搜档网
当前位置:搜档网 › 高速铁路设计新规范(隧道篇)2015年2月1日执行

高速铁路设计新规范(隧道篇)2015年2月1日执行

高速铁路设计新规范(隧道篇)2015年2月1日执行
高速铁路设计新规范(隧道篇)2015年2月1日执行

8 隧道

8.1 一般规定

8.1.1 隧道设计必须考虑列车进入隧道诱发的空气动力学效应对行车、旅客舒适度、隧道结构和环境等方面的不利影响。

8.1.2 隧道衬砌内轮廓应符合建筑限界、设备安装、使用空间、结构受力和缓解空气动力学效应等要求。

8.1.3 隧道结构应满足耐久性要求,主体结构设计使用年限应为100 年。

8.1.4 隧道主体工程完工后,应对其特殊岩土及不良地质地段基底的变形进行观测。

8.1.5 隧道辅助坑道的设置应综合考虑施工、防灾救援疏散和缓解空气动力学效应等功能的要求。

8.1.6 隧道结构防水等级应达到一级标准。

8.2 衬砌内轮廓

8.2.1 隧道衬砌内轮廓的确定应考虑下列因素:

1 隧道建筑限界;

2 股道数及线间距;

3 隧道设备空间;

4 空气动力学效应;

5 轨道结构形式及其运营维护方式。

8.2.2 隧道净空有效面积应符合下列规定:

1 设计行车速度目标值为300、350km/h 时,双线隧道不应小于100

m2,

单线隧道不应小于70 m2。

2 设计行车速度目标值为250km/h 时,双线隧道不应小于90 m2,单线隧道不应小于58 m2。

8.2.3 曲线上的隧道衬砌内轮廓可不加宽。

61

8.2.4 隧道内应设置救援通道和安全空间,并符合下列规定:

1 救援通道

1)隧道内应设置贯通的救援通道。单线隧道单侧设置,双线隧道双侧

设置,救援通道距线路中线不应小于2.3m。

2)救援通道的宽度不宜小于1.5m,在装设专业设施处可适当减少;高

度不应小于2.2m。

3)救援通道走行面不应低于轨面,走行面应平整、铺设稳固;

2 安全空间

1)安全空间应设在距线路中线3.0m 以外,单线隧道在救援通道一侧设置,多线隧道在双侧设置;

2)安全空间的宽度不应小于0.8m,高度不应小于2.2m。

8.2.5 双线、单线隧道衬砌内轮廓如图8.2.5-1~4 所示。

图8.2.5-1 时速250km/h 双线隧道内轮廓(单位:cm)

图8.2.5-2 时速300、350km/h 双线隧道内轮廓(单位:cm)

内轨顶面路

线

隧线

线

线

线

62

线

内轨顶面线

线

图8.2.5-3 时速250km/h 单线隧道内轮廓(单位:cm)

线

线

线

内轨顶面

图8.2.5-4 时速300、350km/h 单线隧道内轮廓(单位:cm)

8.3 隧道衬砌

8.3.1 暗挖隧道应采用复合式衬砌,明挖隧道应采用整体式衬砌。

8.3.2 防水型隧道二次衬砌应考虑静水压力对结构受力的影响。8.3.3 Ⅰ、Ⅱ级围岩隧道衬砌宜采用曲墙带底板的结构形式,Ⅲ~Ⅵ级围岩隧道衬砌应采用曲墙有仰拱的结构形式。

8.3.4 隧道衬砌内轮廓宜采用圆形断面,单线隧道可采用三心圆断面,

边墙与仰拱应圆顺连接。

8.3.5 隧道衬砌混凝土强度等级不应低于C30,钢筋混凝土强度等级不

63

应低于C35。Ⅰ、Ⅱ级围岩隧道衬砌底板厚度不应小于30cm,混凝土强度

等级不应低于C35,并应配置双层钢筋。仰拱填充混凝土强度等级不应低于

C20。

8.3.6 隧道二次衬砌Ⅳ~Ⅵ级围岩地段宜采用钢筋混凝土;Ⅰ~Ⅲ级围岩地段宜采用混凝土,并可掺加一定比例的纤维,减少混凝土表面裂纹。

8.4 洞内附属构筑物

8.4.1 隧道内设备专用洞室应根据相关专业要求设置。可不设置供维修人员使用的避车洞。

8.4.2 隧道内应设置双侧电缆槽,电缆槽盖板应平整,铺设稳固。8.4.3 水沟或电缆槽结构外缘至同侧轨道中线的距离,不应小于

2.20m,

靠近道床一侧的沟(槽)身应增设构造钢筋。

8.4.4 隧道长度大于500m 时,应在洞内设置余长电缆腔,可与专用洞

室结合设置。余长电缆腔应沿隧道两侧交错布置,每侧间距宜为500m。长

度为500~1000m 的隧道,可只在其中部设置一处。

8.4.5 当隧道长度大于2000m 时,可根据接触网设计要求在洞内设置下锚区段。下锚区段宜布置在地质条件较好的地段。

当隧道内接触网固定结构采用预埋滑槽时,隧道衬砌结构应采取必要的加强措施。

8.4.6 隧道衬砌结构应按照有关专业要求预埋综合接地系统相关的设

施。电缆过轨通道宜采用预埋过轨管方式。

8.4.7 高速铁路隧道内附属构筑物设计应考虑高速列车通过隧道时所

产生的压力变化和列车风对附属构筑物结构及安装件的附加受力影响,设

计时应按照最不利情况组合考虑。

8.5 洞口结构

8.5.1 隧道洞口设计应结合地形、地质和环境条件,综合考虑景观要求,贯彻执行“早进晚出”的设计理念。隧道洞门优先选用斜切式和帽檐式结

构形式,以减少洞口边仰坡开挖。

64

8.5.2 当洞口附近有建筑物或特殊环境要求时,宜设置洞口缓冲结构,

并符合表8.5.2 要求。

表8.5.2 洞口缓冲结构设置要求

建筑物至洞口距离建筑物有无特殊环境要求基准点微气压波峰值<50m

建筑物

按要求

无≤20Pa

≥50m 有距洞口20m 处<50Pa

8.5.3 隧道洞口缓冲结构设置应考虑列车类型及长度、隧道长度、隧道净空有效面积、隧道轨道类型、隧道洞口附近地形和居民情况等因素。

8.5.4 洞口缓冲结构设计应符合下列规定:

1 缓冲结构形式应从实用美观角度出发,结合洞口附近的地形环境条件确定,宜采用与隧道衬砌内轮廓形状相似的开孔式结构,也可采用其他

结构形式;

2 缓冲结构当横断面不变时,侧面或顶面应开减压孔,减压孔面积可根据实际情况确定,宜为隧道净空有效面积的1/5~1/3;

3 缓冲结构宜采用钢筋混凝土结构;

4 预留设置缓冲结构条件的洞口,当有路基挡土墙时,其位置应在缓冲结构之外。

8.5.5 隧道洞口上方有公路跨越时,公路应设置防撞护栏及监测设备。

8.5.6 两座隧道洞口距离小于30m 时,宜采用明洞形式将两座隧道连接,以提高列车安全性和旅客舒适性。

8.6 防排水

8.6.1 隧道防排水设计方案应结合隧道洞身水环境要求和水文地质条

件确定。隧道防排水应采取“防、堵、截、排,因地制宜,综合治理”的原则。

地下水环境保护要求高、埋深浅的隧道应采用全断面封闭防水。

8.6.2 初期支护与二次衬砌之间应铺设防水板,防水板厚度不得小于1.5mm。

65

8.6.3 新建铁路双线隧道应设置双侧水沟和中心水沟,中心水沟应与双侧水沟相连通。干燥无水或排放量很小的隧道,可不设中心水沟。

8.6.4 隧道衬砌背后应设置与排水沟连通的环、纵向排水盲管。环、纵向排水盲管应直接引水入侧沟。

8.6.5 水沟断面应根据水量大小确定。水沟的设置应考虑清理和检查要求;暗埋中心排水沟应设检查井。检查井间距不宜大于50m,其盖板面

宜与隧底填充面齐平。

8.6.6 侧沟在边墙衬砌侧应预留进水孔,间距不宜大于4m。侧沟与中心水沟间应设置排水管,间距不大于50m。

8.6.7 隧道衬砌结构的施工缝、变形缝应按一级防水要求采取可靠的防水措施。

8.6.8 隧道洞内排水系统应与洞外排水系统顺接,必要时设置具有检

修、维护功能的缓冲井(池)。

8.6.9 洞外排水设施应满足以下要求:

