搜档网
当前位置:搜档网 › 复习提纲一解三角形

复习提纲一解三角形

复习提纲一解三角形
复习提纲一解三角形

复习提纲(一)解三角形

1.熟练掌握由三角形三个元素(至少有一边)求解三角形的其它元素方法;

2.三角形的有关定理:正、余弦定理;内角和定理;

3.常用的三角形面积公式.

一、解三角形:

1、根据下列条件,判断三角形解的个数

(1)a = 80°,b = 100,A =30°___________

(2)a = 50°,b = 100,A =30°___________

(3)a = 40°,b = 100,A =30°___________

2、在△ABC 中,若)())((c b b c a c a +=-+,则A ∠=( )

A .090

B .060

C .0120

D .0150

3、在△ABC 中,若B a b sin 2=,则A 等于( )

A .006030或

B .006045或

C .0060120或

D .0015030或

4、在△ABC 中,::1:2:3A B C =,则::a b c 等于( )

A .1:2:3

B .3:2:1

C .2

D .

5、在△ABC 中,若B A 2=,则a 等于( )

A .A b sin 2

B .A b cos 2

C .B b sin 2

D .B b cos 2

6、在△ABC 中,若角B 为钝角,则sin sin B A -的值( )

A .大于零

B .小于零

C .等于零

D .不能确定

7、在△ABC 中,若8,3,7===c b a ,则其面积等于( )

A .12

B .2

21 C .28 D .36

8、若在△ABC 中,060,1,ABC A b S ?∠===则

C B A c b a sin sin sin ++++=_______。 9、在ΔABC 中,已知sinA : sinB : sinC = 4 : 5 : 6,则 cosA : cosB : cosC =___________.

10、ΔABC 中,若AB = 1,BC = 2,则∠C 的取值范围是___________.

11、在△ABC 中,若=++=A c bc b a 则,222_________。

二、 判断三角形形状

1、在△ABC 中,角,A B 均为锐角,且,sin cos B A >则△ABC 的形状是( )

A .直角三角形

B .锐角三角形

C .钝角三角形

D .等腰三角形

2. 在△ABC 中,若2lg sin lg cos lg sin lg =--C B A ,则△ABC 的形状是( )

A .直角三角形

B .等边三角形

C .不能确定

D .等腰三角形

3.在△ABC 中,若,12,10,9===c b a 则△ABC 的形状是_________。

4.在△ABC 中,若,1cos cos cos 222=++C B A 则△ABC 的形状是______________。

5.在△ABC 中,若,cos cos cos C c B b A a =+则△ABC 的形状是什么?

6.在△ABC 中,若)sin()()sin()(2222B A b a B A b a +-=-+,请判断三角形的形状。

三、在三角形中的计算

1.在锐角△ABC 中,若2,3a b ==,则边长c 的取值范围是_________。

2.A 为△ABC 的内角,则A A cos sin +的取值范围是( )

A .)2,2(

B .)2,2(-

C .]2,1(-

D .]2,2[-

3.在△ABC 中,若,900=C 则三边的比

c

b a +等于( ) A .2cos 2B A + B .2cos 2B A - C .2sin 2B A + D .2sin 2B A - 4.已知ABC ?的顶点B ,C 为椭圆)0(122

22>>=+b a b

y a x 的焦点,A 在椭圆上, 60=∠C ,32=?ABC S ,AB=32,求椭圆的离心率。

5.在ABC ?中,内角A ,B,C 对边的边长分别是a,b,c ,已知c =2,C =3

π.

(Ⅰ)若ABC ?求a,b ;(Ⅱ)若sin sin()2sin 2C B A A +-=,求ABC ?的面积.

6.在ABC △中,内角A B C ,,对边的边长分别是a b c ,,,已知2c =,3

C π=

. (1)求b a +的最大值;

(2)若sin sin()2sin 2C B A A +-=,求ABC △的面积.

7.在ΔABC 中,已知 C = 4,A = 45°,B = 60°,求a 、b ,R 和S ΔABC .

