搜档网
当前位置:搜档网 › 等差数列与等比数列的类比关系

等差数列与等比数列的类比关系

等差数列与等比数列的类比关系
等差数列与等比数列的类比关系

等差数列与等比数列的类比关系

等比数列和等差数列是两类特殊的数列,他们的关系甚密,从定义上看等比数列和等差数列的定义仅有一字之差,把“差”变成了“商”。在等差数列中1n n a a d --=,关键是“差”,在等比数列中

1

n

n a q a -=,关键是“商”。而在等差数列的通项公式中111

(1)n n a a n d a d d d -=+-=++++

,同学们可以用类比的教材中等差数列通项公式的推导

2123213

431a a q

a a q a q a a q a q =====

,来推得等比数列的通项公式1

111

n n n a a q

a q q q --==???

从以上两个公式可以看出等差数列中差与和对应,属于同级运算;在等比数列中商与积对应,也是同

一级的运算。而且我们把等差数列和等比数列对比可以得到,由等差数列定义到等比数列定义差变成商,由等差数列的通项公式到等比数列的通项公式和变成积(积变成幂)。我们可以把等比数列看作是等差数列的升级,所以我们用类比等差数列的方法研究等比数列。

例1.已知数列{}n a 为等差数列,且,()m k a a a b m k ==≠,则m k bk am

a k m

+-=

-;若数列{}n b 为等比

数列,且,()m k b a b b m k ==≠,(1)类比等差数列的结果,你认为m k b +可能是什么值?

(2)证明你的推测是否正确。

分析:根据等比数列是等差数列的升级,以及由等差数列定义到等比数列定义差变成商,由等差数列的通项公式到等比数列的通项公式和变成积(积变成幂)等差和等比的性质来猜想。

解:(1)由m k bk am bk am a k m k m k m

+-=

=----,可以猜想k k m

m k m k m

b

b a -+-=

(2)由题1111,m k m k b a a q b b a q --====,1k m

b q a -??∴=

???

,k k k m k m

m k m

m k m m k m

b b b b q

a a a

--+-+-??∴===

???

点评:本题考察学生的类比迁移能力,在考试中经常以这种题型来考察,这也是高中学生应具备的基本能力。

例2.在等差数列{}n a 中,若150a =,则有等式121229(29,)n n a a a a a a n n N *-+++=+++<∈ 成立,类比上述性质,相应的在等比数列{}n b 中,若191b =,则有等式__________________________成立。 分析:由题,在等差数列中,如果0m a =,有121221(

21,)

n

m n a a a

a a a n m n N *

--+++=+++<-∈

成立,我们知道,若,,,m n p q N *

∈且m n p q +=+,对于等差数列有等式m n p q a a a a +=+。上式就是

由此证出。对于等比数列有等式m n p q a a a a ?=?,所以可以得到结论:若1m b =,则有

121221(21,)n m n

bb b bb b n m n N *

--=<-∈ 成立,所以在本题中的19m =,即得

121237(37,)n n bb b bb b n n N *

-=<∈ 答案:121237(37,)n n bb b bb b n n N *-=<∈

点评:在进行类比拓展时可以抓住某些性质进行类比,如由等差数列定义到等比数列定义差变成商,由等差数列的通项公式到等比数列的通项公式和变成积(积变成幂),也可以抓住思维方法进行类比迁移,如本例的等差数列的性质,等差数列有等式m n p q a a a a +=+,所以在等比中就可以用类似的性质,等比数列有等式m n p q a a a a ?=?来推导。

小训练:1.等差数列有如下性质:若数列{}n a 为等差数列,则当12n

n a a a b n

+++=

时,数列{}n b 也

是等差数列;类比上述性质,相应地,若数列{}n c 是正项等比数列,当n d =____________时,数列{}n d 也是等比数列。

2.已知等差数列{}n a 的前n 项和为1(1)

2

n n n S na d -=+,用类比的方法,写出等比数列前n 项积的表达式n T =______________.

3.数列}{n a 是正项等差数列,若n

na a a a b n

n ++++++++=

32132321,则数列}{n b 也为等差数列. 类比上述结论,

写出正项等比数列}{n c ,若n d = ,则数列{n d }也为等比数列.