1 应避开不良、不稳定地质体,以较短途径引排到自然稳定的沟谷中;经路堑侧沟、涵洞排放时,应采用无缝顺接,并保证过水能力满足要求,

防止雍水。

2 对洞口范围威胁施工及运营安全的地表径流、坑洞、漏斗、陷穴、裂缝等,应采取封闭、引排、截流等工程措施消除安全隐患。

3 对横跨洞口的自然冲沟、水渠,当沟底高程大于隧道洞顶高程时,优先采用明洞顶设渡槽排水方案。

8.7 运营通风

8.7.1 隧道运营通风应根据隧道长度、隧道平面与纵断面、道床类型、行车密度、自然条件、气象条件及两端洞口地形条件等因素综合确定,长

度大于20km 的隧道宜设置运营通风。

8.7.2 紧急救援站应设置防灾通风,避难所和有紧急出口的隧道应设置应急通风;防灾通风应在火灾情况下能控制烟雾扩散方向,与人员疏散

66

相反方向的风速不应小于2.0m/s;防灾通风应与运营通风结合考虑。

8.7.3 隧道通风方式应根据技术、经济条件,考虑工务维修、防灾救援等因素,综合比选确定。

8.8 防灾救援疏散

8.8.1 隧道防灾救援疏散应贯彻“以人为本,应急有备,方便自救,安

全疏散”的工作方针。健全防灾救援疏散系统,预防灾害发生,将列车发生

灾害事故后所产生的影响减少到最低程度。

8.8.2 长度大于10km 的隧道宜采用两个单线隧道方案。

8.8.3 长度为20km 及以上的隧道应设置紧急救援站,紧急救援站之间

的距离不应大于20km;长度10km 到20km 之间的隧道应设置避难所;长度

10km 到3km 之间的隧道可结合辅助坑道情况设置紧急出口。

8.8.4 隧道内的紧急救援站应符合下列规定:

1 紧急救援站长度应根据旅客列车编组长度加一定富余量确定,一般情况下可采用450~500m。

2 紧急救援站内的疏散横通道间距不宜大于60m。横通道内应设置两道防护密闭门,门通行宽度不应小于3.4m。

3 紧急救援站内应设置疏散站台,站台宽度宜为2.3m,站台高度应满足旅客安全疏散需要,并不得侵入基本建筑限界。

4 紧急救援站内满足人员等待的空间应按0.5m2 /人设计。

5 紧急救援站内应设置防灾通风、应急照明、应急通信、消防等设施。

8.8.5 避难所应设置应急通风、应急照明、应急通信等设施,其面积

按0.5m2 /人考虑。

8.8.6 紧急出口应优先考虑采用平行导坑和横洞,其宽度不应小于3.0m、高度不应小于2.2m。当采用斜井作紧急出口时,水平长度不宜大于

500m、纵向坡度不宜大于12%。

8.8.7 救援通道、紧急救援站、待避所、紧急出口、横通道应设置疏散引导标识。

67

8.9 抗震设计

8.9.1 隧道洞口、浅埋和偏压地段以及断层破碎带地段应按现行国家标准《铁路工程抗震设计规范》(GB5011)有关规定进行抗震设防,其衬砌

结构应加强。对活动断层破碎带地段,必要时可根据实际情况预留断面净

空。洞口设防段的长度可根据地形、地质条件及设防烈度确定,并不得小

于2.5 倍的隧道净空宽度。

8.9.2 隧道抗震设防段应采用曲墙有仰拱的复合式衬砌结构,并应设置变形缝。

8.9.3 地震区隧道应贯彻“早进晚出”的设计原则,避免洞口高边坡。洞口边仰坡宜采用柔性防护措施,并适当接长明洞。

8.10 接口设计

8.10.1 隧道设计应考虑相关专业在隧道内设施的布置要求。各种设施在隧道内的布置应综合考虑,减少设备洞室数量。隧道与相关专业的接口应有良好的过渡和衔接。

8.10.2 隧道与路基、桥梁接口设计应符合下列要求:

1 隧道洞口边坡防护应与路基边坡协调设计;

2 路基隧道分界处应设置过渡段;

3 隧道洞内排水沟与路基排水沟应顺畅衔接,保证隧道内地下水能顺利排出;

4 隧道内的电缆槽向路基、桥梁范围的电缆槽过渡时其转弯半径应满足电缆铺设要求;

5 桥梁与隧道相连时,隧道内的救援通道与桥梁人行道应平顺连接。

8.10.3 隧道与接触网、通信、信号等专业的接口设计应符合下列要求:

1 隧道衬砌结构应考虑接触网下锚、综合接地等专业的安装要求。设备安装不应对隧道结构安全和防水效果产生不良影响;

2 隧道内过轨管应采用预埋方式,管径不宜大于100mm,并应埋入隧道底部混凝土内足够深度以下,避免受力变形或损坏。

68

8.10.4 隧道与无砟轨道接口设计应符合下列规定:

1 无砟轨道底座应设置在牢固的基础之上。隧道底板、仰拱填充应与无砟轨道底座结合设置。

2 隧道施工完成后应对隧道结构的沉降与变形进行观测,并对隧道底

部结构进行检测。

3 无砟轨道铺设前应对隧道底部结构进行全面的综合评估,评估合格后方可铺设无砟轨道。

63 铁总运[2015]49号《高速铁路电力管理规则》

TG/GD109-2015 高速铁路电力管理规则 第一章总则 第一条高速铁路电力工作是铁路运输的重要组成部分,为加强高速铁路电力管理,提高供电质量,满足铁路运输生产需要,制定本规则。 第二条本规则是根据高速铁路行车特点而制定的,是保证安全供电的基本规则。各有关单位和全体电力工作人员必须严格执行。 第三条本规则适用于高速铁路电力业务的管理。本规则未明确规定的内容,仍执行《铁路电力管理规则》。 第二章管理 第四条高速铁路电力工作实行统一领导、分级管理的原则。 中国铁路总公司(以下简称总公司):对全路高速铁路电力工作统一规划,依照国家的政策、法规,制定铁路相关的规章、制度;调查研究、检查督导、总结和推广先进经验,不断提高电力设备技术管理水平。负责组织各局确定局分界处的运行方式,指挥、协调事故(故障)处理。 铁路局:贯彻执行国家和总公司有关的规章和命令,结合

具体情况制定有关细则、办法和标准;负责管内各供电段(维管段)的技术管理、岗位设置、职责分工;做好供用电的管理工作和专业培训;掌握电力设备状态;组织、安排年度检修、基建大修、更新改造项目和供用电计划;核定事故备品储备定额;组织电力试验、能力查定和设备鉴定工作;编制规划、提出增强能力和改善供电条件的措施;组织《电力设备履历薄》等报表的填报工作;领导本局管内电力调度工作。 铁路局供电调度:负责监视高速铁路电力设备的运行状态,改变运行方式的倒闸操作;负责电力设备故障应急处置;负责故障处理的调度指挥;负责掌控运行、维护、检修等作业,掌握上线人员数量、作业内容、处所等情况;负责与地方供电公司、相邻铁路局签订、履行调度协议。 供电检测所(电力试验所):承担高速铁路电力设备交接及预防性试验等工作。 第五条电力工程竣工后,应经过交接试验,试验合格后方能进行交接验收。发、变、配电等电力设备,应经过试运行后才能正式运行。 第六条变更变、配电所的主接线、继电保护和自动装置的方案,改变一级贯通、综合贯通供电方式,应提出设计文件或变更理由,经铁路局批准后实行,局分界处需报总公司备案。 第七条高速铁路供用电设备分界。 高速铁路电力专业本着负责输配电网络、综合配电、电力

