU的重任不可避免地落在电气、电子技术厂家。从这一角度来看,Intel逐渐淡出MCU 的发展也有其客观因素。在发展MCU方面,最著名的厂家当数Philips公司。

Philips公司以其在嵌入式应用方面的巨大优势,将MCS-51从单片微型计算机迅速发展到微控制器。因此,当我们回顾嵌入式系统发展道路时,不要忘记Intel和Philips的历史功绩。

单片机是嵌入式系统的独立发展之路,向MCU阶段发展的重要因素,就是寻求应用系统在芯片上的最大化解决;因此,专用单片机的发展自然形成了SoC化趋势。随着微电子技术、IC设计、EDA工具的发展,基于SoC的单片机应用系统设计会有较大的发展。因此,对单片机的理解可以从单片微型计算机、单片微控制器延伸到单片应用系统。

嵌入式系统(单片机)取代模拟电路作为电动机的控制器,具有如下特点:(1)使电路更简单模拟电路为了实现控制逻辑需要许多电子元件,使电路更复杂,采用微处理器后,绝大多数控制逻辑可通过软件来实现。

(2)可以实现较为复杂的控制微处理器具有更强的逻辑功能,运算速度快,精度高,有大容量的存储单元。因此,有能力实现复杂的控制。

(3)灵活性和适应性微处理器的控制方式是有软件来实现的,如果需要修改控制规律,一般不必改变系统的硬件电路,只须修改程序即可,在系统调试和升级时,可以不断尝试选择最优参数,非常方便。

( 4 ) 无零点漂移,控制精度高数字控制不会出现模拟电路中经常遇见的零点漂移问题,无论被控量是大还是小,都可以保证足够的控制精度。

(5)可以提供人机界面,多机连网工作。用工业控制计算机可谓功能强大,它有极高的速度,很强的运算能力和接口功能,方便的软件功能,但是由于成本高,体积过大,所以只用于大型的控制系统,可编程控制器则恰好相反,它只能完成逻辑判断,定时,记数和简单的运算,由于功能太弱,所以它只能用于简单的电动机控制。在民用生产中,通常用介于工控机和可编程控制器之间的单片机作为微处理器。本次设计就是用单片机作为电动机的控制器。

平顶山工学院2008届本科毕业设计论文

1.3本文完成的主要工作

本文的嵌入式电机控制系统设计主要采用单片机控制变频器来实现其变频调速,通过单片机外围芯片来实现对主电路进行键盘显示,检测、保护,通信等功能,其完成的主要工作有:

(1)电机控制方案的选择

(2)硬件电路的设计

(3)主电路参数的计算

(4)元器件的选择

(5)键盘显示的设计

(6)电压电流的检测和保护电路的设计

(7)部分软件程序的设计

第2章 嵌入式电机控制系统设计方案设计

2.1嵌入式电机调速系统

2.1.1嵌入式电机控制方式的选择

嵌入式电机控制的转速控制由异步电动机的转速表达式 :

0f s n=

n p

=60(1-)

由上式可知电机控制的转速控制有三种方法:改变转差率调速,改变频率调速,改变极对数调速。

本次设采用的是改变频率调速方法,即变频调速,当极对P 不变时,均匀的改变定子供电的频率f ,则可以连续的改变异步电动机的同步转速n0。达到平滑调节电动机实际运行转速n 的目的。这种调速方法称为变频调速。变频调速具有很好的调速性能,应用相当广泛,是交流调速的主流。其又可分为以下2种: 转速开环恒压频比控制和转差频率闭环控制。

在本次设计中所用到的控制方式是用转差频率闭环控制,转速开环恒压频比调速系统虽然结构简单,异步电动机在不同的频率下都能够获得较硬的机械特性曲线,但是不能保证必要的调速精度;而且在动态过程中由于不能保持所需要的转距,动态性能也很差,它只能用于对调速系统的动静态性能要求都不高的场合。如果异步电动机能像直流电动机一样,用控制电枢电流的方法来控制转距,那么就能够得到和支流电动机一样的动静态性能。 转差频率控制的基本概念,

由式

2

'

'

2'

22

12'

2

2

'

2

1

111211233/[(/)()]

p p m e l l N I R N U R S

P T W S

W R R S W L L =

=

=

Ω+++

可以得出异步电动机的机械特性方程式:

'

2

112

'2

2

2

'

2

1

121123(

)

()()

e p l l U SW R T N W SR R S W L L =+++

令式中 1s W SW =,它是转差频率。 又由式 11114.44g N m U E F N K ==Φ

即:

11111

1

4.442g n m

E F N K U W W π

Φ=

=

所以: '

22

'22'2

1212()()

e m m

s l l W R T K SR R W L L =Φ+++

式中 2

2

2

11

114.4433(

)22

n m p p n N K K N N N K π

==

由于异步电动机机械特性曲线上有一最大值,当转差频率小于临界转差频率(对应于电磁转距最大的转差率)时,电动机运行在稳定工作区,电动机的电流比较小;当转差率大于临界转差率时,电动机进入不稳定工作区,电动机的电流增大,转距减小。所以在调速过程中要使电动机的转差频率小于临界转差率。也就是说,异步电动机稳定工作时的转差率很小,从而 1s W SW =也很小,可以认

为 '12SR R ∝, ''122()l l L L R +∝,所以e T 可近似写成2'

2/e m m

s T K W R =Φ。此式表明,在转差频率s W 很小的范围内,只要能够保持气隙磁通 m Φ不变,异步电动机的转距就近似与转差频率成正比,这就是说,在异步电动机中控制s W ,就能和直流电动机中控制电流一样,能够达到控制转距的目的。控制转差频率就代表了控制转距,这就是转差频率控制的基本原理。

转差频率控制的变频调速系统实现上述转差频率控制的转速闭环变频调速结构原理图如图1所示

:

图1系统控制结构图

可以看出该系统具有以下特点:

(1)采用电流源变频器,使控制对象具有较好的动态响应,而且便于回馈制动,这是提高系统动态性能的基础。

(2)和直流电动机双闭环调速系统一样,外环是转速环,内环是电流环,

转速调节器的输出是转差频率给定值*

s

W U ,代表转距给定。

(3)转差频率s W 的控制作用分两路,分别作用在可控整流器和逆变器上。

前者通过1()s I f W =函数发生器,按*s

W U 的大小产生相应的*1i U 信号,再通过电流

调节器控制定子电流,以保持m Φ恒定,另一路按1s W W W +=产生对于于定子频率1W 的控制电压1w U ,决定逆变器的输出频率。

(4)转速给定信号*

s

W U ,w U ,1w U 都反向,相序鉴别器判断1w U 的极性以决

定环形分配器的输出相序,而1w U 信号本身则经过绝对值变换器决定输出频率的大小,这样就很方便的实现了异步电动机的可逆运行。

综上所述,本设计采用转差频率控制的控制方法,可以实现较好的效果,是一种解决异步电动机电磁转距控制问题的方法,可以获得与直流电动机恒磁通调速相似的性能。 2.1.2 调节器的选择

本系统采用增量式转差频率调节方式,转差调节器设计为带有死区的调节器,即:

因1s n f f f =+,所以()S U k 与()n U k 之和反映了频率f ,即为频率指令信号。控制结构框图和控制曲线如图2所示。- nA U ?~ΔUnA 为死区,它是为了避免因量化误差,舍入误差引起系统运行不平衡而引起的。nA U ?~nB U ? (–nA U ?~–

nB

U ?)为线性调节区,当∣ΔUn (K )∣> nB U ?时,输出限幅,用以现在转差频

率的最大增量,亦即限制1f 的最大增量,亦即限制1f 的最大增量,防止系统过冲,提高系统的稳定性。sM U ?决定系统的积分系数(1sM nB

U K U ?=

?),它由电位器给定,

通过A/D 转换器转换后输入。当nB U ?确定后,通过调节电位器,就能改变积分系数1K ,整定方便。nA U ?的值根据静态精度要求和实际系统工作时的最低转速来确定,nB U ?、sM U ?通过实验确定。

a) 控制结构框图 b ) 控制曲线

图2控制结构框图和曲线图

2.1.3嵌入式电机控制系统启动方法的选择

三相异步电动机的启动有两种方式,即直接启动,(或全压启动)和降压启动,直接启动是一种简单、可靠、经济的启动方法,但由于直接启动时,电动机的启动电流为额定电流的4~7倍,过大的启动电流一方面会造成电网电压的显著下降,直接影响在同一电网工作的其他电动机,及用电设备的正常运行,另一方面电动机频繁启动会严重发热,加速线圈老化,缩短电动机的寿命,所以直接启动时电动机的容量受到一定的限制,仅适用于10kw 一下或满足全压启动经验公式的电动机,其中异步电动机的启动又分为以下四种:定子绕子中出电阻降压启动、Y-△降压起动、自耦变压器降压启动,延边三角形降压启动。自耦变压器降压启动的启动电流为直接启动时1/K2倍。因电压降低了1/K 倍,转矩降为1/K2倍。设备体积大,投资较贵,星—三角(Y —Δ )降压启动的启动电流为直接采用全压启动电流的1/3启动电流受到限制,启动转矩与电压的平方成正比,启动转矩也只有Δ接法直接启动时1/3,只适用于空载或轻载启动。延边三角形降压启动的启动转矩也只有全压启动时1/3,且绕组结构较复杂,应用受限制。采用在启动时给定子电路中串联降压电阻的办法来启动电动机启动设备较多,一部分

能量消耗在启动电阻且启动级数较少。

本次设计运用变频调速方法,可采用变频降压的方法降低启动电压,当电动机达到额定转速时在全压运行,不用在添加辅助设备,经济、简单。

2.1.4嵌入式电机控制系统制动方法的选择

制动的方法一般有两类:机械制动和电气制动。机械制动常用的方法:电磁抱闸制动,但电磁抱闸体积较大,制动器磨损严重,快速制动时会产生振动一般用在起重设备。电气制动主要有能耗制动、反接制动、回馈制动、电容制动等。反接制动的制动准确性差,制动过程冲击力强烈,易损坏传动器件,制动能量损耗大不宜频繁启动。回馈制动由于电路复杂应用范围不广。电容制动对高速、低速运转的电动机均能迅速制动,能量损耗小设备简单,一般用语10KW以下的小容量电动机,可适用于制动频繁的场合。能耗制动制动力强、制动平稳、无大的冲击;应用能耗制动能使生产机械准确停车,被广泛用于矿井提升和起重机运输等生产机械。

本次设计采用能耗制动方法,制动准确、平稳,且能量消耗小,控制电路比较简单。

2.2键盘显示部分

本设计主要涉及嵌入式电机启动、停止,正转反转,上下调速,及速度开机设定等功能,所以本设计共设2*8=16个键盘加上一个复位键盘共17个键盘。显示方法有led显示和lcd显示,其中led显示简单价格低廉名具有很高的性价比,所以本设计采用led显示满足设计要求。

2.3电压电流检测与保护部分

本电路涉及的电流电压比较大,特别是开机冲击电压电流特别大,另外功率管、三相交流电动机的价格比较贵重,为了系统及电动机的安全有必要设计电路电压电流的检测与保护。其中电压电流的检测有多种方法,如:采用电压电流传感器、电压电流互感器和电阻分压测电压、串电阻测电流的方法等。本设计采用电阻分压测电压、串电阻测电流及光电耦合的方法,把过电压过电流信号通过光耦隔离输入到单片机,经单片机处理来控制输出电压的高低,从而起到保护的作用,而采样点的设置则选择在直流部分,如果在三相整流的输入端和三相电动机的输入端则应采用电压电流传感器或电压电流互感器来测量,这样的话成本就会

增加,特别是电压电流互感器,造价就会更高,所以本次设计检测点设在直流部分,这样的话电路设计就会简单的多了。另外对与开机冲击电流本次设计采用前端设置一个电抗器,以减缓开机冲击电流对逆变电路所造成的损害。

2.4通信部分

本次设计的通信技术主要是单片机与上位单片机或pc 机的通信,从而能够实现联机控制或集散控制的功能,而且能够用pc 机通过网络进行网络控制。通信部分主要采用单片机串口通信技术,此种技术运用比较广泛,技术比较成熟,运用的比较多。

2.5转速测量部分

在电动机转速测量方面有很多方法,主要有用速度传感器测速,转速发电机测速,光电编码盘测速等,本次设计所采用的方法与光电编码盘有相似之处,是用一对对管,即一个发光二极管和一个光电三极管来测速。在电动机的一侧弄一个挡板,钻若干小孔,发光二极管发射的光被没有孔的地方遮挡时,光敏三极管不能导通,光敏三极管的集电极输出为高电平,在有小孔的地方,发光二极管发射的光就会透过小孔照射到光敏三极管上,使光敏三极管导通,此时光敏三极管的集电极输出为低电平。然后经电平转换后,把这些高低电平的脉冲信号送入单片机处理转换为电动机的转速。与前几种方法相比这种方法具有造价低,简单易行,测量的精度在于挡板上的钻孔的多少,即采样频率的大小。

2.6嵌入式电机控制系统的总体方案确定

综上所述,本系统运用单片机控制专用变频器,采用转差频率控制的思想,增加了键盘显示使具有灵活性、可操作性和可视性;电压电流的检测和保护提高了其安全性和可靠性;串口通信增加了系统的延展性;转速测量反馈提高了系统的精度等。启动采用变频降压的方法降低启动电压,当电动机达到饿定转速时在全压运行,不用在添加辅助设备,经济、简单。制动时采用能耗制动,制动准确、平稳,且能量消耗小,控制电路比较简单。本系统不仅减少了系统电路的复杂性,使软件编程简单化,而且系统更加稳定,调节更加简单方便。

本次设计针对一台三相异步电动机系统进行设计,三相异步电动机的参数:2.2N P K W =,转动惯量 J=0.032kg m ?,1500/m in N n r =接法, 4.8N n A =。

第3章嵌入式电机控制系统硬件电路设计

3.1系统硬件电路总框图及原理图

本次设计的的硬件电路总框图如下图3所示:

图3 硬件电路总框图

通过图3系统框图可以看出主电路采用交直交的逆变方法先通过三相不可控整流桥把三相交流电整流为直流电然后通过三相逆变电路转变为交流电来控制三相交流电动机,而三相逆变器是由单片机AT89SC52控制变频器SA4828,然后由逆变器产生SPWM波形经驱动电路驱动后控制主电路的三相逆变电路。本次设计采用控制转差频率的方法来控制变频器的,所以设计了三相交流电机速度检测电路,测量出来脉冲信号送入单片机处理,经计算处理后来控制变频器输出的SPWM波。本次设计的保护电路主要是从直流部分检测的,当过电压过电流时,检测电路把检测结果处理后一方面把信号输入单片机处理,一方面输入到SA4828中封锁SPWM波的输出。,从而起到保护作用。键盘显示部分运用了8279芯片,这样系统电路大大的简化了,而且软件编程也轻松了许多。左下角为串口通信功能,运用MAX232串口芯片的电平转换功能与上位机和单片机相连,从而达到通

信的目的。

3.2系统主要原器件简介

3.2.1单片机AT89C52简介

当今单片机厂商琳琅满目,产品性能各异。常用的单片机有很多种:Intel8051系列、Motorola和M68HC系列、Atmel的AT89系列、台湾Winbond(华邦)W78系列、荷兰Pilips的PCF80C51系列、Microchip公司的PIC系列、Zilog 的Z86系列、Atmel的AT90S系列、韩国三星公司的KS57C系列4位单片机、台湾义隆的EM-78系列等。我们最终选用了ATMEL公司的AT89C52单片机。AT89C52是美国ATMEL公司生产的低电压,高性能CMOS8位单片机,片内含8Kbytes的可反复擦写的只读程序存储器(PEROM)和256bytes的随机存取数据存储器(RAM),不必在扩展其存储器。本器件采用ATMEL公司的高密度、非易失性存储技术生产,与标准MCS-51指令系统及8052产品引脚兼容,片内置通用8位中央处理器(CPU)和FLASH存储单元,功能强大,AT89C52单片机适用于许多较为复杂控制应用场合,在本次设计中足以能够满足要求,所以本次设计单片机选用AT89C52。