答案:1.n d =.(1)2

1

n n n n T b q -=? 3. n n n

c c c c ++++????? 3211

33

221)

(

等差数列和等比数列的总结与联系

等差数列和等比数列的综合及其联系 课题设计背景: 数列是反映自然规律的基本数学模型之一。而等差数列和等比数列是学生必须掌握的两种基本数学模型,研究等差数列的通项、性质以及求和公式,并用类比的方法对等比数列进行研究是课程标准的教学要求。 课题设计目标: (1)掌握等差数列的通项公式及其前n项和公式; (2)掌握等差数列的通项公式及其前n项和公式;体验用类比的思想方法对等差数列和等比数列进行研究的活动。

例题分析: 1、已知(), f x = 利用课本推导等差数列前n 项和的公式的方法,求和: (5)(4)(3)...(5)f f f f f -+-+-+++的值 2、已知公差不为零的等差数列{n a }中,236,,a a a 组成等比数列的连续三项,求公比q 3、已知等差数列{}n a 的公差和等比数列{}n b 的公比都是11441010,1,,,;d d a b a b a b ≠=== (1)求1a 和d 的值;(2)16b 是不是数列{}n a 中的项,为什么? (二)等差数列和等比数列之间的转化 结论: (1){}n a 成等差数列,则{}(0,1)n a c c c >≠成等比数列; (2)正项数列{}n a 成等比数列,则{}log (0,1)c n a c c >≠成等差数列。类比可结合上述结论将等比数列转化为等差数列,再还原成等比数列写出有关结论。 例题分析: 1、 已知数列)}({* N n a n ∈是一个以(0)q q >为公比,以11(0)a a >为首项的等比数列,求 12lg lg ...lg n a a a +++ 2、 若数列)}({* N n a n ∈是等差数列,则有数列*123......,()n n a a a a b n N n ++++= ∈ 也是等差数列;类比上述性质,相应地:若数列)}({* N n c n ∈是等比数列,且0>n c ,则 有数列*_________________,()n d n N =∈也是等比数列。 3、 设)}({* N n a n ∈是等差数列,12n a n b ?? = ? ?? ,已知123123211 ,,88 b b b b b b ++= =求数列)}({*N n a n ∈的通项公式。 (三)学法总结: (四)课后反思:

等差数列、等比数列知识点梳理

等差数列和等比数列知识点梳理 第一节:等差数列的公式和相关性质 1、等差数列的定义:对于一个数列,如果它的后一项减去前一项的差为一个定值,则称这个数列为等差数列,记:d a a n n =--1(d 为公差)(2≥n ,*n N ∈) 2、等差数列通项公式: 1(1)n a a n d =+-,1a 为首项,d 为公差 推导过程:叠加法 推广公式:()n m a a n m d =+- 变形推广:m n a a d m n --= 3、等差中项 (1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2 b a A +=或 b a A +=2 (2)等差中项: 数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a 4、等差数列的前n 项和公式: 1()2n n n a a S += 1(1) 2n n na d -=+ 211 ()22 d n a d n =+-2An Bn =+ 前N 相和的推导:当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=。(注:12132n n n a a a a a a --+=+=+=???,)当然扩充到3项、4项……都是可以的,但要保证等号两边项数相同,下标系数之和相等。

5、等差数列的判定方法 (1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )? {}n a 是等差数列. (2)等差中项:数列{}n a 是等差数列 )2(211-≥+=?+n a a a n n n 212+++=?n n n a a a (3)数列{}n a 是等差数列?b kn a n +=(其中b k ,是常数)。 (4)数列{}n a 是等差数列?2n S An Bn =+,(其中A 、B 是常数)。 6、等差数列的证明方法 定义法或者等差中项发? {}n a 是等差数列. 7、等差数列相关技巧: (1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、n 、 n a 及n S ,其中1a 、d 称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。 (2)设项技巧: ①一般可设通项1(1)n a a n d =+- ②奇数个数成等差,可设为…,2,,,,2a d a d a a d a d --++…(公差为d ); ③偶数个数成等差,可设为…,3,,,3a d a d a d a d --++,…(注意;公差为2d ) 8、等差数列的性质: (1)当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ;前n 和211(1)()222 n n n d d S na d n a n -=+=+-是关于n 的二次函数且常数项为0。