《高速铁路设计规范》等 6 项标准 局部修订条文.pdf

《高速铁路设计规范》等6项标准 局部修订条文 一、《高速铁路设计规范》TB10621—2014 1. 第7.1.8条修改为“相邻桥涵之间路堤长度的确定应综合考虑高速列车运行的平顺性要求、路桥(涵)过渡段的施工工艺要求以及技术经济等因素。” 2.第7.2.1条修改为“桥涵结构设计应根据结构的特性,按表7.2.1所列的荷载,就其可能的最不利组合情况进行计算。 表7.2.1 荷载分类及组合

注:1 当杆件主要承受某种附加力时,该附加力应按主力考虑。 2 长钢轨纵向作用力不参与常规组合,其与其他荷载的组合按《铁路桥涵设计规范》TB 10002 的相关规定执行;CRTSⅡ型板式无砟轨道作用力应根据实际情况另行研究。 3 流水压力不宜与冰压力组合。 4 当考虑列车脱轨荷载、船只或排筏的撞击力、汽车撞击力以及长钢轨断轨力时,应只计算 其中的一种荷载与主力相组合,且不应与其它附加力组合。 5 地震力与其他荷载的组合应符合《铁路工程抗震设计规范》GB50111的规定。” 3. 第7.2.12条修改为“横向摇摆力应按80kN水平作用于钢轨顶面计算。多线桥梁只计算任一线上的横向摇摆力。” 4. 第7.3.9条修改为“墩台横向水平线刚度应满足高速行车条件下列车安全性和旅客乘车舒适度要求,并对最不利荷载作用下墩台顶横向弹性水平位移进行计算。在列车竖向静荷载、横向摇摆力、离心力、风力和温度的作用下,墩顶横向水平位移引起的桥面处梁端水平折角如图7.3.9所示,并应符合下列规定:

图7.3.9 梁端水平折角示意图 1 梁端水平折角不应大于1.0‰ rad。 2 梁端水平折角计算应考虑以下荷载作用:竖向静荷载;曲线上列车的离心力;列车的横向摇摆力;列车、梁及墩身风荷载或0.4倍的风荷载与0.5倍的桥墩温差组合作用,取较大者;水中墩的水流压力作用;地基基础弹性变形引起的墩顶水平位移。” 5. 第7.4.4条修改为“预应力钢筋或管道的净距及保护层厚度应符合下列规定: 1 在后张法结构中,采用钢丝、钢绞线束、螺纹钢筋的管道间净距,当管道直径等于或小于55mm时,不应小于 40mm;当管道直径大于55mm时,不应小于0.8倍管道外径。 ……” 6. 第8.6.2条修改为“复合式衬砌初期支护与二次衬砌之间应根据水文地质条件和结构防水设防要求设置防水层。地下水环境保护要求高、埋深浅的隧道应采用全断面封闭防水。防水

高速铁路隧道工程衬砌标准化施工

隧道衬砌标准化施工措施 1.仰拱施工 (1)仰拱开挖 洞身仰拱开挖时,采用控制周边眼外插角度的办法,确保开挖平顺,严禁仰拱欠挖;爆破之后要求基底清理干净,必须无虚渣、无积水。 (2)五线上墙 为有效控制水平施工缝位置、仰拱钢筋和盲管位置,在边墙初支表面上测量放样“五线”(即:仰拱混凝土顶面标高线、仰拱钢筋搭接上下线、纵向和环向盲管线),并用红线明显标记(包括接地钢筋位置),为仰拱及后续防排水及衬砌施工提供控制依据。仰拱钢筋安装时分别自施工缝截面环向延伸固定长度,且仰拱内外环向钢筋在隧道环向、纵向均长短相间布置。环向盲管线根据设计要求,一般地段每组台车设置一道;岩溶发育地段需加密设置。如图 1.1 所示。 图 1.1 仰拱五线上墙 (3)仰拱钢筋预弯及定位 采用自制仰拱钢筋预弯机对仰拱钢筋进行预弯,利用液压千斤顶调节弧度大小,保证成型质量。如图1.2 所示。 图 1.2 仰拱钢筋预弯平台

安装仰拱钢筋时由测量定位(共九条:中间 1条,两侧位置各 4 条),确保钢筋间间距、排距和弧的准确。 仰拱钢筋安装时必须使用钢筋卡,使钢筋间距均匀。钢筋卡距可用角钢刻槽或钢管焊接卡具,相邻槽中心间距为设计钢筋间距。钢筋卡长度一般取6m,可根据施工方便设置长度。如图1.3 所示。 图 1.3 仰拱钢筋定位 (4)仰拱弧模与端模安装 通过轻质曲面钢模板,与仰拱端头钢模连接,整体采用地锚加固的方式施工,实现仰拱与仰拱填充的分层浇筑。端模与腹模连接,确保仰拱尺寸准确;通过整体曲面腹模,确保仰拱设计弧面和曲率;通过分窗进料振捣,保证仰拱混凝土密实度和强度;通过使用上、下钢端模,实现了仰拱环向中埋式止水带的准确定位。如图 1.4 所示。 图 1.4 弧模与端模 (5)纵、环向排水管安装 纵向排水盲管采用土工布包裹;盲管中间不得有凹陷、扭曲等,以防泥砂淤积堵塞;纵向排水盲 管按设计规定的排水坡度安装,并用钢筋卡固定,严格按照设计尺寸控制埋设高度。 (6)混凝土浇筑 混凝土浇筑过程,必须保证仰拱与拱墙小边墙一次性整体浇筑,确保边墙混凝土完整性,保证混 凝土浇筑质量良好。仰拱填充必须在仰拱衬砌浇筑完成之后分次浇筑,确保两者厚度、强度符合设计要求。 2 防排水安装

高速铁路电力工程施工技术的探讨

高速铁路电力工程施工技术的探讨 【摘要】:文章通过对高速铁路供电系统的简要介绍,对高速铁路的供电原理,施工,等环节进行简要总结分析。从供电原理,架空电缆线构造,缆线,集电弓等方面的施工要点进行总结。【关键词】:高速铁路;供电系统;缆线;集电弓;第三轨;集电靴;;;;;;;直流输电与交流输电;中性区间 abstract: the article by a brief description of the high-speed railway power supply system, power supply principle of the high-speed railway, construction, and other aspects of a brief summary of analysis. sum up the principle of supply, overhead cable structure, cable, collector, bow and other construction elements.key words: high-speed rail; power supply system; cable; pantograph; third rail; collector shoe; dc transmission and ac transmission; ntral range 中图分类号:u238 文献标识码:a文章编号:2095-2104(2012)前言 1988年一位美国工程师成功的为电气化车取代有轨马车迈出了 第一步,在当时都市内马车轨道系统上空架设电缆线,成为城市内主要的交通工具。电气化列车有诸多的有点,比如不会排出废气,马力大,运作灵活,行驶途中不用顾及燃料问题。除此以外电气化车也成为了改善环境、保护环境的主要交通工具,至今仍受到世界

(完整word版)09-高速铁路设计规范条文(9轨道)