3.2.2变频器Sa4828简介

(1)SA4828的性能特点

SA4828是英国MITEL公司研制出的一种专门用于三相SPWM信号发生和控制的集成电路芯片。它采用28引脚,分DIP和SOIC两种封装。它可以和大部分的单片机连接,也可以单独使用。芯片的主要特性是:全数字控制;兼容Intel和Motorola系列的单片机;载波频率最高可达24kHz;输出调制波频率范围为0~4kHz;将调制波频率的分辨率提高到16位;8位调压分辨率;内部ROM固化3种可选波形;可设定死区时间和删除最小脉宽;可实现正反转控制;由于采用了可由用户选择的三相幅值独立控制方式,因而可以单独设定各相的输出电压幅值以适应不平衡负载;有看门狗定时器。

(2)SA4828的引脚功能

SA4828的引脚如图4所示,大体可以分为三类信号:

①与单片机的接口信号

ADO~AD7 、WR、RD、ALE可直接与地址/数据复用的单片机相连。此时,总线选择信号MUX接+5V,地址/数据引脚RS不用

图4 SA4828的引脚图

②输入信号

CS 片选信号

CLK 时钟信号,最高频率为24.576MHz

RESET 复位信号,禁止输出

SET TRIP 关断信号,高电平时可快速关断全部SPWM信号

RT、YT、BY 控制三相逆变桥的三个上桥臂的开关管

RB、YB、BB 控制三相逆变桥的三个下桥臂的开关管

它们是标准的TTL信号,有12mA的驱动能力,可直接驱动光耦。

ZPPR 输出调制波的频率

WSS 输出采样波形

TRIP 封锁状态,SET TRIP有效时,该引脚为低电平表明输出已被封锁,可接LED指示灯。

(3)SA4828芯片的控制方法

对SA4828的控制是通过微处理器接口将数据送入芯片和两个寄存器(初始化寄存器和控制寄存器)来实现的。初始化寄存器用于设定与逆变器有关的一些基本参数,这些参数在PWM输出端允许输出前初始化,逆变器工作以后不允许改变。

控制寄存器在工作过程中控制输出脉宽调制波的状态,从而进一步控制逆变器的运行状态。通常在工作该寄存器内容常被改写以实现实时控制。

参数是通过8个暂存器R0、R2、R3、R4R、5R、R14、R15来传送的,初始化参数先被写入R0、R2……R5,然后通过对R14的写操作将参数送入初始化寄存

器,最后再将控制参数写入R0、R1……R5,并通过对R15的写操作将参数送入控制寄存器。

3.2.3键盘显示芯片INTEL8279简介

INTEL 8279是一种可编程键盘/显示器接口芯片,它含有键盘输入和显示器输出两种功能。键盘输入时,它提供自动扫描,能与按键或传感器组成的矩阵相连,接收输入信息,它能自动消除开关抖动并能对多键同时按下提供保护。显示输出时,它有一个16×8位显示RAM,其内容通过自动扫描,可由8或16 位LED 数码管显示。

1.8279的引脚和功能

8279采用40引脚双列直插封装,其引脚排列及功能分别如下图所示:

图5 8279的引脚图

其引脚功能如下: D0 D7:数据总线,双向三态总线。

CLK:系统时钟输入端。

RESET:系统复位输入端,高电平有效,复位状态为:16个字符显示;编码扫描键盘——双键锁定;程序时钟编程为31。

CS:片选输入端,低电平有效。

A0:数据选择输入端,A0=1时,CPU写入数据为命令字,读出状态字为状态字;A0=0时,CPU读、写均为数据。

RD、WD:读、写信号输入端,低电平有效。

IRQ:为中断请求输出线。高电平有效。在键盘工作方式下,当FIFO/传感器RAM 中有数据时,此中断线变高电平。在FIFO/传感器RAM 每次读出时,中

断线就下降为低电平,若在RAM 中还有信息,则此线又重新变为高电平。在传感器工作方式中,每当传感器信号变化时,中断线就变为高电平。

SL0~SL3:扫描输出端,用于扫描键盘和显示器。可编程设定为编码(4中选1)或译码输出(16选1)。

RL0~RL7:回复线,它们是键盘或传感器的列信号输入端。

SHIFT:移位信号输入端,高电平有效。它是8279键盘数据的次高位(D6),通常用作键盘上、下档功能键。在传感器和选通方式中,SHIFT无效。

CNTL/STB:控制/选通输入端,高电平有效。在键盘工作方式时,它是键盘数据的最高位,通常用作控制键。在选通输入方式时,它的上升沿可把来自RL0~RL7的数据存入FIFO/传感器RAM中。在传感器方式时,它无效。

OUTA0~OUTA3:A组显示信号输出端。

OUTB0~OUTB3:B组显示信号输出端。

BD:显示熄灭输出端,低电平有效。它在数字切换显示或使用熄灭命令时关显示。

2.8279的工作方式

8279工作方式的确定是通过CPU对8279送入命令字实现,当数据选择端A0置“1”时,CPU对8279写入的数据为命令字,读出的数据为状态字。在叙述命令字、状态字前须先说明8279的3种工作方式:键盘的工作方式、显示器工作方式、传感器矩阵方式。

3.8279的命令字

8279共有8条命令,如下所述:

1)键盘/显示方式设置命令字

2)时钟编程命令

3)读FIFO/传感器RAM命令

4)读显示RAM命令

5)写显示RAM命令

6)显示禁止写入/消隐命令

7)清除命令

8)结束中断/出错方式设置命令

4.8279状态格式与状态字

8279的FIFO状态字,主要用于键盘和选通工作方式,以指示数据缓冲器FIFO/传感器RAM中的字符数和有错误发生,状态字节的读出地址和命令输入地址相同(CS=0,A0=1)。状态字节格式如下:

其中:DU(D7)为

显示无效特征位,DU=1表示显示无效。显示RAM在清除显示或全清命令尚未完成时,DU=1,此时对显示RAM操作无效。

S/E(D6)为传感器信号结束/错误特征位,在读FIFO状态字时被读出,在执行CF=1时被复位。在传感器方式时,S/E=1表示至少有一个键闭合;在特殊出错方式时,S/E=1表示有多键同时按下。

O(D5)为FIFO/传感器RAM溢出标志位,当FIFO/传感器RAM填满时再送入数据则该位置1。

U(D4)为FIFO/传感器RAM空标志位,当FIFO/传感器RAM中无数据时,如CPU读FIFO/传感器RAM则该位置1。

F(D3)为FIFO/传感器RAM满标志位,F=1表示FIFO/传感器RAM中已满。

NNN(D2、D1、D0)表示FIFO/传感器RAM中的字符个数,即数据个数。

3.2.4 IR2304半桥驱动集成电路

IR2304是国际整流器公司(IR)新推出的多功能600V高端及低端驱动集成电路,这种适于功率MOSFET、IGBT驱动的自举式集成电路在照明镇流器、电源及电机等功率驱动领域中将获得广泛的应用。IR2304采用8脚DIP或SOIC封装,

其引脚排列如图7所示。

嵌入式系统硬件体系结构设计

一、嵌入式计算机系统体系结构 体系主要组成包括: 1. 硬件层 硬件层中包含嵌入式微处理器、存储器(SDRAM 、ROM 、Flash 等)、通用设备接口和I/O 接口(A/D 、D/A 、I/O 等)。在一片嵌入式处理器基础上添加电源电路、时钟电路和存储器电路,就构成了一个嵌入式核心控制模块。其中操作系统和应用程序都可以固化在ROM 中。 软件层功能层

2. 中间层 硬件层与软件层之间为中间层,也称为硬件抽象层(Hardware Abstract Layer,HAL)或板级支持包(Board Support Package,BSP),它将系统上层软件与底层硬件分离开来,使系统的底层驱动程序与硬件无关,上层软件开发人员无需关心底层硬件的具体情况,根据BSP 层提供的接口即可进行开发。该层一般包含相关底层硬件的初始化、数据的输入/输出操作和硬件设备的配置功能。 3. 系统软件层 系统软件层由实时多任务操作系统(Real-time Operation System,RTOS)、文件系统、图形用户接口(Graphic User Interface,GUI)、网络系统及通用组件模块组成。RTOS是嵌入式应用软件的基础和开发平台。 4. 功能层 功能层主要由实现某种或某几项任务而被开发运行于操作系统上的程序组成。 一个嵌入式系统装置一般都由嵌入式计算机系统和执行装置组成,而嵌入式计算机系统是整个嵌入式系统的核心,由硬件层、中间层、系统软件层和应用软件层组成。执行装置也称为被控对象,它可以接受嵌入式计算机系统发出的控制命令,执行所规定的操作或任务。 硬件的设计 本网关硬件环境以单片机S3C2440芯片和DM9000以太网控制芯片为主,

嵌入式电机转动控制实验..