8.在△ABC 中,设,3,2π=

-=+C A b c a 求B sin 的值。

9.在△ABC 中,0120,,ABC A c b a S => c b ,。

解三角形讲义

一、正弦定理 1、在ABC ?中: 2R sinC c sinB b sinA a ===(R 为△ABC 的外接圆半径) 。它的变式有:①a=2RsinA ,b=2RsinB ,c=2RsinC ;②; ,R c C R B R a A 2sin 2b sin 2sin ===③a :b :c=sinA :sinB :sinC 。 推论1:△ABC 的面积为:S △ABC =21absinC=21bcsinA=2 1 casinB (证明:由正弦函数定义,BC 边上的高为bsinC ,所以S △ABC = C ab sin 2 1 ) 。 推论2:在△ABC 中,有bcosC+ccosB=a 。(证明:因为B+C=π-A ,所以sin(B+C)=sinA ,即sinBcosC+cosBsinC=sinA ,两边同乘以2R 得bcosC+ccosB=a);还有两个式子为:acosC+ccosA=b ,bcosA+acosB=c 。 2、利用正弦定理,可以解决以下两类有关三角形的问题 ①已知两角和任意一边,求其他两边和一角; ②已知两边和其中一边对角,求另一边的对角,进而求出其他的边和角。 例1 △ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,已知a=2,?=45B ,分别求出下 式中角A 的值。①b= 2 1 ;②b=1;③b=332;④b=2;⑤b=2。【答①无解;②A=?90;③A=??12060或; ④A=?45;⑤A=?30。】 例2 在△ABC 中,已知AB=1,?=50C ,当B= 时,BC 的长取最大值。【答:?40】 3、推导并记住:42675cos 15sin -= = ,4 2 615cos 75sin +== 。 例3 在锐角△ABC 中,若C=2B ,则 b c 的范围是( ) A 、(0,2) B 、)2,2( C 、)3,2( D 、)3,1( 【答:C 】 例4 在△ABC 中,c=3,C=?60,求a+b 的最大值。 【答:23】 例5 在等腰△ABC 中,已知 2 1 sinB sinA =,BC=3,则△ABC 的周长为 。 【答:15】 4、角平分线定理:在△ABC 中,AD 平分∠BAC ,则AC AB DC BD = 。 例6 已知△ABC 的三条边分别是3、4、6,则它较大的锐角的平分线分三角形所成的两个三角形的面积比为( ) A 、1:1 B 、1:2 C 、1:4 D 、3:4 【答:B 】 练习1 △ABC 中,角A 、B 、C 所对的边分别为a 、b 、c 。若x a =,2=b ,?=45B ,且此三角形有两解,则x 的取值范围为 ( ) A 、)22,2( B 、22 C 、),2(+∞ D 、]22,2( 【答:A 】

(完整版)解三角形专题题型归纳

《解三角形》知识点、题型与方法归纳 一、知识点归纳(★☆注重细节,熟记考点☆★) 1.正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径) 变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式) 2sin ,sin ,sin 222a b c A B C R R R ===()(角化边公式) 3::sin :sin :sin a b c A B C =() sin sin sin (4),,sin sin sin a A a A b B b B c C c C === 2.正弦定理适用情况: (1)已知两角及任一边; (2)已知两边和一边的对角(需要判断三角形解的情况). 3.余弦定理及其推论 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+- 222 222 222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab +-= +-=+-= 4.余弦定理适用情况: (1)已知两边及夹角; (2)已知三边. 注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式. 5.常用的三角形面积公式 (1)高底??= ?2 1ABC S ; (2)()111=sin sin sin 2224abc S ab C ac B bc A R ABC R ===?为外接圆半径 (两边夹一角); 6.三角形中常用结论 (1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边) (2)sin sin (ABC A B a b A B ?>?>?>在中,即大边对大角,大角对大边) (3)在ABC ?中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-; ③()tan tan A B C +=-;④sin cos ,22A B C +=⑤cos sin 22 A B C += 7.实际问题中的常用角 (1)仰角和俯角

解三角形典型例题

1.正弦定理和余弦定理 在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则 2.S △ABC =2ab sin C =2bc sin A =2ac sin B =4R =2(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R ,r . 1.在△ABC 中,A >B ?a >b ?sin A >sin B ?cos A c; a-b