9 轨道 9.1 一般规定 9.1.1 正线及到发线轨道应按一次铺设跨区间无缝线路设计。 9.1.2 正线应根据线路速度等级和线下工程条件,经技术经济论证后合理选择轨道结构类型,轨道结构宜采用无砟轨道。无砟轨道与有砟轨道应集中成段铺设,无砟轨道与有砟轨道之间应设置轨道结构过渡段。 9.1.3 无砟轨道的结构型式应根据线下工程、环境条件等具体情况,经技术经济比较后合理选择。同一线路可采用不同无砟轨道结构型式,同一型式的无砟轨道结构宜集中铺设。 9.1.4 轨道结构部件及所用工程材料应符合国家和行业的相关标准要求。 9.1.5无砟轨道主体结构应不少于60年设计使用年限的要求。 9.1.6 轨道结构设计应考虑减振降噪要求。 9.1.7 轨道结构应设置性能良好的排水系统。 9.2 钢轨及配件 9.2.1 正线轨道应采用100m定尺长的60kg/m无螺栓孔新钢轨,其质量应符合相应速度等级的钢轨相关要求。 9.2.2 有砟轨道采用与轨枕配套的弹性扣件,其轨下弹性垫层静刚度宜为60±10kN/mm。 9.2.3 无砟轨道采用与轨道板或双块式轨枕相配套的弹性扣件,其轨下弹性垫层静刚度宜为25±5kN/mm。 9.3 轨道铺设精度(静态) 9.3.1 正线轨道静态铺设精度标准应符合表9.3.1-1、9.3.1-2和9.3.1-3的规定。

表9.3.1-1 有砟轨道静态铺设精度标准 表9.3.1-2 无砟轨道静态铺设精度标准 注:表中a为扣件节点间距,m。

表9.3.1-3 道岔(直向)静态铺设精度标准 9.3.2 站线道岔静态铺设精度标准应符合表9.3.2的规定。 表9.3.2 站线道岔静态铺设精度标准 9.4 无砟轨道 9.4.1 无砟轨道结构设计应符合下列规定: 1无砟轨道设计荷载应包括列车荷载、温度荷载、牵引/制动荷载等,同时应考虑下部基础变形对轨道结构的影响。 2结构设计活载 1)竖向设计活载:P d=α ? P j 式中:P d-动轮载; α -动载系数,对于设计时速300公里及以上线路,取3.0;设计时速250公里线路,取2.5。 P j-静轮载。 2)横向设计活载:Q=0.8 ? P j 3结构疲劳检算活载 1)竖向疲劳检算活载:P f =1.5 ? P j 2)横向疲劳检算活载:Q f =0.4? P j 4温度荷载及混凝土收缩影响 1)露天区间(包括隧道洞口200m范围)年温差根据当地气象条件取值。

中国隧道工程的建设和发展历程

中国隧道工程的建设和发展历程 从1874年我国开始修建第一条上海至吴淞的窄轨铁路起,至1911年清王朝被推翻为止的37年中,我国共建成了9100公里的铁路。在这段时期所修建的10条总长4600公里的铁路干线上,共修建了总长42公里的230余座隧道。 我国在1898~1904年修建了长度为3078米的兴安岭隧道,这是当时亚洲最长的宽轨铁路隧道。这一时期最具代表性的隧道工程是由我国杰出工程师詹天佑亲自规划和督造的京张铁路八达岭隧道,全长1091米,工期仅用了18个月,于1908年建成。这也是我国自行修建的第一座越岭铁路隧道。 自1911年10月清王朝覆灭,到1949年10月中华人民共和国成立的38年中,我国共在40余条总长度约7000公里的铁路干线和支线上修建了总长度约100公里的370余座铁路隧道。其中有当时我国最长的滨绥铁路第二线上长度为3840米的杜草隧道,建于1939~1941年,所穿过的地层为花岗岩,采用上下导坑法施工,混凝土衬砌。 1949年新中国成立后,我国的铁路建设进入了新的发展时期。在其后半个世纪的时间里,我国隧道建设大致可分为4个阶段,每个阶段均有显著的技术进步和突破。 起步:50年代至60年代初,是新中国第一代隧道建设工程。该阶段采用钻爆法施工,以人工和小型机械凿岩、装载为主,临时支护采用原木支架和扇形支撑。隧道施工基本无通风,由于技术水平落后,人工伤亡事故时有发生。

该阶段的主要标志性工程有位于川黔铁路上的凉风垭隧道,该隧道长度4270米,于1959年6月贯通。该隧道首次采用平行导坑和巷道式通风,为长隧道施工积累了很宝贵的经验。 稳定发展:60年代至80年代初,是新中国第二代隧道建设工程。 该阶段代表性工程有位于京原铁路上的驿马岭隧道,全长7032米,1967年2月开工,1969年10月竣工,也是这一时期修建的最长的隧道。这一时期施工机具的装备有了较大的改善,普遍采用了带风动支架的凿岩机、风动或电动装载机、混凝土搅拌机、空压机和通风机等。在成昆铁路的隧道施工中还采用了门架式凿岩台车和槽式运渣列车。 在隧道支护方面,采用了锚杆喷射混凝土技术,这是隧道施工技术的重要里程碑。由于主动控制了地层环境,较好地解决了施工安全问题。 经过3年国民经济调整,1964年重点加强西南大三线建设,川黔、贵昆、成昆三线全面复工。这些铁路隧道比例大,开工隧道数量猛增,迎来了隧道建设的大发展。 成昆铁路工程浩大,举世瞩目,全线共有425座隧道,总延长344.7公里,占线路长度的31.6%,其中2公里以上的34座,3公里以上的9座,成为控制工期的关键工程。沙木拉达隧道全长6379米,线路标高2244.14米,为成昆铁路最长与最高的隧道。关村坝隧道全长6107米,为成昆铁路第二长隧道,是北段控制铺轨的大门,为集中力量攻坚的重点工程之一,快速施工成为本隧道的主题,施工中创造了多项新纪录。岩脚寨隧道位于贵昆铁路安顺至六枝间,全长2715米,隧道横穿贵州普定郎岱煤田的大煤山,共穿过7层煤层,厚度最大达8.92米,含三级瓦斯。这也是我国第一次穿越大量瓦斯的隧道。

高速铁路设计规范版

1 总则 1.0.1 为统一高速铁路设计技术标准,使高速铁路设计符合安全适用、 技术先进、经济合理的要求,制定本规范。 1.0.2 本规范适用于旅客列车设计行车速度250~350km/h 的高速铁路,近期兼顾货运的高速铁路还应执行相关规范。 1.0.3 高速铁路设计应遵循以下原则: (1)贯彻“以人为本、服务运输、强本简末、系统优化、着眼发展”的建设理念; (2)采用先进、成熟、经济、实用、可靠的技术; (3)体现高速度、高密度、高安全、高舒适的技术要求; (4)符合数字化铁路的需求。 1.0.4 高速铁路设计速度应按高速车、跨线车匹配原则进行选择,并应考虑不同速度共线运行的兼容性。 1.0.5 高速铁路设计年度宜分近、远两期。近期为交付运营后第十年;远期为交付运营后第二十年。 对铁路基础设施及不易改、扩建的建筑物和设备,应按远期运量和运输性质设计,并适应长远发展要求。 易改、扩建的建筑物和设备,可按近期运量和运输性质设计,并预留远期发展条件。

随运输需求变化而增减的运营设备,可按交付运营后第五年运量进行设计。 1.0.6 高速铁路建筑限界轮廓及基本尺寸应符合图的规定,曲线 地段限界加宽应根据计算确定。 7250 5500 4000 2440 1700 1750 1250 650 ③ ① ② ④ ⑤ 1700 25 1250 ①轨面