《嵌入式系统设计与实例开发》(2011-2012学年第2学期) 实 验 报 告 实验五电机转动控制实验----c语言实现方法

电机转动控制实验—C语言实现方法 一、实验目的 1.熟悉ARM本身自带的六路即三对PWM,掌握相应寄存器的配置。 2.编程实现ARM系统的PWM输出和I/O输出,前者用于控制直流电机,后者用于控制步进电机。 3.了解直流电机和步进电机的工作原理,学会用软件的方法实现步进电机的脉冲分配,即用软件的方法代替硬件的脉冲分配器。 4.掌握带有PWM和I/O的CPU编程实现其相应功能的主要方法。 二、实验内容 学习步进电机和直流电机的工作原理,了解实现两个电机转动对于系统的软件和硬件要求。学习ARM知识,掌握PWM的生成方法,同时也要掌握I/O的控制方法。 1.编程实现ARM芯片的一对PWM输出用于控制直流电机的转动,通过A/D旋钮控制其正反转及转速。 2.编程实现ARM的四路I/O通道实现环形脉冲分配用于控制步进电机的转动,通过A/D 旋钮转角控制步进电机的转角。 3.通过超级终端来控制直流电机与步进电机的切换。 三、预备知识 1、用ARM SDT 2.5或ADS1.2集成开发环境,编写和调试程序的基本过程。 2、ARM应用程序的框架结构。 3、会使用Source Insight 3 编辑C语言源程序。 4、掌握通过ARM自带的A/D转换器的使用。 5、了解直流电机的基本原理。 6、了解步进电机的基本原理,掌握环形脉冲分配的方法。 四、实验设备及工具 硬件:ARM嵌入式开发平台、用于ARM7TDMI的JTAG仿真器、PC机Pentium100以上。 软件:PC机操作系统win98、Win2000或WinXP、ARM SDT 2.51或ADS1.2集成开发环境、仿真器驱动程序、超级终端通讯程序。 五、实验原理 1.直流电机 1)直流电动机的PWM电路原理 晶体管的导通时间也被称为导通角а,若改变调制晶体管的开与关的时间,也就是说通过改变导通角а的大小,如图2-22所示,来改变加在负载上的平均电压的大小,以实现对电动机的变速控制,称为脉宽调制 (PWM)变速控制。在PWM变速控制中,系统采用直流电源,放大器的频率是固定,变速控制通过调节脉宽来实现。 构成PWM的功率转换电路或者采用"H"桥式驱动,或者采用 "T"式驱动。由于"T"式电路要求双电源供电,而且功率晶体管承受的反向电压为电源电压的两倍。因此只适用于小功率低电压的电动机系统。而"H"桥式驱动电路只需一个电源,功率晶体管的耐压相对要求也低些,所以应用得较广泛,尤其用在耐高压的电动机系统中。

基于FPGA的直流电机控制系统硬件设计

毕业设计(论文) 题目:基于FPGA的直流电机控制系统硬件设计 学院物理与信息工程学院 专业名称电子信息工程 班级学号B08073011 学号 200807301124 学生姓名张旭东 指导教师操长茂 二O一二年六月

EP1C6Q240C8封装和部分引脚的功能分析 图U21A 图U21B

图U21C 图U21D 第一部分:封装 图U21A、U21B、U21C、U21D表示的是同一块芯片EP1C6Q240C8,有240个引脚,采用的是PQFP封装(即Plastic Quad Flat Package,塑料方块平面封装),PQFP封装的芯片的四周均有引脚,而且引脚之间距离很小,管脚也很细,一般大规模或超大规模集成电路采用这种封装形式。 用这种形式封装的芯片必须采用SMT(Surface Mount Technology,表面组装技术)将芯片边上的引脚与主板焊接起来。 对于SMT技术,个人理解,即表面组装技术,一般用来焊接一些引脚在几百以上的芯片,比如说BGA,PGA一般都采用这种技术;

例如笔记本主板上的intel北桥芯片,一般都采用球形封装,又如比较古老的Intel 965底部球形引脚大约有600多个,现在笔记本流行用的P43、P45、P55、X58,从P43一代引脚多达几千个甚至更多,这样做的好处是节约面积,坏处是测试的时候比较麻烦,像BGA 这种封装的芯片一般焊上去之后,顶部要引出几个接点,以防止在使用过程中坏掉,方便用万用表或者示波器来测试各个通路便于修理。 对于这几种类型的芯片,除了PQFP少数罕见的高手能手工焊接之外,一般都采用贴片机来进行专门的焊接工作。 这里简单介绍一下这两种封装: PQFP/PFP封装具有以下特点 1.适用于SMD表面安装技术在PCB电路板上安装布线。 2.适合高频使用。 2.操作方便,可靠性高。 3.芯片面积与封装面积之间的比值较小。 4.Intel系列CPU中80286、80386和某些486主板采用这种封装形式。 这里的SMD表示的是贴片组装器件; BGA球栅阵列封装 随着集成电路技术的发展,对集成电路的封装要求更加严格。这是因为封装技术关系到产品的功能性,当IC的频率超过100MHz时,传统封装方式可能会产生所谓的“CrossTalk (串扰)”现象,而且当IC的管脚数大于208 Pin时,传统的封装方式有其困难度。因此,除使用QFP封装方式外,现今大多数的高脚数芯片(如图形芯片与芯片组等)皆转而使用BGA(Ball Grid Array Package)封装技术。BGA一出现便成为CPU、主板上南/北桥芯片等高密度、高性能、多引脚封装的最佳选择。 第二部分:电路图 关于原理图: 当我们把原理图元件库做好以后,在原理图中,对于已有的原理图,我们可以选择make library选项即可生成要引用的原理图元件库,我们可以使用自动编号来对每隔模块进行编号,也可以手动的进行编号,然后在工具选项卡中找到footprints manager可以用来检查各个器件的封装,若发现器件没有封装,可以在library中找一个与该器件引脚数目一样的同类型的芯片封装来对该器件进行封装操作;封装完成之后进行DRC检测,然后更新到PCB,由于目前只做原理图分析,这里就不做详细介绍了。 在原理图中,细心的人会发现,不能单独的看只看U21A这块“芯片”,其实这只是芯片的一部分,为了便于观察,我们把电源、时钟频率、JT AG下载口和AS下载口单独出来作为4大部分;

嵌入式系统最小系统硬件设计

引言 嵌入式系统是以应用为中心,软件硬件可裁剪,适应应用系统对功能、可靠性、成本、体积、功耗等综合性严格要求的专用计算机系统。本文主要研究了基于SEP3202(内嵌ARM7TDMI 处理器内核)的嵌入式最小系统,围绕其设计出相应的存储器、总线扩展槽、电源电路、复位电路、JTAG、UART等一系列电路模块。 嵌入式最小系统 根据IEEE的定义,嵌入式系统是:控制、监视或者辅助装置、机器和设备运行的装置。这主要是从应用上加以定义的,从中可以看出嵌入式系统是软件和硬件的综合体,还可以涵盖机械等附属装置。不过上述定义并不能充分体现出嵌入式系统的精髓,目前国内一个普遍被认同的定义是:以应用为中心、以计算机技术为基础、软件硬件可裁剪、适应应用系统对功能、可靠性、成本、体积、功耗严格要求的专用计算机系统。 嵌入式最小系统即是在尽可能减少上层应用的情况下,能够使系统运行的最小化模块配置。以ARM内核嵌入式微处理器为中心,具有完全相配接的Flash电路、SDRAM电路、JTAG电路、电源电路、晶振电路、复位信号电路和系统总线扩展等,保证嵌入式微处理器正常运行的系统,可称为嵌入式最小系统。对于一个典型的嵌入式最小系统,以ARM处理器为例,其构成模块及其各部分功能如图1所示,其中ARM微处理器、FLASH和SDRAM模块是嵌入式最小系统的核心部分。 ?微处理器——采用了SEP3203; ?电源模块——为SEP3203内核电路提供2.5V的工作电压,为部分外围芯片提供3.3V的工作电压; ?时钟模块(晶振)——通常经ARM内部锁相环进行相应的倍频,以提供系统各模块运行所需的时钟频率输入。32.768kHz给RTC和Reset模块,产生计数时钟,10MHz作为主时钟源; ?Flash存储模块——存放嵌入式操作系统、用户应用程序或者其他在系统掉电后需要保存的用户数据等; ?SDRAM模块——为系统运行提供动态存储空间,是系统代码运行的主要区域; ?JTAG模块——对芯片内部所有部件进行访问,通过该接口对系统进行调试、编程等,实现对程序代码的下载和调试; ?UART模块——用于系统与其他应用系统的短距离双向串行通信; ?复位模块——实现对系统的复位;