高中数学竞赛_解三角形【讲义】

第七章 解三角形 一、基础知识 在本章中约定用A ,B ,C 分别表示△ABC 的三个内角,a, b, c 分别表示它们所对的各边长, 2 c b a p ++= 为半周长。 1.正弦定理:C c B b A a sin sin sin ===2R (R 为△AB C 外接圆半径)。 推论1:△ABC 的面积为S △ABC =.sin 2 1 sin 21sin 21B ca A bc C ab == 推论2:在△ABC 中,有bcosC+ccosB=a. 推论3:在△ABC 中,A+B=θ,解a 满足 ) sin(sin a b a a -= θ,则a=A. 正弦定理可以在外接圆中由定义证明得到,这里不再给出,下证推论。先证推论1,由正弦函数定义, BC 边上的高为bsinC ,所以S △ABC =C ab sin 2 1 ;再证推论2,因为B+C=π-A ,所以sin(B+C)=sinA ,即sinBcosC+cosBsinC=sinA ,两边同乘以2R 得bcosC+ccosB=a ;再证推论3,由正弦定理B b A a sin sin =, 所以) sin() sin(sin sin A a A a --= θθ,即sinasin(θ-A)=sin(θ-a)sinA ,等价于21-[cos(θ-A+a)-cos(θ-A-a)]= 2 1 -[cos(θ-a+A)-cos(θ-a-A)],等价于cos(θ-A+a)=cos(θ-a+A),因为0<θ-A+a ,θ-a+A<π. 所以只有θ-A+a=θ-a+A ,所以a=A ,得证。 2.余弦定理:a 2=b 2+c 2 -2bccosA bc a c b A 2cos 2 22-+=?,下面用余弦定理证明几个常用的结论。 (1)斯特瓦特定理:在△ABC 中,D 是BC 边上任意一点,BD=p ,DC=q ,则AD 2=.22pq q p q c p b -++ (1) 【证明】 因为c 2=AB 2=AD 2+BD 2-2AD ·BDcos ADB ∠, 所以c 2=AD 2+p 2-2AD ·pcos .ADB ∠ ① 同理b 2=AD 2+q 2-2AD ·qcos ADC ∠, ② 因为∠ADB+∠ADC=π, 所以cos ∠ADB+cos ∠ADC=0, 所以q ×①+p ×②得 qc 2 +pb 2 =(p+q)AD 2 +pq(p+q),即AD 2 =.22pq q p q c p b -++ 注:在(1)式中,若p=q ,则为中线长公式.2 222 22a c b AD -+= (2)海伦公式:因为412 =? ABC S b 2c 2 sin 2 A=4 1b 2c 2 (1-cos 2 A)= 4 1 b 2 c 2 16 14)(12 22222=??????-+-c b a c b [(b+c)2-a 2 ][a 2 -(b-c) 2 ]=p(p-a)(p-b)(p-c). 这里 .2 c b a p ++= 所以S △ABC =).)()((c p b p a p p --- 二、方法与例题

解三角形应用举例练习高考试题练习

解三角形应用举例练习 班级 姓名 学号 得分 一、选择题 1.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α、β的关系为…………………( ) A.α>β B.α=β C.α+β=90° D.α+β=180° 2.在200米高的山顶上,测得山下一塔顶与塔底的俯角分别为30°、60°,则塔高为…..( ) A. 3 400 B. 33400米 C. 2003米 D. 200米 3.在?ABC 中, 已知sinA = 2 sinBcosC, 则?ABC 一定是…………………………………….( ) A. 直角三角形; B. 等腰三角形; C.等边三角形; D.等腰直角三角形. 4.如图,△ABC 是简易遮阳棚,A 、B 是南北方向上两个定点,正东方向射出的太阳光线与地面 成40°角,为了使遮阴影面ABD 面积最大,遮阳棚ABC 与地面所成的角为……………….( ) A C D B 阳光地面 A.75° B.60° C.50° D.45° 5.台风中心从A 地以20 km/h 的速度向东北方向移动,离台风中心30 km 内的地区为危险区,城市B 在A 的正东40 km 处,B 城市处于危险区内的时间为…………………………………..( ) A.0.5 h B.1 h C.1.5 h D.2 h 6.在△ABC 中,已知b = 6,c = 10,B = 30°,则解此三角形的结果是 …………………( ) A 、无解 B 、一解 C 、两解 D 、解的个数不能确定 二、填空题 7. 甲、乙两楼相距20米,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高分别是 8.我舰在敌岛A 南50°西相距12nmile 的B 处,发现敌舰正由岛沿北10°西的方向以10nmile/h 的速度航行,我舰要用2小时追上敌舰,则需要速度的大小为 9.有一两岸平行的河流,水速为1,小船的速度为2,为使所走路程最短,小船应朝_______方 向行驶. C D 12 A B D 6045 0 m o o 10..在一座20 m 高的观测台顶测得地面一水塔塔顶仰角为60°,塔底俯角为45°,那么这座塔的 高为_______.

解三角形专题题型归纳

解三角形专题题型归纳

《解三角形》知识点、题型与方法归纳 一、知识点归纳(★☆注重细节,熟记考点☆★) 1.正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径) 变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式) 2sin ,sin ,sin 222a b c A B C R R R ===()(角化边公式) 3::sin :sin :sin a b c A B C =() sin sin sin (4),,sin sin sin a A a A b B b B c C c C === 2.正弦定理适用情况: (1)已知两角及任一边; (2)已知两边和一边的对角(需要判断三角形解的情况). 3.余弦定理及其推论 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+- 222 222222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab +-=+-=+-= 4.余弦定理适用情况: (1)已知两边及夹角; (2)已知三边. 注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式. 5.常用的三角形面积公式 (1)高底??=?2 1ABC S ; (2)()111=sin sin sin 2224abc S ab C ac B bc A R ABC R ===?为外接圆半径 (两边夹一角); 6.三角形中常用结论 (1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边) (2)sin sin (ABC A B a b A B ?>?>?>在中,即大边对大角,大角对大边) (3)在ABC ?中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-; ③()tan tan A B C +=-;④sin cos ,22A B C +=⑤cos sin 22 A B C += 7.实际问题中的常用角 (1)仰角和俯角