②区间及站内正线(无站台)建筑限界 ③有站台时建筑限界 ④轨面以上最大高度 ⑤线路中心线至站台边缘的距离(正线不适用) 图1.0.6 高速铁路建筑限界轮廓及基本尺寸(单位:mm) 1.0.7 高速铁路列车设计活载应采用ZK 活载。 ZK 活载为列车竖向静活载,ZK 标准活载如图1.0.7-1 所示,ZK 特种 活载如图1.0.7-2 所示。 图1.0.7-1 ZK 标准活载图式 图1.0.7-2 ZK 特种活载图式 1.0.8 高速铁路应按全封闭、全立交设计。 1.0.9 高速铁路设计应执行国家节约能源、节约用水、节约材料、节省用地、保护环境等有关法律、法规。 1.0.10 高速铁路结构物的抗震设计应符合《铁路工程抗震设计规范》(GB 50111)及国家现行有关规定。 1.0.11 高速铁路设计除应符合本规范外,尚应符合国家现行有关标准 的规定。 2 术语和符号

高速铁路电力配合施工标准化作业指导书

电力配合施工标准化作业指导书 1 适用范围 本作业指导书适用于高速铁路电力专业配 合外单位在供电段管理设备上的施工作业。 2 准备工作 序号 项目 工作内容 重要控制点 1 计划提报 根据配合施工分类,提 报施工计划、监管计划 或维修计划。 ①施工主体单位已与供电段签订安全协议。 ②严格执行《铁路局供电系统施工维修管理办法》施工分类。 ③严禁工区在无段、车间通知的情况下私自配合。 ④必须要有计划或调度统一指挥。 2 人员准备 提前一天根据作业情 况及人员情况进行分 工,并填发派工单。 分工具体、合理,下发派工单。 3 作业票 提前一天填写作业工 作票,并交工作 执行人。 根据作业类型填写相关工作票,作业范围明确;安全措施齐全;注明临近带电区段。外单位作业人员和供电段配合人员必须全部记入工作票。供电段配合人员担任工作许可人,工作执行人由作业单位人员担任。 4 通知用户 提前一天根据停电范 围通知用户。 重要负荷用户必须通知到位,并做好记录。 组织作业人员进行针对性培训学习。 车间根据具体作业内容指导工区组织开展。主要内容:标准化作业指导书、《铁路电力安全工作规程》、《铁路电力安全工作规程补充规定》、《高速铁路电力管理规则》、《铁路局电力设备标准化建设标准》、设备检修工艺 标准、设计文件等。 8 安全、技术准 备 绘制作业范围及安全措施示意图。 图纸标明作业区段及临近带电区段,着重标明采取安全措施位置杆号或处所详细位置。 3 作业流程 3.1列队点名,宣读工作票,分配任务 高速铁路

3.1.1工作执行人(作业单位施工负责人)核对当日下达计划作业内容、作业地点及范围是否与工作票内容一致。 3.1.2列队点名。检查工作组员的精神状态、标准化着装(安全帽、工作服、黄背心、安全腰带、绝缘胶鞋、个人工具)。 3.1.3宣读工作票(发布安全工作命令)。结合作业范围及安全措施示意图,明确工作内容和应采取的安全措施,说明停电区段和带电设备的具体位置,确认所有工作组员清楚停电、带电区域。 3.1.4图示分工,分配任务。工作组成员须清楚各自作业内容、作业项目、作业范围(地点)、作业方式、检修标准、安全风险卡控。对因自身条件不能适应该项工作或作业内容有疑问时,应及时提出。由工作执行(领导)人和工作组成员共同确认作业内容,对不符合作业内容和安全要求的要立即改正。 3.2安全员针对性讲话 根据《铁路电力安全工作规程》、《铁路局供电安全风 险管理实施办法》等有关规定,结合当日实际作业内容和现场情况,有针对性的指出安全控制重点(劳动安全、行车安全)。 3.3 采取现场安全措施,办理开工许可 3.3.1 需调度命令的作业

高速铁路电力设备故障抢修方法

精心整理 附件5: 海南东环电力设备故障抢修预案 (故障抢修方案) 一、1.故障的查找。其步骤如下: (1)抢修人员应将当时所内现象(光字牌、音响、信继、电压、电流等)掌握清楚,然后准确判明接地故障的性质。防止将电压互感器二次回路接触不良、保险单相熔断、设备或线路单相断线、开关、刀闸单相接触不良等现象误认为接地故障来处理。发生接地时接地相电压降低,其余两相升高,当完全金属接地时,相电压与线电压相等。

(2)确认故障线路后,架空线路跳闸可试送一次,试送成功判断为瞬时故障,恢复供电,巡视检查线路,主要检查线路走廊内危树、异物等;送电不成功判断为永久故障,安排抢修人员开始巡视线路,若未发现明显故障点,一般的故障点会在架空线路连接的电缆头或是在容易被外界挂断的路口等处所,抢修人员对各处所进行排查,直至找到故障点。 ( ( 2. ( ( 断 (3)在确认故障区段后,要对故障段线路精确查找故障点。 二、10kV一级、综合贯通电缆线路故障判断。 电力工区变配电所一级、综合贯通馈出开关跳闸,邻所备投不成功,即视为电力贯通线路出现故障。 1.配电所值守人员查看主控系统监测信息,联系电调核对故障跳闸信息,然后准确判明故障的性质。 2.配电所值守人员巡视本所设备,确认本所设备无故障,排除因设备

引起的故障跳闸。 3.工区负责人联系集团电调,使用调度端故障录波系统进行故障类型初步判断,可确定出故障类型及故障点的大致范围。 4.根据确定故障类型及范围后,按照应急供电方案断开故障区段,由两端配电所向中间供电,贯通线路开口运行,以缩小故障停电影响范围。 5. 三、 1. 2. 3. 入信号设备两路电源相序一致。 4.行车设备不开通,不得擅自离开现场。 四、10kV配电所、10/0.4kV变电所、远动开关站故障判断。 当10kV配电所、10/0.4kV变电所、远动开关站设备出现报警、接地、放电、起火等异常情况,或断路器出现跳闸,无法进行正常供电,即视为10kV配电所、10/0.4kV变电所、远动开关站出现故障。 1.巡视变、配电所及远动开关站设备,重点检查所用变、10kV真空断

关于发布新建时速200公里客货共线铁路设计暂行规定等

关于发布新建时速200公里客货共线铁路设计暂行规 定等 3项铁路工程建设标准局部修订条文的通知(铁建设 〔2012〕3号) 时间:2012.01.18 现发布《新建时速200公里客货共线铁路设计暂行规定》(铁建设函〔2005〕285号)、《铁路桥涵设计基本规范》(TB10002.1-2005)、《新建时速200~250公里客运专线铁路设计暂行规定》(铁建设〔2005〕140号)等3项标准的局部修订条文,自发布之日施行。铁道部原发上述3项标准(含局部修订)相应条文及相关内容同时废止。 《新建时速200公里客货共线铁路设计暂行规定》等3项标准的局部修订条文由铁道部建设管理司负责解释。 铁路工程建设标准局部修订条文 一、《新建时速200公里客货共线铁路设计暂行规定》(铁建设函〔2005〕285号) (一)增加第5.1.2条第6款: 6 桥上应按《铁路桥涵设计基本规范》(TB10002.1)规定设置护轮轨。 【说明】现行《铁路桥涵设计基本规范》(TB10002.1-2005)第3.3.8条规定客货共线铁路桥上应铺设护轨,《新建时速200公里客货共线铁路设计暂行规定》(铁建设函〔2005〕285号)作为时速200公里客货共线铁路桥涵设计的补充规定,未对桥上铺设护轨再作规定。为避免标准执行过程中对条文理解等方面产生歧义,本次修订中明确了桥上护轨的设置要求。 (二)第5.2.3条第5款修改为: 5 列车竖向脱轨荷载可不计动力系数。对于多线桥,只考虑一线脱轨荷载,且其他线路上不作用列车荷载。