两相步进电机控制系统设计

综合课程设计 题目两相步进电机 学院计信学院 专业10自动化 班级2班 学生姓名 指导教师文远熔 2012 年12 月28 日

两相步进电机课程设计报告 步进电机是一种进行精确步进运动的机电执行元件,它广泛应用于工业机械的数字控制,为使系统的可靠性、通用性、可维护性以及性价比最优,根据控制系统功能要求及步进电机应用环境,确定了设计系统硬件和软件的功能划分,从而实现了基于8051单片机的四相步进电机的开环控制系统。控制系统通过单片机存储器、I/O 接口、中断、键盘、LED 显示器的扩展、步进电机的环形分频器、驱动及保护电路、人机接口电路、中断系统及复位电路、单电压驱动电路等的设计,实现了四相步进电机的正反转,急停等功能。为实现单片机控制步进电机系统在数控机床上的应用,系统设计了两个外部中断,以实现步进电机在某段时间内的反复正反转功能,也即数控机床的刀架自动进给运动,随着单片机技术的不断发展,单片机在日用电子产品中的应用越来越广泛,自六十年代初期以来,步进电机的应用得到很大的提高。人们用它来驱动时钟和其他采用指针的仪器,打印机、绘图仪,磁盘光盘驱动器、各种自动控制阀、各种工具,还有机器人等机械装置。此外作为执行元件,步进电机是机电一体化的关键产品之一,被广泛应用在各种自动化控制系统中,随着微电子和计算机技术的发展,它的需要量与日俱增,在各个国民经济领域都有应用。步进电机是机电数字控制系统中常用的执行元件,由于其精度高、体积小、控制方便灵活,因此在智能仪表和位置控制中得到了广泛的应用,大规模集成电路的发展以及单片机技术的迅速普及,为设计功能强,价格低的步进电机控制驱动器提供了先进的技术和充足的资源。 关键字: 步进电机单片机

电动车无刷马达控制器硬件电路详解

电动车无刷马达控制器硬件电路详解 电动车无刷电机是目前最普及的电动车用动力源,无刷电机以其相对有刷电机长寿,免维护的特点得到广泛应用,然而由于其使用直流电而无换向用的电刷,其换向控制相对有刷电机要复杂许多,同时由于电动车负载极不稳定,又使用电池作电源,因此控制器自身的保护及对电机,电源的保护均对控制器提出更多要求。 自电动车用无刷电动机问世以来,其控制器发展分两个阶段:第一阶段为使用专用无刷电动机控制芯片为主组成的纯硬件电路控制器,这种电路较为简单,其中控制芯片的代表是摩托罗拉的MC33035,这个不是这里的主题,所以也不作深入介绍。第二阶段是以MCU为主的控制芯片。这是这篇文章介绍的重点,在MCR版本的设计中,揉和了模拟、数字、大功率MOSFET 驱动等等许多重要应用,结合MCU智能化控制,是一个非常有启迪性的设计。 今以应用最广泛的以PIC16F72为智能控制中心,350W的整机电路为例,整机电路如图1: 整机电路看起来很复杂,我们将其简化成框图再看看:

图2:电路框图 电路大体上可以分成五部分: 一、电源稳压,供应部分; 二、信号输入与预处理部分; 三、智能信号处理,控制部分; 四、驱动控制信号预处理部分; 五、功率驱动开关部分。 下面我们先来看看此电路最核心的部分:PIC16F72组成的单片机智能处理、控制部分,因为其他电路都是为其服务或被其控制,弄清楚这部分,其它电路就比较容易明白。 图3:PIC16F72在控制器中的各引脚应用图 我们先来简单介绍一下PIC16F72的外部资源:该单片机有28个引脚,去掉电源、复位、振

荡器等,共有22个可复用的IO口,其中第13脚是CCP1输出口,可输出最大分辨率达10BIT 的可调PWM信号,另有AN0-AN4共5路AD模数转换输入口,可提供检测外部电路的电压,一个外部中断输入脚,可处理突发事件。内部软件资源我们在软件部分讲解,这里并不需要很关心。 各引脚应用如下: 1:MCLR复位/烧写高压输入两用口 2:模拟量输入口:放大后的电流信号输入口,单片机将此信号进行A-D转换后经过运算来控制PWM的输出,使电流不致过大而烧毁功率管。正常运转时电压应在0-1.5V左右 3:模拟量输入口:电源电压经分压后的输入口,单片机将此信号进行A-D转换后判断电池电压是否过低,如果低则切断输出以保护电池,避免电池因过放电而损坏。正常时电压应在 3V以上 4:模拟量输入口:线性霍尔组成的手柄调速电压输入口,单片机根据此电压高低来控制输出给电机的总功率,从而达到调整速度的目的。 5:模拟/数字量输入口:刹车信号电压输入口。可以使用AD转换器判断,或根据电平高低判断,平时该脚为高电平,当有刹车信号输入时,该脚变成低电平,单片机收到该信号后切断给电机的供电,以减少不必要的损耗。 6:数字量输入口:1+1助力脉冲信号输入口,当骑行者踏动踏板使车前行时,该口会收到齿轮传感器发出的脉冲信号,该信号被单片机接收到后会给电机输出一定功率以帮助骑行者更轻松地往前走。 7:模拟/数字量输入口:由于电机的位置传感器排列方法不同,该口的电平高低决定适合于哪种电机,目前市场上常见的有所谓120°和60°排列的电机。有的控制器还可以根据该口的电压高低来控制起动时电流的大小,以适合不同的力度需求。 8:单片机电源地。 9:单片机外接振荡器输入脚。 10:单片机外接振荡器反馈输出脚。 11:数字输入口:功能开关1 12:数字输入口:功能开关2 13:数字输出口:PWM调制信号输出脚,速度或电流由其输出的脉冲占空比宽度控制。 14:数字输入口:功能开关3 15、16、17:数字输入口:电机转子位置传感器信号输入口,单片机根据其信号变化决定让电机的相应绕组通电,从而使电机始终向需要的方向转动。这个信号上面讲过有120°和60°之分,这个角度实际上是这三个信号的电相位之差,120°就是和三相电一样,每个相位和前面的相位角相差120°。60°就是相差60°。 18:数字输出口:该口控制一个LED指示灯,大部分厂商都将该指示灯用作故障情况显示,当控制器有重大故障时该指示灯闪烁不同的次数表示不同的故障类型以方便生产、维修。 19:单片机电源地。 20:单片机电源正。上限是5.5V。 21:数字输入口:外部中断输入,当电流由于意外原因突然增大而不在控制范围时,该口有低电平脉冲输入。单片机收到此信号时产生中断,关闭电机的输出,从而保护重要器件不致损坏或故障不再扩大。 22:数字输出口:同步续流控制端,当电流比较大时,该口输出低电平,控制其后逻辑电路,使同步续流功能开启。该功能在后面详细讲解。 23--28:数字输出口:是功率管的逻辑开关,单片机根据电机转子位置传感器的信号,由这里输出三相交流信号控制功率MOSFET开关的导通和关闭,使电机正常运转。