解三角形典型例题答案

1. 解:cos cos cos ,sin cos sin cos sin cos a A b B c C A A B B C C +=+= sin 2sin 2sin 2,2sin()cos()2sin cos A B C A B A B C C +=+-= cos()cos(),2cos cos 0A B A B A B -=-+= cos 0A =或cos 0B =,得2A π=或2B π= 所以△ABC 是直角三角形。 2. 证明:将ac b c a B 2cos 222-+=,bc a c b A 2cos 2 22-+=代入右边 得右边22222222 22()222a c b b c a a b c abc abc ab +-+--=-= 22a b a b ab b a -==-=左边, ∴)cos cos (a A b B c a b b a -=- 3.证明:∵△AB C 是锐角三角形,∴,2A B π+>即022A B ππ>>-> ∴sin sin()2 A B π >-,即sin cos A B >;同理sin cos B C >;sin cos C A > ∴C B A C B A cos cos cos sin sin sin ++>++ 4.解:∵2,a c b +=∴sin sin 2sin A C B +=,即2sin cos 4sin cos 2222 A C A C B B +-=, ∴1sin cos 222B A C -==0,22 B π<<∴cos 2B = ∴sin 2sin cos 22244B B B ==?=839 5解:22222222sin()sin cos sin ,sin()cos sin sin a b A B a A B A a b A B b A B B ++===-- cos sin ,sin 2sin 2,222cos sin B A A B A B A B A B π===+=或2 ∴等腰或直角三角形 6解:2sin sin 2sin sin )sin ,R A A R C C b B ?-?=- 222sin sin )sin ,,a A c C b B a c b -=--=-

最全面的解三角形讲义

解三角形 【高考会这样考】 1.考查正、余弦定理的推导过程. 2.考查利用正、余弦定理判断三角形的形状. 3.考查利用正、余弦定理解任意三角形的方法. 4.考查利用正弦定理、余弦定理解决实际问题中的角度、方向、距离及测量问题. 基础梳理 1.正弦定理:a sin A =b sin B =c sin C =2R ,其中R 是三角形外接圆的半径.由正弦定理可以变 形为: (1)a ∶b ∶c =sin A ∶sin B ∶sin C ; (2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ; (3)sin A =a 2R ,sin B =b 2R ,sin C =c 2R 等形式,以解决不同的三角形问题. 2.余弦定理:a 2 =b 2 +c 2 -2bc cos_A ,b 2 =a 2 +c 2 -2ac cos_B ,c 2 =a 2 +b 2 -2ab cos_C .余弦定 理可以变形为:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 2 2ab . 3.面积公式:S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =1 2(a +b +c )·r (R 是三角形外接 圆半径,r 是三角形内切圆的半径),并可由此计算R ,r . 4.已知两边和其中一边的对角,解三角形时,注意解的情况.如已知a ,b ,A ,则 A 为锐角 A 为钝角或直角 图形 关系 式 a <b sin A a =b sin A b sin A <a <b a ≥b a >b a ≤b 解的 个数 无解 一解 两解 一解 一解 无解 5.用正弦定理和余弦定理解三角形的常见题型 测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等.

高中数学-解三角形应用举例练习及答案

高中数学-解三角形应用举例练习 一、选择题 1. △ABC 中,sin 2A =sin 2B +sin 2C ,则△ABC 为………………………………………………( ) A.直角三角形 B.等腰直角三角形 C.等边三角形 D.等腰三角形 2.海上有A 、B 两个小岛相距10海里,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,则B 、C 间的距离是……………………………………………………….( ) A.103海里 B.3610海里 C. 52海里 D.56海里 3. 有一长为1公里的斜坡,它的倾斜角为20°,现要将倾斜角改为10°,则坡底要伸长( ) A. 1公里 B. sin10°公里 C. cos10°公里 D. cos20°公里 4. .已知平行四边形ABCD 满足条件0)()(=-?+→ -→-→-→-AD AB AD AB ,则该四边形是………( ) A.矩形 B.菱形 C.正方形 D.任意平行四边形 5. 一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°, 另一灯塔在船的南偏西75°,则这只船的速度是每小时………………………………………………………………………………………… . ( ) A.5海里 B.53海里 C.10海里 D.103海里 6.某人站在山顶向下看一列车队向山脚驶来,他看见第一辆车与第二辆车的俯角差等于他看见第二辆车与第三辆车的俯角差,则第一辆车与第二辆车的距离1d 与第二辆车与第三辆车的距离d 2之间的关系为 ………………………………………………………………………..( ) A. 21d d > B. 21d d = C. 21d d < D. 不能确定大小 二、 填空题