(完整版)等差数列的通项公式及应用习题

等差数列的通项公式及应用习题 1. 已知等差数列{a n }中,a2=2, a5=8,贝擞列的第10项为() A. 12 B . 14 C. 16 D. 18 2. 已知等差数列前3项为-3, -1, 1,则数列的第50项为() A . 91 B. 93 C. 95 D. 97 3. 已知等差数列首项为2,末项为62,公差为4,则这个数列共有 A . 13 项 B . 14 项C. 15 项D. 16 项 4. 已知等差数列的通项公式为a n=-3n+a, a为常数,则公差d=久一3 B, 3 C. 一三 D.- 2 2 5. 已知等差数列{a n }中,a1=1, d=3,那么当a n=298时,项数n等于 A. 98 B . 99 C . 100 D . 101 6. 在等差数列{a n }中,若a3=-4 , a5=11,则an等于 A. 56 B . 18 C . 15 D . 45 7. 在等差数列{a n}中,若a1+a2=-18 , a5+a6=-2,则30是这个数列的

A .第22项B.第21项C.第20项D.第19项 3,在数列中,若ai= 20, =-^ + 1),则时等于 -- A. 45 B. 48 C. 52 D. 55 11. 已知数列a, -15 , b, c, 45是等差数列,则a+b+c的值是 A. -5 B . 0 C . 5 D. 10 12. 已知等差数列{a n}中,a1+a2+a3=-15 , a3+a=-16,贝卩a二 A. -1 B . -3 C . -5 D . -7 13. 已知等差数列{a n }中,a10=-20 , a2°n=20,则这个数列的首 项a为 A. -56 B . -52 C . -48 D . -44 二、填空题 1. 等差数列7,11,15,…,195,共有____________ 项. 2. 已知等差数列5, 8, 11,…,它的第21项为____________ . 3. 已知等差数列-1 , -4 , -7, -10,…,则-301是这个数列的 第_____ .

等差、等比数列公式总结

一、等差数列 1.定义:)(1常数d a a n n =-+ 2.通项公式:d n a )1(a 1n -+= 3.变式:d m n a m n )(a -+= m n a a d m n --= 4.前n 项和:2 )(1n a a S n n += 或 d n n n a S n 2)1(1-+= 5.几何意义: ①d dn a d n a a n -+=-+=11)1(即q pn a n += 类似 q px y += ②n d a n d S n )2 (212-+= 即 Bn An S n +=2 类似 Bx Ax y +=2 6.}{n a 等差d a a a a a Bn An S q pn a n n n n n n n =-?+= ?+=?+=?++-11122 7.性质 ① q p n m +=+则 q p n m a a a a +=+ ② p n m 2=+ 则 p n m a a a 2=+ ③ =+=+=+--23121n n n a a a a a a ④ m S 、m -m 2S 、2m -m 3S 等差 ⑤ }{n a 等差,有12+n 项,则 n S S 1n +=偶奇 ⑥ 1212-= -n S a n n 二、等比数列 1.定义:常数)(a 1q a n n =+ 2.通项公式:11a -=n n q a 3.变式: m n m n q a -=a m n m n q a a -= 4. ?????≠--==)1( 1)1()1( 11q q q a q na S n n

前n 项和:n a S n 1= )1(=q 或 q q a S n n --=11() 1 )1(≠q 5.变式:m n m n q q S S --=11 )1(≠q 6.性质: ① r p n m +=+则 r p n m a a a a ?=? ② p n m 2=+ 则 2 p n m a a a =? ③ =?=?=?--23121n n n a a a a a a ④ m S 、m -m 2S 、2m -m 3S 等比 ⑤ }{n a 等比,有12+n 项 偶奇qS a a a a q a a a a S n n +=++++=++++=+1242112531)(a 三、等差与等比的类比 {}n a 等差 {}n b 等差 和 积 差 商 系数 指数 “0” “1” 四、数列求和 1.分组求和 本数列的和公式求和.进行拆分,分别利用基,则可或等比数列的和的形式数列,但通项是由等差通项虽不是等差或等比 项的和: 前如求n n n )}1({+ )2)(1(3 1 )1(21)12)(1(61 )321()321( ) ()22()11(] )1(22222222++=++++=++++++++=++++++=∴+=+n n n n n n n n n n n n S n n n n n 2.裂项相消法. ).11(11}{1 1 11+++-=??n n n n n n n a a d a a a n a a 为等差数列,项和,其中的前项为用于通 从而计算和的方法,适别裂开后,消去一部分把数列和式中的各项分