直流电机控制系统设计

直流电机控制系统设计

XX大学 课程设计 (论文) 题目直流电机控制系统设计 班级 学号 学生姓名 指导教师

沈阳航空航天大学 课程设计任务书 课程名称专业基础课程设计 院(系)自动化学院专业测控技术与仪器 班级学号姓名 课程设计题目直流电机控制系统设计 课程设计时间: 2012年7 月9 日至2012年7 月20 日 课程设计的内容及要求: 1.内容 利用51单片机开发板设计并制作一个直流电机控制系统。系统能够实时控制电机的正转、反转、启动、停止、加速、减速等。 2.要求 (1)掌握直流电机的工作原理及编程方法。 (2)掌握直流电机驱动电路的设计方法。 (3)制定设计方案,绘制系统工作框图,给出系统电路原理图。 (4)用汇编或C语言进行程序设计与调试。 (5)完成系统硬件电路的设计。 (6)撰写一篇7000字左右的课程设计报告。 指导教师年月日 负责教师年月日

学生签字年月日 目录 0 前言 (1) 1 总体方案设计 (2) 1.1 系统方案 (2) 1.2 系统构成 (2) 1.3 电路工作原理 (2) 1.4 方案选择 (3) 2 硬件电路设计 (3) 2.1 系统分析与硬件设计 (3) 2.2 单片机AT89C52 (3) 2.3 复位电路和时钟电路 (4) 2.4 直流电机驱动电路设计 (4) 2.5 键盘电路设计 (4) 3软件设计 (5) 3.1 应用软件的编制和调试 (5) 3.2 程序总体设计 (5) 3.3 仿真图形 (7) 4 调试分析 (9) 5 结论及进一步设想 (9) 参考文献 (10) 课设体会 (11) 附录1 电路原理图 (12) 附录2 程序清单 (13)

直流电机控制系统设计.

XX大学 课程设计 (论文) 题目直流电机控制系统设计 班级 学号 学生姓名

指导教师 航空航天大学 课程设计任务书 课程名称专业基础课程设计 院(系)自动化学院专业测控技术与仪器 班级学号 课程设计题目直流电机控制系统设计 课程设计时间: 2012年7月9日至2012年7月20日 课程设计的容及要求: 1.容 利用51单片机开发板设计并制作一个直流电机控制系统。系统能够实时控制电机的正转、反转、启动、停止、加速、减速等。 2.要求 (1)掌握直流电机的工作原理及编程方法。 (2)掌握直流电机驱动电路的设计方法。 (3)制定设计方案,绘制系统工作框图,给出系统电路原理图。 (4)用汇编或C语言进行程序设计与调试。 (5)完成系统硬件电路的设计。 (6)撰写一篇7000字左右的课程设计报告。

指导教师年月日 负责教师年月日 学生签字年月日 目录 0 前言1 1 总体方案设计2 1.1 系统方案2 1.2 系统构成2 1.3 电路工作原理2 1.4 方案选择3 2 硬件电路设计3 2.1 系统分析与硬件设计3 2.2 单片机AT89C523 2.3 复位电路和时钟电路4 2.4 直流电机驱动电路设计4 2.5 键盘电路设计4 3软件设计5 3.1 应用软件的编制和调试5 3.2 程序总体设计5

3.3 仿真图形7 4 调试分析9 5 结论及进一步设想9参考文献10 课设体会11 附录1 电路原理图12附录2 程序清单13

直流电机调速系统设计 XXXXX大学自动化学院 摘要:本篇论文介绍了基于单片机的直流电机PWN调速的基本办法,直流电机调速的相关知识以及PWM调速的基本原理和实现方法。重点介绍了基于MCS-51单片机的用软件产生PWM信号以及信号占空比调节的方法。对于直流电机速度控制系统的实现提供了一种有效的途径。 直流电动机具有优良的调速特性,调速平滑,方便,调速围广,过载能力大,能承受频繁的冲击负载,可实现频繁的无级快速起动、制动和反转;能满足生产过程中自动化系统各种不同的特殊运行要求。电动机调速系统采用微机实现自动控制,是电气传动发展的主要方向之一。采用微机控制后,整个调速系统体积小,结构简单、可靠性高、操作维护方便,电动机稳态运转时转速精度可达到较高水平,静动态各项指标均能较好地满足工业生产中高性能电气传动的要求。 关键词:单片机最小系统;PWM ;直流电机调速; 0 前言 电动机作为最主要的机电能量转换装置,其应用围已遍及国民经济的各个领域和人们的日常生活。无论是在工农业生产,交通运输,国防,航空航天,医疗卫生,商务和办公设备中,还是在日常生活的家用电器和消费电子产品(如电冰箱,空调,DVD等)中,都大量使用着各种各样的电动机。据资料显示,在所有动力资源中,百分之九十以上来自电动机。同样,我国生产的电能中有百分之六十是用于电动机的。电动机与人的生活息息相关,密不可分。电气时代,电动机的调速控制一般采用模拟法,对电动机的简单控制应用比较多。简单控制是指对电动机进行启动,制动,正反转控制和顺序控制。然而近年来,随着技术的发展和进步,以及市场对产品功能和性能的要求不断提高,直流电动机的应用更加广泛,尤其是在智能机器人中的应用。直流电动机的起动和调速性能、过载能力强等特点显得十分重要,为了能够适应发展的要求,单闭环直流电动机的调速控制系统得到了很大的发展。而作为单片嵌入式系统的核心—单片机,正朝着多功能、多选择、高速度、低功耗、低价格、大存储容量和强I/O功能等方向发展。随着计算机档次的不断提高,功能的不断完善,单片机已越来越广泛地应用在各种领域的控制、自动化、智能化等方面,特别是在直流电动机的调速控制系统中。这是因为单片机具有很多优点:体积小,功能全,抗干扰能力强,可靠性高,结构合理,指令丰富,控制功能强,造价低等。所以选用单片机作为控制系统的核心以提高整个系统的可靠性和可行性。

电机变频调速系统硬件设计..

第三章 系统的硬件设计及其实现 3.1系统硬件结构总体设计 硬件部分包括主电路、保护电路、驱动电路、控制电路。 本文所涉及到的主电路的参数是三相完全对称的,其中整流部分采用二极管不可控整流,逆变部分采用的功率器件是IGBT 。系统结构框图如图3- 1所示。380V 三相交流电输入到整流器主电路,调节交流输入变压器使输出直流电压稳定在540V 左右。DSP 的主要任务是输出SVPWM 触发脉冲对逆变器的输出进行控制。在实际的系统组成中,分为强电部分和弱电部分。强电部分和弱电部分相互隔离分开能够减少强电部分对弱电部分的影响,这点对于DSP 的正常运行,变频器的正常工作有很重要的影响。 图3-1系统硬件结构总框图 主电路:采用交一直一交电压型变频装置。它主要由整流电路、滤波电路、逆变器三部分组成。整流电路是利用二极管三相桥式不可控整流模块将三相工频交流电整流成直流电;滤波电路采用电容滤波,将整流输出的脉动电压转化为平直的直流电压Vdc;逆变器是由IGBT 构成的三相全桥式逆变器。 3.2主电路工作原理 在交流变频调速系统中,主回路作为直接执行机构,其可靠性及稳定性直接影响整个系统的运转。主电路一般是由整流电路、中间滤波电路和逆变器三部分组成。本课题选用的是电压型交一直一交变频装置。它包括不可控整流器、大电容滤波、三相桥式逆变器、采样电路、保护电路以及能耗制动电路,其电路原理整流器 TMS320F2812 DSP 直流 母线 逆变器 开关电源 CT1 CT2 M 光耦隔离 驱动电路 过流保护 滤波电路 光电 编码器 上位机 键盘 A B C 六路PWM 信号