高中数学解三角形题型完整归纳

高中数学解三角形题型目录一.正弦定理 1.角角边 2.边边角 3.与三角公式结合 4.正弦定理与三角形增解的应对措施 5.边化角 6.正弦角化边 二.余弦定理 1.边边边 2.边角边 3.边边角 4.与三角公式结合 5.比例问题 6.余弦角化边 7.边化余弦角 三.三角形的面积公式 1.面积公式的选用 2.面积的计算 3.正、余弦定理与三角形面积的综合应用 四.射影定理 五.正弦定理与余弦定理综合应用 1.边角互化与三角公式结合 2.与平面向量结合 3.利用正弦或余弦定理判断三角形形状 4.三角形中的最值问题 (1)最大(小)角 (2)最长(短)边 (3)边长或周长的最值

(4)面积的最值 (5)有关正弦或余弦或正切角等的最值 (6)基本不等式与余弦定理交汇 (7)与二次函数交汇 六.图形问题 1.三角形内角之和和外角问题 2.三角形角平分线问题 3.三角形中线问题 4.三角形中多次使用正、余弦定理 5.四边形对角互补与余弦定理的多次使用 6.四边形与正、余弦定理 六.解三角形的实际应用 1.利用正弦定理求解实际应用问题 2.利用余弦定理求解实际应用问题 3.利用正弦和余弦定理求解实际应用问题 一.正弦定理 1.角角边 ?=?=?= 例.在中,解三角形 ABC A B a 30,45,2,. ?=?=?== 练习1.在中则 ABC A B a c ,30,45, . 练习2.在中,已知45,,求 ?=?=?= 30. ABC C A a b 2.边边角 例中,解这个三角形?===? ABC a .45,. 练习1中,则 ?==+== . 1,2,sin ABC a b A C B C 练习2.中则 ?===?= ,3,60,_____ ABC c b C A

正弦定理余弦定理综合应用解三角形经典例题老师

一、知识梳理 1.内角和定理:在ABC ?中,A B C ++=π;sin()A B +=sin C ;cos()A B +=cos C - 面积公式: 111 sin sin sin 222ABC S ab C bc A ac B ?= == 在三角形中大边对大角,反之亦然. 2.正弦定理:在一个三角形中,各边和它的所对角的正弦的比相等. 形式一:R C c B b A a 2sin sin sin === (解三角形的重要工具) 形式二: ?? ? ??===C R c B R b A R a sin 2sin 2sin 2 (边角转化的重要工具) 形式三:::sin :sin :sin a b c A B C = 形式四: sin ,sin ,sin 222a b c A B C R R R = == 3.余弦定理:三角形任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍.. 形式一:2 2 2 2cos a b c bc A =+- 2 2 2 2cos b c a ca B =+- 222 2cos c a b ab C =+-(解三角形的重要工具) 形式二: 222cos 2b c a A bc +-= 222cos 2a c b B ac +-= 222 cos 2a b c C ab +-= 二、方法归纳 (1)已知两角A 、B 与一边a ,由A +B +C =π及sin sin sin a b c A B C == ,可求出角C ,再求b 、c . (2)已知两边b 、c 与其夹角A ,由a 2=b 2+c 2 -2b c cosA ,求出a ,再由余弦定理,求出角B 、C . (3)已知三边a 、b 、c ,由余弦定理可求出角A 、B 、C . (4)已知两边a 、b 及其中一边的对角A ,由正弦定理sin sin a b A B = ,求出另一边b 的对角B ,由C =π-(A +B ),求出c ,再由sin sin a c A C =求出C ,而通过sin sin a b A B = 求B 时,可能出一解,两解或无解的情况 a = b sinA 有一解 b >a >b sinA 有两解 a ≥b 有一解 a >b 有一解 三、课堂精讲例题 问题一:利用正弦定理解三角形

高中数学解三角形的实际应用举例综合测试题(含答案)

高中数学解三角形的实际应用举例综合测 试题(含答案) 解三角形的实际应用举例同步练习 1.在△ABC中,下列各式正确的是() A. ab =sinBsinA B.asinC=csinB C.asin(A+B)=csinA D.c2=a2+b2-2abcos(A+B) 2.已知三角形的三边长分别为a、b、a2+ab+b2 ,则这个三角形的最大角是() A.135 B.120 C.60 D.90 3.海上有A、B两个小岛相距10 nmile,从A岛望B岛和C 岛成60的视角,从B岛望A岛和C岛成75角的视角,则B、C间的距离是() A.52 nmile B.103 nmile C. 1036 nmile D.56 nmile 4.如下图,为了测量隧道AB的长度,给定下列四组数据,测量应当用数据 A.、a、b B.、、a C.a、b、 D.、、 5.某人以时速a km向东行走,此时正刮着时速a km的南风,那么此人感到的风向为,风速为. 6.在△ABC中,tanB=1,tanC=2,b=100,则c=. 7.某船开始看见灯塔在南偏东30方向,后来船沿南偏东60 的方向航行30 nmile后看见灯塔在正西方向,则这时船与灯