按下列两种情况,计算列车脱轨荷载的影响: 1)列车脱轨后一侧车轮仍停留在桥面轨道范围内。脱轨荷载按图5.2.3-1所示计算,两条线荷载平行于线路中线,相距为1.4 m,作用于线路中线两侧2.0 m范围以内的最不利位置上。该线荷载在长度为6.4 m的一段上为50kN/m,前后各接以25kN/m。 图5.2.3-1 列车竖向脱轨荷载1 2)列车脱轨后已离开轨道范围,但仍停留在桥面上。列车脱轨荷载应考虑竖向脱轨荷载和水平脱轨荷载作用。竖向脱轨荷载按图5.2.3-2所示计算,该荷载为一条平行于线路中线的线荷载,作用于挡砟墙内侧,离线路中心线的最大距离为2.0m。荷载长度20m,其值为80kN/m。

高速铁路设计规范条文桥梁

7 桥涵 一般规定 7.1.1 桥涵的洪水频率标准,应符合现行《铁路桥涵设计基本规范》()中Ⅰ级铁路干线的规定。 7.1.2 桥涵结构应构造简洁、美观、力求标准化、便于施工和养护维修,结构应具有足够的竖向刚度、横向刚度和抗扭刚度,并应具有足够的耐久性和良好的动力特性,满足轨道稳定性、平顺性的要求,满足高速列车安全运行和旅客乘座舒适度的要求。 7.1.3 桥涵主体结构设计使用寿命应满足100年。 7.1.4 桥涵结构所用工程材料应符合现行国家及行业标准的规定。 7.1.5 桥梁上部结构型式的选择,应根据桥梁的使用功能、河流水文条件、工程地质情况、轨道类型以及施工设备等因素综合考虑。 桥梁上部结构宜采用预应力混凝土结构,也可采用钢筋混凝土结构、钢结构和钢-混凝土结合结构。 预应力混凝土简支梁结构,宜选用箱形截面梁,也可根据具体情况选用整体性好、结构刚度大的其他截面型式。 7.1.6 桥梁结构应设计为正交。当斜交不可避免时,桥梁轴线与支承线夹角不宜小于60°,斜交桥台的台尾边线应与线路中线垂直,否则应采取特殊的与路基过渡措施。 7.1.7 桥面布置应满足轨道类型、桥面设施的设置及其养护维修的要求。 7.1.8 涵洞宜采用钢筋混凝土矩形框架涵。 7.1.9 相邻桥涵之间路堤长度,要综合考虑高速列车行车的平顺性要求、路桥(涵)过渡段的施工工艺要求以及经济造价等因素合理确定。两桥台尾之间路堤长度不应小于150m,两涵(框构)之间以及桥台尾与涵(框构)之间路堤长度不应小于30m,对于特殊情况路堤长度不满足上述长度要求时,路基应特殊处理。 7.1.10 桥涵设置应做好和自然水系、地方排灌系统的衔接,并满足铁路路

某版高速铁路电力牵引供电工程施工技术指南1

1总则 1.0.1为指导高速铁路电力牵引供电工程施工,统一主要技术要求, 加强施工管理,保证工程质量,制定本技术指南。 1.0.2本指南适用于新建时速250~300km高速铁路电力牵引供电工程 施工。时速250km以下客运专线、城际铁路电力牵引供电工程施工应参照执行。 1.0.3高速铁路电力牵引供电工程施工应执行国家法律法规及相关技 术标准,严格按照批准的设计文件施工,使其符合系统功能及性能要求,保证设计使用年限正常运行。 1.0.4高速铁路电力牵引供电工程施工应从管理制度、人员配备、现 场管理和过程控制等标准化管理,实现质量、安全、工期、投资效益、环境保护、技术创新等建设目标。 1.0.5高速铁路电力牵引供电工程施工应积极推行机械化、工厂化、 专业化、信息化。 1.0.6高速铁路电力牵引供电工程施工应提高文明施工水平。 1.0.7高速铁路电力牵引供电工程邻近运营接触网线路施工、牵引变 压器运输和安装等,应结合现场实际情况,通过风险监测等程序,做好风险管理工作,并制定专项施工方案和应急预案。1.0.8高速铁路电力牵引供电工程设计文物保护时,应根据相关管理 法规和设计保护措施进行施工。 1.0.9高速铁路电力牵引供电工程施工应根据国家节约资源、节约能 源、减少排放等有关法规和技术标准,结合工程特点、施工环

境编制并实施工程施工节能减排技术方案。 1.0.10高速铁路电力牵引供电工程施工的各类人员应经过专门 培训,合格后方可上岗。 1.0.11高速铁路电力牵引供电工程中采用的设备、器材。应符合 与高速铁路设计行车速度相适应的国家标准、行业标准或有关技术规定,并有合格证件。 1.0.12高速铁路电力牵引供电工程施工时,应同步做好资料的收 集和整理,做到系统、完整、真实、准确,并应按有关规定做好归档管理工作。 1.0.13高速铁路电力牵引供电工程施工在营业线施工及有可能 影响营业线运行安全的施工时,应严格执行有关安全管理办法的规定。 1.0.14高速铁路电力牵引供电工程施工除应符合本指南外,尚应 符合国家现行有关标准的规定。 2术语 2.0.1 接触悬挂 接触网中的悬挂部分,主要由承力索、接触线、吊弦、补偿装置、悬挂零件及中心锚结等组成。 2.0.2 无交叉线岔 在道岔处两支接触悬挂不相互交叉,以锚段关节方式来满足弓网关系的线岔。 2.0.3 带辅助悬挂的无交叉线岔

高速铁路设计规范条文说明(3总体设计)

3.1.1 高速铁路是极其庞大复杂的现代化系统工程,融合了机械与电子工程技术、土木工程技术、电子工程技术、材料与结构技术、通信与计算机技术、现代控制技术等一系列当代高新技术。高速铁路采用的各种高新技术分别隶属于不同的子系统,其技术指标、性能参数相互依存、相互制约,系统内部各种关系非常复杂。因此,高速铁路设计应从规划开始统筹考虑土建工程、牵引供电及电力,通信、信号及信息,动车组运用、综合维修及防灾安全监控等不同功能系统的技术性能指标以及相互关系,统一规划、整体构思、逐步深化,要对项目需求、线路定位、主要技术方案、主要技术标准等进行深入研究,要确定科学合理的总体设计原则,以总体设计统筹专业设计,指导项目设计,达到系统优化的目的。 3.1.2 高速铁路总体设计应在充分研究项目需求和各种相关因素的基础上,合理选定主要技术标准、线路走向和主要方案,因为主要技术标准、线路走向和主要方案选择是否合理,直接影响到工程投资,影响到线路所经地区地方经济的发展、旅客出行等;高速铁路系统集成方案与整个建设方案有直接关系;同样,工期、投资和其他控制目标对高速铁路建设方案有直接影响。 3.1.3 综合考虑高速铁路的各种影响因素,结合高速铁路的技术特点,从全面性、关键性、重点性、科学性、可比性、动态性、系统性等角度出发,高速铁路总体设计应满足旅行时间与最高运行速度、旅客舒适度、节能与环保、安全与防灾、旅客列车开行方案与运输组织等目标要求。一是随着社会经济的发展,人们对出行的质量、时间提出了更高的要求,高速铁路的建设为旅客出行提供了更多、更快的选择,提高了旅客出行的方便性与快捷性,随着社会的发展和旅客时间价值观念的加强,旅行时间与最高速度将成为影响旅客选择交通工具最重要的因素之一。二是高速铁路建设强调平顺性、稳定性、安全性,人们对交通工具的需求最终体现在旅行舒适性的感觉上,最终体现在舒适度上,舒适性是衡量高速铁路建设能否为旅客提供一流服务的关键。三是节能与环保是科学发展观的重要体现,反映了当前国际社会发展对环保的日趋强烈的要求,是21世纪国家实现可