图如图3-2 图3-2系统硬件主电路图 主电路主要包括整流器和逆变器,需要用到整流桥、滤波电容器组、限流电阻和开关、电源指示器、整流二极管等器件。 三相交流电源经三相整流桥全波整流成直流电,如电源的线电压为,则三相全波整流后平均直流电压的大小是=1.35UL ,我国三相电源的线电压为380V ,考虑滤波电容的因素,全波整流后的电压是=1.414UL ,故直流电压大约为540V 。滤波电容的功能主要有两点:一是滤平全波整流后的电压纹波;二是当负载变化时,使直流电压保持平稳。由于受到电解电容的电容量和耐压能力的限制,滤波电路通常由若干个电容器并联成一组,又由两个电容器组串联而成,由于电解电容器的电容量有较大的离散性,故电容器组和的电容量不能完全相等,这将使它们承受的电压不相等,为了使它们承受的电压相等,在和二旁各并联一个阻值相等的均压电阻和。 限流电阻和开关,当变频器合上电源的瞬间,滤波电容器的充电电流是很大的。过大的冲击电流可能使三相整流桥的二极管损坏,同时也使电源电压瞬间下降而受到“污染”。为了减少冲击电流,在变频器刚接通电源后的一段时间里,电路内串入限流电阻,其作用是将电容器的充电电流限制在允许范围之内。当充电到一定程度时,令开关接通,将电阻短路掉。电源指示, 除了表示电源是否接通以外,还有一个十分重要的功能,即在变频器切断电源后,指示滤波电容器上的电荷是否己经释放完毕。由于的容量较大,而切断电源又必须在逆变电路停止工作的状态下进行,所以没有快速放电的回路,其放电时间长达数分钟。又由于上的电压较高,如不放完.对人身安个将构成威胁。 3.2.1整流二极管及IGBT 的选择 (1)整流二极管的选择 a.确定电压额定值整流二极管的耐压按式((6-1)确定。根据电网电压,考虑A B C M 整流桥

近年来嵌入式硬件的发展

近年来嵌入式硬件的发展 施明 摘要:近年来随着移动处理、嵌入式应用的大量涌现,以及通用微处理器工艺水平和主频的不断提升,双核乃至四核的出现,功耗日益成为设计者必须关心的问题。这就要求嵌入式软硬件提出了新的要求,需要不断的改进和创新。本文围绕嵌入式近年的发展与更新,主要翻阅了十几篇论文,直接参考文献12篇,其中外文资料4篇。根据所阅读的文献通过对比浅析嵌入式硬件近年来的发展状况。 关键词:8位微控制器,32位微控制器,DSP核MPU In recent years the development of embedded hardware Abstract: in recent years as mobile processing, embedded application, as well as the general microprocessor to improve the technological level and frequency, dual-core and even the emergence of four nuclear power has increasingly become the designers must concern. This requires an embedded hardware and software is put forward new requirements, need continuous improvement and innovation. Around embedded in recent years, the development and updating, this paper mainly through more than ten papers, direct 12 references, including 4 foreign data. According to the reading of literature by comparing the embedded hardware is analysed in recent years the development of the situation Key words:8-bit microcontroller.32- bit microcontroller. DSP core MPU 一、引言 20世纪90年代后期,正处后PC机的前夜.开始兴起了嵌入式的第二次浪潮。随着手机的铺天盖地,惊醒了国内的专家和广大的单片机技术人员,引发了一场单片机与嵌入武的议论。无论改论是否有一致的认识,议论总是有益的。如果能取得一致的认识当然就更好。嵌入式,即嵌入式计算机,是从功能上说的。嵌入式计算机强调的要点是:计算机不为表现自己,而为辅助它所在的宿主设备.智能化地,剃现设备的功能。单片机的叫法,一,未能体现它初始的控制使命,二,它不能代表嵌入式的总体.仅是嵌入式中的类。尽管单片机的结构展示着嵌入式的极终方向,正如今日人们追求的SoC。单片机是Intel 初期的命名,但随后不久就改口叫微控制器了,并把它列入嵌入式器件的一类之中。

嵌入式电机控制系统(硬件)

摘要 随着我国工业的日益发展,电机在许多工矿、机械企业得到广泛的应用,本嵌入式电机控制系统是运用单片机控制的变频调速系统,控制对象主要是三相交流电动机,控制思想是用转差频率进行控制,通过改变程序来达到控制转速的目的。 系统以AT89C52为控制核心,主要采用变频调速技术,结合所学的单片机技术,实现系统的功能要求。系统的总体结构主要由主回路,sa4828大规模集成spwm变频器电路,键盘显示电路,光电隔离电路,检测保护电路,驱动电路,串口通信电路。 主要电路芯片由51系列单片机at89c52, Intel8279通用键盘/显示器,SPWM 波产生电路SA4828芯片,以及驱动芯片IR2304等。 由于设计中电动机功率不大,所以整流器采用不可控电路,电容器滤波;逆变器采用电力晶体管三相逆变器,结构清晰,成本大大降低。 关键词AT89C51单片机;SA4828变频器;IR2304;整流器;三相异步电动机

Abstract With the increasing development of China's industry, the electrical in many mining, machinery enterprises have wide application, the embedded motor control system is to use the SCM Control Frequency Control System, control is primarily aimed at three-phase AC motor, control thinking Use slip frequency control, by changing the speed control procedures to achieve the objective. AT89C52 for the control system to the core, mainly VVVF technology, integration of the microcontroller technology, to achieve the function of the system requirements. The overall structure of the main system by the main circuit, sa4828 large-scale integrated circuit spwm converter, the keyboard show circuit, photoelectric circuit isolation, detection protection circuit, driving circuit, serial communication circuits. The main circuit chip from 51 MCU at89c52, Intel8279 universal keyboard / display, SPWM wave generated SA4828 circuit chips, and driver chips, and so on. As the design of electrical power do not, so do not use controlled rectifier circuits, capacitors filter; inverter with three-phase power inverter transistor, a clear structure, the cost much lower. Key words:AT89C51 SCM; SA4828 converter; IR2304; rectifier; three-phase asynchronous motor

无刷直流电机控制系统的设计

1引言无刷直流电机最本质的特征是没有机械换向器和电刷所构成的机械接触式换向机构。现在,无刷直流电机定义有俩种:一种是方波/梯形波直流电机才可以被称为无刷直流电机,而正弦波直流电机则被认为是永磁同步电机。另一种是方波/梯形波直流电机和正弦波直流电机都是无刷直流电机。国际电器制造业协会在1987年将无刷直流电机定义为“一种转子为永磁体,带转子位置信号,通过电子换相控制的自同步旋转电机”,其换相电路可以是独立的或集成于电机本体上的。本次设计采用第一种定义,把具有方波/梯形波无刷直流电机称为无刷直流电机。从20世纪90年代开始,由于人们生活水平的不断提高和现代化生产、办公自动化的发展,家用电器、工业机器人等设备都向着高效率化、小型化及高智能化发展,电机作为设备的重要组成部分,必须具有精度高、速度快、效率高等优点,因此无刷直流电机的应用也发展迅速[1]。 1.1 无刷直流电机的发展概况 无刷直流电动机是由有刷直流电动机的基础上发展过来的。 19世纪40年代,第一台直流电动机研制成功,经过70多年不断的发展,直流电机进入成熟阶段,并且运用广泛。 1955年,美国的D.Harrison申请了用晶体管换相线路代替有刷直流电动机的机械电刷的专利,形成了现代无刷直流电动机的雏形。 在20世纪60年代初,霍尔元件等位置传感器和电子换向线路的发现,标志着真正的无刷直流电机的出现。 20世纪70年代初,德国人Blaschke提出矢量控制理论,无刷直流电机的性能控制水平得到进一步的提高,极大地推动了电机在高性能领域的应用。 1987年,在北京举办的德国金属加工设备展览会上,西门子和博世两公司展出了永磁自同步伺服系统和驱动器,引起了我国有关学者的注意,自此我国开始了研制和开发电机控制系统和驱动的热潮。目前,我国无刷直流电机的系列产品越来越多,形成了生产规模。 无刷直流电动机的发展主要取决于电子电力技术的发展,无刷直流电机发展的初期,由于大功率开关器件的发展处于初级阶段,性能差,价格贵,而且受永磁材料和驱动控制技术的约束,这让无刷直流电动机问世以后的很长一段时间内,都停