塔的距离是. 8.甲、乙两楼相距20 m,从乙楼底望甲楼顶的仰角为60,从甲楼顶望乙楼顶的俯角为300,则甲、乙两楼的高分别是. 9.在塔底的水平面上某点测得塔顶的仰角为,由此点向塔沿直线行走30米,测得塔顶的仰角为2,再向塔前进103 米,又测得塔顶的仰角为4,则塔高是米. 10.在△ABC中,求证:cos2Aa2 -cos2Bb2 =1a2 -1b2 . 11.欲测河的宽度,在一岸边选定A、B两点,望对岸的标记物C,测得CAB=45,CBA=75,AB=120 m,求河宽.(精确到0.01 m) 12.甲舰在A处,乙舰在A的南偏东45方向,距A有9 nmile,并以20 nmile/h的速度沿南偏西15方向行驶,若甲舰以28 nmile/h的速度行驶,应沿什么方向,用多少时间,能尽快追上乙舰? 答案 1.C 2.B 3.D 4.C 5.东南2 a 6.40 7.103 8.203 ,203 3 9.15 10.在△ABC中,求证:cos2Aa2 -cos2Bb2 =1a2 -1b2 . 提示:左边=1-2sin2Aa2 -1-2sin2Bb2 =(1a2 -1b2 )-2(sin2Aa2 -sin2Bb2 )=右边. 11.欲测河的宽度,在一岸边选定A、B两点,望对岸的标

解三角形专题题型归纳

《解三角形》知识点、题型与方法归纳 1.正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径) 变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式) 2sin ,sin ,sin 222a b c A B C R R R ===()(角化边公式) 3::sin :sin :sin a b c A B C =() sin sin sin (4),,sin sin sin a A a A b B b B c C c C === 2.正弦定理适用情况: (1)已知两角及任一边; (2)已知两边和一边的对角(需要判断三角形解的情况). 3.余弦定理及其推论 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+- 222 222 222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab +-= +-=+-= 4.余弦定理适用情况: (1)已知两边及夹角; (2)已知三边. 注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式. 5.常用的三角形面积公式 (1)高底??= ?2 1ABC S ; (2)()111=sin sin sin 2224abc S ab C ac B bc A R ABC R ===?为外接圆半径 (两边夹一角); 6.三角形中常用结论 (1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边) (2)sin sin (ABC A B a b A B ?>?>?>在中,即大边对大角,大角对大边) (3)在ABC ?中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-; ③()tan tan A B C +=-;④sin cos ,22A B C +=⑤cos sin 22A B C += 解三角形有用的结论

解三角形的必备知识和典型例题及习题

解三角形的必备知识和典型例题及习题一、知识必备: 1.直角三角形中各元素间的关系: 在△ABC中,C=90°,AB=c,AC=b,BC=a。 2 2 2 (1)三边之间的关系: a + b =c 。(勾股定理) (2)锐角之间的关系:A+B=90°; (3)边角之间的关系:(锐角三角函数定义) sin A=cos B=a c ,cos A=sin B= b c ,tan A= a b 。 2.斜三角形中各元素间的关系: 在△ABC中,A、B、C为其内角,a、b、c 分别表示A、B、C的对边。(1)三角形内角和:A+B+C=π。 (2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等 a sin A b sin B c sin C 2R (R为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍 2 2 2 2 2 2 2 2 2 a = b + c -2bc cos A; b =c +a -2ca cos B; c =a +b -2ab cos C。 3 .三角形的面积公式: (1)S =1 2 ah a= 1 2 bh b= 1 2 ch c(h a、h b、h c 分别表示a、b、c 上的高); (2)S =1 2 ab sin C= 1 2 bc sin A= 1 2 ac sin B; 4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.主要类型: (1)两类正弦定理解三角形的问题: 第1、已知两角和任意一边,求其他的两边及一角. 第2、已知两角和其中一边的对角,求其他边角. (2)两类余弦定理解三角形的问题: 第1、已知三边求三角. 第2、已知两边和他们的夹角,求第三边和其他两角. 5.三角形中的三角变换 三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。