高速铁路隧道技术发展现状存在问题及其展望

读书报告 高速铁路隧道技术 发展现状存在问题及其展望

目录 一、我国遂道及地下工程的发展现状 (1) 1.1 交通隧道 (1) 1.2 水利水电隧洞 (2) 1.3 地下工程 (2) 二、我国隧道及地下工程的主要开挖方法及新技术 (2) 三、当前国内铁路隧道施工主要存在技术问题 (3) 3.1 爆破精细控制技术 (3) 3.2 改进开挖技术 (3) 3.3 机制砂喷混凝土湿喷工艺 (4) 3.4 仰拱与掌子面进度的协调性 (4) 3.5 隧道沟槽施工工艺 (4) 3.6 通风及空气净化技术 (5) 四、贵广铁路建设实例 (6) 五、我国隧道及地下工程的发展前景 (7) 5.1 隧道发展前景 (7) 六、高速铁路隧道的研究几个热点问题 (8) 6.1 高速铁路隧道的空气动力学效应 (8) 6.2 高速铁路隧道的瞬变压力 (9) 6.3 高速铁路隧道的微压波 (9)

高速铁路隧道技术发展现状,存在问题及其展望 自1978年我国改革开放以来,我国在交通、水利水电、市政等基础设施领域取得了令人瞩目的成就,特别是近十年来,更取得了突飞猛进的发展,同时在设计和施工技术水平上也有了很大提高。但是由于我国东西高差大、地势复杂,隧道工程是铁路工程中不可缺少的重要项目,例如最近刚开通的兰新高铁,隧道比例达到60%以上。我国大力发展高速铁路,列车运行速度的提高势必造成列车振动荷载进一步加大,从而对隧道结构的动力稳定性提了更高的要求。伴随着铁路的出现和发展,铁路隧道也逐渐发展起来,但受制于技术条件的限制,在很长的时间内,铁路隧道的规模都很有限,直到20 世纪,随着人类科技水平和技术装备的进步,才开始出现了一些大型隧道,世界铁路隧道的世界记录也不断被更新。我国高速铁路已进入实质性的建设阶段,全国各铁路干线列车提速正在进行之中。 一、我国遂道及地下工程的发展现状 1.1 交通隧道 交通隧道主要包括铁路隧道、公路隧道及城市地铁工程,铁路隧道目前在数量、长度、设计及施工技术上在我国处于领先地位,截至1997年,在我国的铁路线上已建成并正式交付运营的隧道大约5200座,总长度2457.89km,平均占铁路网总长度的4.7‰。目前我国已建成铁路中隧道占线路长度在30%以上的就有襄渝线34.3%,成昆线31.6%,在建铁路中隧道占线路长度比例最大的达到50.42%(西康线)。目前已建成的最长隧道是西康线的秦岭单线隧道,长18.4km,其它较长的还有衡广铁路复线上的大瑶山双线隧道,长14.295km,于1987年建成。南昆线上的米花岭隧道,长9.383km。地铁工程目前仅有京、津、沪、穗四市约80km正在运营,而在建工程则很多,目前除上述四城市仍在继续扩建地铁外,南京、重庆、青岛、沈阳、深圳、成都等约20个大中城市进行了地铁和轻轨交通系统规划,部分项目正在全面施工。我国公路隧道在80年代前,因公路等级较低,同时限于设计、施工及短期投资大等多种原因,很少设计长大隧道,且数量(总长度)上也不多,但改革开放以后,为了实现截弯、降坡、提速、提高运营安全及实现长期运营收益提高等,相继修建了一批长大公路隧道,如辽宁的八盘岭双线公路隧道(长1600m),吉林的小盘岭公路、,速公路建设的大规模展开和设计、施工总体水平的提高,公路隧道工程在总量、单体长度上有了突飞猛进的发展,隧道单体长度记录不断被刷新。目前已提高到4km长度以上的水平,如川藏公路上的二郎山隧道全长4160m,目前我国海拔最高,2000年4月18日峻工通车的重庆铁山坪路隧道双线全长5424m,是目前我国最长的大跨度公路隧道,北京至八达岭高速公路上的潭峪沟公路隧道主隧道全长3455m,单向三车道,是目前国内最宽的公路隧道。

高速铁路设计规范(最新版)

1 总则 1、0、1 为统一高速铁路设计技术标准,使高速铁路设计符合安全适用、 技术先进、经济合理得要求,制定本规范。 1、0、2 本规范适用于旅客列车设计行车速度250~350km/h 得高速铁 路,近期兼顾货运得高速铁路还应执行相关规范。 1、0、3 高速铁路设计应遵循以下原则: (1)贯彻“以人为本、服务运输、强本简末、系统优化、着眼发展”得建设理念; (2)采用先进、成熟、经济、实用、可靠得技术; (3)体现高速度、高密度、高安全、高舒适得技术要求; (4)符合数字化铁路得需求。 1、0、4 高速铁路设计速度应按高速车、跨线车匹配原则进行选择,并 应考虑不同速度共线运行得兼容性。 1、0、5 高速铁路设计年度宜分近、远两期。近期为交付运营后第十年; 远期为交付运营后第二十年。 对铁路基础设施及不易改、扩建得建筑物与设备,应按远期运量与运输性质设计,并适应长远发展要求。 易改、扩建得建筑物与设备,可按近期运量与运输性质设计,并预留

远期发展条件。 随运输需求变化而增减得运营设备,可按交付运营后第五年运量进行设计。 1、0、6 高速铁路建筑限界轮廓及基本尺寸应符合图1、0、6 得规定,曲线 地段限界加宽应根据计算确定。 7250 5500 4000 2440 1700 1750 1250 650 ③ ① ② ④ ⑤ 1700 25 1250

①轨面 ②区间及站内正线(无站台)建筑限界 ③有站台时建筑限界 ④轨面以上最大高度 ⑤线路中心线至站台边缘得距离(正线不适用) 图1、0、6 高速铁路建筑限界轮廓及基本尺寸(单位:mm) 1、0、7 高速铁路列车设计活载应采用ZK 活载。 ZK 活载为列车竖向静活载,ZK 标准活载如图1、0、7-1 所示,ZK 特种 活载如图1、0、7-2 所示。 图1、0、7-1 ZK 标准活载图式 图1、0、7-2 ZK 特种活载图式 1、0、8 高速铁路应按全封闭、全立交设计。 1、0、9 高速铁路设计应执行国家节约能源、节约用水、节约材料、节 省用地、保护环境等有关法律、法规。 1、0、10 高速铁路结构物得抗震设计应符合《铁路工程抗震设计规范》 (GB 50111)及国家现行有关规定。 1、0、11 高速铁路设计除应符合本规范外,尚应符合国家现行有关标准 得规定。

高速铁路电力设备运行与维护

高速铁路电力设备运行与维护 本章重点介绍高铁与普速电力专业在运行、维护、安全管理的差异及特点。高速铁路采用高速、高密度、长编组的运输组织方式,高速铁路电力专业的运行、维护、安全管理等项工作与普速铁路相比有较大的不同,技术要求更高、设备更可靠、对安全管理更加严格。 第一节高速铁路电力设备运行 1. 1.在电力运行方面,高铁与普速的不同之处 由于高速铁路与普速铁路运输组织方式不同,高速铁路电力运行模式与普速铁路相比,在外部条件方面有较大不同,主要体现在以下几个方面: 1、高速铁路线路实行全部封闭运行,列车开行时间不允许任何人员进入线路及为线路提供服务的设备处所。 2、严格贯彻行车不施工、施工不行车的方针。实行昼间行车、夜间检修的作业方式。 3、遇有已影响行车或构成行车安全所必须紧急处置的故障,列车将停止运行,处理故障。非此类情况,应维持运行。 4、所有变、配电所均为无人值班有人值守模式。 在上述条件下,高速铁路与普速铁路电力运行有如下不同: 1、统一由铁路局供电调度通过SCADA系统远程监控运行