基于单片机的步进电机控制系统硬件设计

基于单片机的步进电机控制系统硬件设计 摘要:系统通过单片机作为步进电机的控制核心,完成了步进电机的硬件电路设计,实现了步进电机的启/停控制、正反转,以及转速的测量和显示,适用范围较广,且电路简单,成本较低,控制方便,实用价值高。 关键词:单片机步进电机驱动电路霍尔传感器 0 引言 基于单片机的步进电机控制系统具有成本低、使用灵活的特点,在数控机床、机器人,定量进给、工业自动控制以及各种可控的有定位要求的机械工具等领域有着广泛的应用。步进电机是将脉冲信号转换成角位移,电机的转速、停止的位置取决于脉冲信号的频率和脉冲数,因此步进电机非常适用于单片机控制。步进电机的驱动电路是根据单片机产生的控制信号进行工作。因此,单片机通过向步进电机驱动电路发送控制信号就能实现对步进电机的控制。 1 系统总体方案设计 步进电机控制系统主要由单片机、键盘led、驱动/放大和测速电路等4个模块组成,该控制系统可实现的功能:①通过键盘启动/暂停步进电机、设置步进电机的转速和改变步进电机的转向;②通过led管显示步进的转速和转向等工作状态;③实现二相或四相步进电机的控制:④通过霍尔传感器能够实现对步进电机的速度测量。系统总体方案设计如图1所示。 2 系统硬件设计

2.1 单片机模块 单片机的最小系统电路包括时钟电路和复位电路。本文所设计的系统中,时钟电路采用外接12m晶振。复位电路作用是使单片机的片内电路初始化,使单片机从一种确定状态开始运行。本文采用上电复位。 2.2 键盘输入模块 为实现人机对话,该系统设计扩展了4个按钮作为输入键盘,可手动直接操作该控制系统。系统上电后,通过键盘输入步进电机的启停、步数转速和转向等。如图2所示,设计p3口接4按钮键盘,键盘电路如图2所示:其中,s0接p3.7控制加速,s1接p3.6控制减速,s2接p3.5控制正转,s3接p3.4控制反转。 2.3 驱动电路模块 为了实现对步进电机的高精度控制,系统采用步进电机驱动芯片tb6560ahq,它是东芝公司主推的低功耗、高集成两相混合式步进电机驱动芯片,具有双全桥mosfet驱动,耐压40v,具有整步、1/2细分、1/8细分、1/16细分运行方式可供选择,配合简单的外围电路即可开发出高性能的驱动电路。 2.4 led速度显示模块 led数码显示器是1种由led发光二极管组合显示字符的显示器件。它使用了8个led发光二极管,其中7个用于显示字符,1个用于显示小数点。如图4所示,本设计采用共阳极接法。把发光二极管的阳极连在一起构成公共阳极,使用时公共阳极接+5v,每个

直流电机控制系统设计范本

直流电机控制系统 设计

XX大学 课程设计 (论文)题目直流电机控制系统设计 班级 学号 学生姓名 指导教师

沈阳航空航天大学 课程设计任务书 课程名称专业基础课程设计 院(系)自动化学院专业测控技术与仪器 班级学号姓名 课程设计题目直流电机控制系统设计 课程设计时间: 7 月 9 日至 7 月 20 日 课程设计的内容及要求: 1.内容 利用51单片机开发板设计并制作一个直流电机控制系统。系统能够实时控制电机的正转、反转、启动、停止、加速、减速等。 2.要求 (1)掌握直流电机的工作原理及编程方法。 (2)掌握直流电机驱动电路的设计方法。 (3)制定设计方案,绘制系统工作框图,给出系统电路原理图。 (4)用汇编或C语言进行程序设计与调试。 (5)完成系统硬件电路的设计。 (6)撰写一篇7000字左右的课程设计报告。

指导教师年月日 负责教师年月日 学生签字年月日 目录 0 前言...................................................................................... 错误!未定义书签。 1 总体方案设计 ...................................................................... 错误!未定义书签。 1.1 系统方案 ...................................................................... 错误!未定义书签。 1.2 系统构成 ...................................................................... 错误!未定义书签。 1.3 电路工作原理............................................................... 错误!未定义书签。 1.4 方案选择 ...................................................................... 错误!未定义书签。 2 硬件电路设计 ...................................................................... 错误!未定义书签。 2.1 系统分析与硬件设计................................................... 错误!未定义书签。 2.2 单片机AT89C52............................................................ 错误!未定义书签。 2.3 复位电路和时钟电路................................................... 错误!未定义书签。 2.4 直流电机驱动电路设计 ............................................... 错误!未定义书签。 2.5 键盘电路设计............................................................... 错误!未定义书签。 3 软件设计 ............................................................................ 错误!未定义书签。 3.1 应用软件的编制和调试 ............................................... 错误!未定义书签。 3.2 程序总体设计............................................................... 错误!未定义书签。 3.3 仿真图形 ...................................................................... 错误!未定义书签。 4 调试分析 .............................................................................. 错误!未定义书签。

(整理)丰田普锐斯电机及驱动控制系统解析.

丰田普锐斯电机及驱动控制系统解析 作为全球最成功的环保车型,丰田普锐斯(PRIUS)早已成为油电混合动力车型中的全球销量冠军,即使在我们的身边,也经常可以见到它们的身影。目前,在国内生产的丰田普锐斯(PRIUS)是采用丰田第二代混合动力系统,集发动机和电动机组合而成的并行混合动力车(图1)。 丰田第二代混合动力系统(THS-Ⅱ),可以根据车辆行驶状态,灵活地使用2 种动力源,并且弥补2种动力源之间不足之处,从而降低燃油消耗,减少有害气体排放,发挥车辆的最大动力。由于其THS-Ⅱ电机及驱动系统结构复杂,技术先进,本文将为大家详细介绍该系统的结构及基本原理,以帮助读者更进一步了解THS-Ⅱ系统。 一、THS-Ⅱ电机及驱动控制系统的特点 1.在电动机和发电机之间采用AC500V高压电路传输,可以极大地降低动力传输中电能损耗,高效地传输动力。 2.采用大功率电机输出,提高电机的利用率。当发动机工作效率低时,此系统可以将发动机停机,车辆依靠电机动力行驶。 3.极大地增加了减速和制动过程中的能量回收,提高能量的利用率。 二、THS-Ⅱ电机及驱动系统基本组成 1.HV蓄电池:由168个单格镍氢电瓶(1.2V×6个电瓶×28个模块)组成,额定电压DC20 1.6V,安装在车辆后备厢内。在车辆起步、加速和上坡时,HV蓄电池将电能提供给驱动电机。 2.混合动力变速驱动桥:混合动力变速驱动桥由发电机MG1、驱动电机MG2和行星齿轮组成(图2)。

3.变频器:由增压转换器、逆变整流器、直流转换器、空调变频器组成。 (1)增压转换器:将HV蓄电池DC201.6V电压增压到DC500V(反之从DC500V降压到DC201.6V)。 (2)逆变整流器:将DC500V转换成AC500V,给电动机MG2供电。反之将AC500V 转换成DC500V,经降压后,给HV蓄电池充电。 (3)直流转换器:将HV蓄电池DC201.6V降为DC12V,为车身电器供电,同时为备用蓄电池充电。 (4)空调变频器:将HV蓄电池DC201.6V转换成AC201.6V交流电为空调系统中电动变频压缩机供电。 4.HV控制ECU采用32位计算机,接收来自传感器和ECU(发动机ECU、HV蓄电池ECU、制动防滑控制ECU、电动转向ECU)信息。根据此信息,计算车辆所需的扭矩和功率,将计算结果发送给发动机ECU,变频器总成,蓄电池ECU和制动防滑控制ECU。 三、THS-Ⅱ系统电机(MG1、MG2)工作原理 交流伺服驱动系统中,应用的交流永磁驱动电机有两大类。一类称为无刷直流同步电动机(BDCM),另一类称为三相永磁同步电动机(PMSM),THS-Ⅱ系统的电机(MG1、MG2)属于BDCM类型的驱动电机。 BDCM用装有永磁体转子代替了有刷直流电动机的定子磁极。有刷直流电动机依靠机械换向器,将直流电流转换成近似梯形波的交流电流。而BDCM是将逆变器产生的方波交流电流直接输入电机定子绕组,省去了机械换向器和电刷。BDCM定子绕组中通

相关主题