解三角形完整讲义

正余弦定理知识要点: 1、正弦定理:或变形: 2、余弦定理:或 3、解斜三角形的常规思维方法是: (1 )已知两角和一边(如A、B C),由A+B+C = n求C,由正弦定理求a、b; (2)已知两边和夹角(如a、b、c),应用余弦定理求c边;再应用正弦定理先求较短边所对的角,然后利用A+B+C = n求另一角; (3)已知两边和其中一边的对角(如a、b、A),应用正弦定理求B,由A+B+C = n求C, 再由正弦定理或余弦定理求c边,要注意解可能有多种情况; (4)已知三边a、b、c,应余弦定理求A、B,再由A+B+C = n求角C。 4、判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式? 5、解三角形问题可能出现一解、两解或无解的情况,这时应结合三角形中大边对大角定理及几何作图来帮助理解”。 6、已知三角形两边a,b,这两边夹角C,则S = 1/2 * absinC 7、三角学中的射影定理:在△ ABC中,,… &两内角与其正弦值:在△ ABC中,,… 【例题】在锐角三角形ABC中,有(B ) A. cosA>sinB 且cosB>sinA B. cosAsinB 且cosBsinA 9、三角形内切圆的半径:,特别地, 正弦定理 专题:公式的直接应用 1、已知中,,,,那么角等于() A. B. C. D. 2、在厶AB(中, a=, b =, B= 45°贝U A 等于(C ) A. 30 ° B. 60 ° C. 60 或120 ° D 30 或150 3、的内角的对边分别为,若,则等于() A. B. 2 C. D. 4、已知△ AB(中,,,则a等于(B ) A. B. C. D. 5、在△ AB(中, = 10 , B=60° ,C=4则等于(B ) A. B. C. D. 6、已知的内角,,所对的边分别为,,,若,,则等于.() 7、△ AB(中,,,,则最短边的边长等于(A ) A . B. C . D . & △ AB(中,,的平分线把三角形面积分成两部分,则( C ) A . B . C . D . 9、在△ AB(中,证明:。 证明: 由正弦定理得: 专题:两边之和 1、在厶AB(中, A= 60 ° B= 45 则a = (,)

解三角形应用举例最新衡水中学自用精品教学设计

解三角形应用举例 主标题:解三角形应用举例 副标题:为学生详细的分析解三角形应用举例的高考考点、命题方向以及规律总结。 关键词:距离测量,高度测量,仰角,俯角,方位角,方向角 难度:3 重要程度:5 考点剖析: 能够运用正弦定理、余弦定理等知识解决一些与测量和几何计算有关的实际问题. 命题方向: 1.测量距离问题是高考的常考内容,既有选择、填空题,也有解答题,难度适中,属中档题. 2.高考对此类问题的考查常有以下两个命题角度: (1)测量问题; (2)行程问题. 规律总结: 1个步骤——解三角形应用题的一般步骤 2种情形——解三角形应用题的两种情形 (1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解. (2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解. 2个注意点——解三角形应用题应注意的问题 (1)画出示意图后要注意寻找一些特殊三角形,如等边三角形、直角三角形、等腰三角形等,这样可以优化解题过程. (2)解三角形时,为避免误差的积累,应尽可能用已知的数据(原始数据),少用间接求出的量.

知识梳理 1.距离的测量 背景可测元素图形目标及解法 两点均可到达a,b,α 求AB:AB= a2+b2-2ab cos α 只有一点可到达b,α,β 求AB:(1)α+β+B=π; (2) AB sin β= b sin B 两点都不可到达a,α,β, γ,θ 求AB:(1)△ACD中,用 正弦定理求AC; (2)△BCD中,用正弦定理 求BC; (3)△ABC中,用余弦定理 求AB 2.高度的测量 背景可测元素图形目标及解法 底部可 到达 a,α求AB:AB=a tan_α 底部不可到达a,α,β 求AB:(1)在△ACD中用正弦 定理求AD;(2)AB=AD sin_β 3.实际问题中常见的角 (1)仰角和俯角 在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫仰角,目标视线在水平视线下方时叫俯角(如图1).

高考中《解三角形》题型归纳

1 《解三角形》题型归纳 【题型归纳】 题型一正弦定理、余弦定理的直接应用 例1ABC ?的内角A ,B ,C 的对边分别为a ,b ,c ,已知2sin()8sin 2B A C +=. (1)求cos B (2)若6a c +=,ABC ?面积为2,求b . 【答案】(1)15 cos 17B =(2)2b =. 【解析】由题设及A B C π++=得2sin 8sin 2B B =,故sin 4(1cos )B B =-. 上式两边平方,整理得217cos 32cos 150B B -+=, 解得cos 1B =(舍去),15 cos 17B =. (2)由15cos 17B =得8sin 17B =,故1 4 sin 217ABC S ac B ac ?==. 又2ABC S ?=,则17 2ac =. 由余弦定理及6a c +=得22222cos ()2(1cos ) b a c ac B a c ac B =+-=+-+17 15 362(14217=-??+=. 所以2b =. 【易错点】二倍角公式的应用不熟练,正余弦定理不确定何时运用 【思维点拨】利用正弦定理列出等式直接求出 例2ABC △的内角,,A B C 的对边分别为,,a b c ,若2cos cos cos b B a C c A =+,则B =.【答案】π3【解析】1 π 2sin cos sin cos sin cos sin()sin cos 23B B A C C A A C B B B =+=+=?=?= .