普速铁路电力运行是以沿线设置的工区为主、调度为辅。主要依靠电力工区和配电所值班人员对运行设备进行巡视、检测、监视、记录。即使设置电力远动设备,也主要是为故障抢修和处理的辅助设施。 高速铁路电力运行则是以铁路局供电调度为主、工区为辅。供电调度使用SCADA系统对全线电力设备进行远程、实时监测与控制,遇有设备故障则组织、指挥故障处理。沿线工区人员、值班人员必须听从调度命令从事各项上线作业,不得擅自进入设备所在处所,各项工作只有经过供电调度允许才能上线作业或进行故障抢修。 高铁电力运行的这种模式,对供电调度员业务素质要求较高,供电调度员承担了普速铁路沿线所有电力工区人员、变配电所值班员的日常巡视、监控工作,在设备发生故障时,直接负责组织、指挥故障处理等工作,其承担的责任非常重要。为做好这项工作,供电调度员必须做到:一是熟悉电力系统运行方式,二是掌握高铁电力设备布局及工作原理,三是熟练使用SCADA系统,四具有较丰富的现场经验,五是全面掌握故障抢修预案并实施,六是具备较高的分析判断、组织协调、决策指挥能力。 2、统一规的设备编号与运行密切相关,尤为重要 普速铁路电力设备编号一般路局颁发编制原则,各站段根据管理习惯自行编制自己管段设备编号,每处编号可以独立编制,与相邻设备、系统设备关联作用不大。一条线路多个站段管理可以采用不同编号,如这个段习惯汉字编号,那个段习惯拼音编号等。而高速铁路由电调监控全部的运行设备,整条线路、整个系统所有的电力设备运行

高速铁路隧道工程B10731 10732答案.

隧道工程试卷B答案 一、选择题 (20分) 1、山岭隧道的洞门形式主要有:()。 A.环框式。 B.端墙式。 C.翼墙式。 D.柱式。(ABCD) 2、台阶法按上台阶超前长度分为()。 A.高台阶法 B.长台阶法 C.短台阶法 D.微台阶法 BCD。 3、光面爆破的技术要求有()。 A.选择合理的周边孔间距 B.控制周边孔药量 C.周边孔采用不耦合装药结构 D.采用毫秒雷管微差顺序起爆,应使周边爆破时产生临空面。 ABCD 4、拱圈混凝土浇筑顺序应从两侧拱脚向拱顶()进行。 A.上下。 B.对称。 C.前后。 D.交错。 答案B 5、喷射混凝土的工艺有()。 A.干喷。 B.潮喷。 C.湿喷。 D.混合喷。 6、地表下沉量测一般是在()情况下才有意义。 A.深埋隧道。 B.地表水多。 C.软弱岩层。 D.浅埋隧道。 答案D。 7、超前围岩预注浆堵水时,宜用()。 A.水泥浆液。 B.水玻璃浆液。 C.水泥水玻璃浆液。 D.PM型浆液。 AC。 8、隧道施工防排水工作的原则是()。 A.进洞前先做好地表排水系统。 B.不断完善防排水措施。 C.选择不妨碍施工的防排水措施。 D.按防、截、排、堵相结合来综合治理。答案D。 二、填空题(10分)

1、采用喷射混凝土封闭洞口仰坡土体坡面,可起到()、()作用。 避免雨水冲杀、避免浸湿软化。 2、钻孔作业前应做出下列工作;()、()、(),经检查符合设计后方可钻孔。 定出开挖断面中线和水平线、定出断面轮廓、、标出炮孔位置 3、锚杆作用机理有()、()、()。 悬吊作用、组合梁作用、整体加固作用。 4、衬砌的施工缝常用()、()止水。 橡胶止水带、塑料止水带。 三、判断题 (10分) 1、岩石的抗压强度大于30MPa,围岩就稳定。( F ) 2、周边孔同段的雷管起爆时差应尽可能大。( F ) 3、局部锚杆应该规则布置。( F ) 4、树脂粘结的锚杆就是全长粘结型锚杆。( F ) 5、用回弹仪得到的是混凝土的表面硬度,求不出混凝土的抗压强度( F ) 四、简答题(20分) 1、隧道衬砌的组成及作用。 答:隧道衬砌由拱部、边墙和仰拱组成。拱部主要支撑隧道上面的荷载,边墙主要抵抗水平方向的围岩压力,仰拱主要承受地层向上的压力。拱墙组成闭合的结构称为衬砌环,它能改善衬砌的内力分布,有效地抵抗围岩压力和限制围岩变形。 2、隧道控制爆破有那几种形式,相互区别是什么? 光面爆破和预裂爆破;区别是起爆顺序不同,光面爆破是一种控制岩体开挖轮廓的爆破技术,是通过一系列措施对开挖工程周边部位实行正确的钻眼和爆破,并使周边眼最后起爆的爆破方法。预裂爆破是由光面爆破演变而来的,其目的同光面爆破,不同处是周边眼在整个爆破循环中要最先起爆,也就是在岩体中,沿着周边炮眼之间要先爆出一道裂缝,减少对保留区围岩产生的破坏。 3、代表炸药性能的主要参数是什么?并解释其含义。 答:(1) 炸药威力 ( 作功能力 ):炸药爆炸作功所具有的能力。

(完整word版)中国隧道发展历程

中国隧道工程的建设和发展历程 发布者:中国土木工程学会发布时间:2010-3-12 阅读:231次 从1874年我国开始修建第一条上海至吴淞的窄轨铁路起,至1911年清王朝被推翻为止的37年中,我国共建成了9100公里的铁路。在这段时期所修建的10条总长4600公里的铁路干线上,共修建了总长42公里的230余座隧道。 我国在1898~1904年修建了长度为3078米的兴安岭隧道,这是当时亚洲最长的宽轨铁路隧道。这一时期最具代表性的隧道工程是由我国杰出工程师詹天佑亲自规划和督造的京张铁路八达岭隧道,全长1091米,工期仅用了18个月,于1908年建成。这也是我国自行修建的第一座越岭铁路隧道。 自1911年10月清王朝覆灭,到1949年10月中华人民共和国成立的38年中,我国共在40余条总长度约7000公里的铁路干线和支线上修建了总长度约100公里的370余座铁路隧道。其中有当时我国最长的滨绥铁路第二线上长度为3840米的杜草隧道,建于1939~1941年,所穿过的地层为花岗岩,采用上下导坑法施工,混凝土衬砌。 1949年新中国成立后,我国的铁路建设进入了新的发展时期。在其后半个世纪的时间里,我国隧道建设大致可分为4个阶段,每个阶段均有显著的技术进步和突破。 起步: 50年代至60年代初,是新中国第一代隧道建设工程。该阶段采用钻爆法施工,以人工和小型机械凿岩、装载为主,临时支护采用原木支架和扇形支撑。隧道施工基本无通风,由于技术水平落后,人工伤亡事故时有发生。 该阶段的主要标志性工程有位于川黔铁路上的凉风垭隧道,该隧道长度4270米,于1959年6月贯通。该隧道首次采用平行导坑和巷道式通风,为长隧道施工积累了很宝贵的经验。 稳定发展:60年代至80年代初,是新中国第二代隧道建设工程。 该阶段代表性工程有位于京原铁路上的驿马岭隧道,全长7032米,1967年2月开工,1969年10月竣工,也是这一时期修建的最长的隧道。这一时期施工机具的装备有了较大的改善,普遍采用了带风动支架的凿岩机、风动或电动装载机、混凝土搅拌机、空压机和通风机等。在成昆铁路的隧道施工中还采用了门架式凿岩台车和槽式运渣列车。 在隧道支护方面,采用了锚杆喷射混凝土技术,这是隧道施工技术的重要里程碑。由于主动控制了地层环境,较好地解决了施工安全问题。 经过3年国民经济调整,1964年重点加强西南大三线建设,川黔、贵昆、成昆三线全面复工。这些铁路隧道比例大,开工隧道数量猛增,迎来了隧道建设的大发展。

相关主题