2【易错点】不会把边角互换,尤其三角恒等变化时,注意符号。 【思维点拨】边角互换时,一般遵循求角时,把边换成角;求边时,把角转换成边。 例3在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若b =1,c =3,C =23 π,则S △ABC =________.【答案】34 【解析】因为c >b ,所以B <C ,所以由正弦定理得b sin B =c sin C ,即1sin B =3sin 2π3=2,即sin B =12,所以B =π6,所以A =π-π6-2π3=π6.所以S △ABC =12bc sin A =12×3×12=34 .【易错点】大边对大角,应注意角的取值范围 【思维点拨】求面积选取公式时注意,一般选取已知角的公式,然后再求取边长。题型二利用正弦定理、余弦定理判定三角形的形状 例1在ABC ?中,角,,A B C 的对边分别为,,a b c ,且,,A B C 成等差数列 (1)若2b c ==,求ABC ?的面积 (2)若sin ,sin ,sin A B C 成等比数列,试判断ABC ?的形状 【答案】(1)32(2)等边三角形 【解析】(1)由A ,B ,C 成等差数列,有2B =A +C (1) 因为A ,B ,C 为△ABC 的内角,所以A +B +C =π.(2) 得B =3π, b 2=a 2+ c 2-2accosB (3)所以3 cos 44)32(22πa a -+=解得4=a 或2-=a (舍去)所以323 sin 2421sin 21=??==?πB ac s ABC (2)由a ,b ,c 成等比数列,有b 2=ac (4) 由余弦定理及(3),可得b 2=a 2+c 2-2accosB =a 2+c 2-ac 再由(4),得a 2+c 2-ac =ac ,即(a -c )2=0。因此a =c 从而A =C (5) 由(2)(3)(5),得A =B = C =3 π

(完整版)解三角形三类经典题型

解三角形三类经典类型 类型一 判断三角形形状 类型二 求范围与最值 类型三 求值专题 类型一 判断三角形形状 例1:已知△ABC 中,bsinB=csinC,且C B A 2 22sin sin sin +=,试判断三角形的形状. 解:∵bsinB=csinC,由正弦定理得 sin 2B=sin 2 C ,∴ sinB=sinC ∴ B=C 由 C B A 222sin sin sin += 得 2 22c b a += ∴三角形为等腰直角三角形. 例2:在△ABC 中,若B=ο 60,2b=a+c,试判断△ABC 的形状. 解:∵2b=a+c, 由正弦定理得2sinB=sinA+sinC,由B=ο 60得sinA+sinC=3 由三角形内角和定理知sinA+sin(A -ο 120)=3,整理得 sin(A+ο30)=1 ∴A+ο ο ο 60,9030==A 即,所以三角形为等边三角形. 例3:在△ABC 中,已知2 2 tan tan b a B A =,试判断△ABC 的形状. 解:法1:由题意得 B A A B B A 2 2sin sin cos sin cos sin =,化简整理得sinAcosA=sinBcosB 即sin2A=sin2B ∴2A=2B 或2A+2B=π ∴A=B 或2 π = +B A ,∴三角形的形状为等腰三角形或直角三角形. 法2:由已知得22cos sin cos sin b a A B B A =结合正、余弦定理得2 222222222b a bc a c b b a c b c a a =-+? -+? , 整理得0))((2 2 2 2 2 =-+-c b a b a ∴ 2 2222c b a b a =+=或 即三角形为等腰三角形或直角三角形 例4:在△ABC 中,(1)已知sinA=2cosBsinC ,试判断三角形的形状; (2)已知sinA= C B C B cos cos sin sin ++,试判断三角形的形状. 解:(1)由三角形内角和定理得 sin(B+C)=2cosBsinC 整理得sinBcosC -cosBsinC=0即sin(B -C)=0 ∴ B=C 即三角形为等腰三角形. (2)由已知得 sinAcosB+sinAcosC=sinB+sinC ,结合正、余弦定理得

必修5 解三角形复习讲义

解三角形复习 【知识梳理】 1、正弦定理:在C ?AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ?AB 的外接圆的半径,则有 2sin sin sin a b c R C ===A B . 2、正弦定理的变形公式: ①2sin a R =A ,2sin b R =B ,2sin c R C =; ②sin 2a R A =,sin 2b R B =,sin 2c C R =; ③::sin :sin :sin a b c C =A B ; ④ sin sin sin sin sin sin a b c a b c C C ++===A +B +A B . 3.解决以下两类问题: ①已知三角形的任意两角及其一边可以求其他边,如sin sin b A a B =;(唯一解) ②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sin a A B b =。 (一解或两解) 4、三角形面积公式:111sin sin sin 222 C S bc ab C ac ?AB = A == B . 5.余弦定理: 形式一:A cos bc 2c b a 222?-+=,B cos ac 2c a b 222?-+=,C cos ab 2b a c 222?-+= 形式二:bc 2a c b A cos 222-+=,ac 2b c a B cos 222-+=,ab 2c b a C cos 222-+=,(角到边的转换) 6.解决以下两类问题: 1)、已知三边,求三个角;(唯一解) 2)、已知两边和它们的夹角,求第三边和其他两个角;(唯一解)

相关主题