证明或判断等差(等比)数列的常用方法

证明或判断等差(等比)数列的常用方法 湖北省 王卫华 玉芳 翻看近几年的高考题,有关证明、判断数列是等差(等比)数列的题型比比皆是,如何处理这些题目呢且听笔者一一道来. 一、利用等差(等比)数列的定义 在数列 {} n a 中,若 1n n a a d --=(d 为常数)或 1 n n a q a -=(q 为常数),则数列{}n a 为等差(等比)数列.这是证明数列{}n a 为等差(等比)数更最主要的方法.如: 例1.(2005北京卷)设数列{}n a 的首项114a a =≠,且11 214 n n n a n a a n +???=??+??为偶数为奇数 , 记211 1234 n n b a n -=-=,,,,…. (Ⅰ)求23a a ,;(Ⅱ)判断数列{}n b 是否为等比数列,并证明你的结论. 解:(Ⅰ)213211111 44228a a a a a a =+=+==+,; (Ⅱ)43113428a a a =+=+,所以54113 2416 a a a ==+, 所以1123351111111144424444b a a b a a b a a ????=- =-=-=-=-=- ? ????? ,,, 猜想:{}n b 是公比为 1 2 的等比数列. 证明如下:因为121221111111()424242 n n n n n b a a a b n *++-??=-=-=-=∈ ???N , 所以{}n b 是首项为14a - ,公比为1 2 的等比数列. 评析:此题并不知道数列{}n b 的通项,先写出几项然后猜测出结论,再用定义证明,这是常规做法。

等差数列概念及通项公式经典教案

等差数列的概念及通项公式 【学习目标】 1. 准确理解等差数列、等差中项的概念,掌握等差数列通项公式的求解方法,能够熟练应用通项公式解 决等差数列的相关问题 2. 通项对等差数列概念的探究和通项公式的推导,体会数形结合思想、化归思想、归纳思想,培养学生 对数学问题的观察、分析、概括和归纳的能力 3?激情参与、惜时高效,禾U 用数列知识解决具体问题,感受数列的应用价值 【重点】:等差数列的概念及等差数列通项公式的推导和应用 【难点】:对等差数列中“等差”特征的理解、把握和应用 【学法指导】 1.阅读探究课本上的基础知识,初步掌握等差数列通项公式的求法 ; 2.完成教材助读设置的问题,然后结 合课本的基础知识和例题,完成预习自测; 3.将预习中不能解决的问题标出来,并写到后面“我的疑惑” 一、知识温故 1?数列有几种表示方法? 2?数列的项与项数有什么关系? 3函数与数列之间有什么关系? 教材助读 1?一般地,如果一个数列从第 ________ 项起,每一项与它的前一项的差等于 ____________ 常数,那么这个数列 就叫做等差数列,这个常数叫做等差数列的 ___________ ,公差通常用字母 ___________________________ 表示。 2.由三个数a 、A 、b 组成的 ___________ 数列可以看成最简单的等差数列。这时 A 叫做a 与b 的等差数列即 3. 如果数列{a n }是公差为d 的等差数列,则a 2 a 1 a 5 a 1 4.通项公式为a n =an+b (a,b 为常数)的数列都是等差数列吗?反之,成立吗? ,a 3 a 1 a 4 a 1 1. 等差数列a 2d , a ,a 2d ?' A . a n a (n 1)d B. C . a n a 2(n 2)d D. 2.已知数列{, a n } 的通项公式为 a n A . 2 B. 3 C. 2 3. 已知a 1 b - 1 ?的通项公式是( a (n 3)d a 2nd 2n ,则它的公差为( D. 3 ,则a 与b 的等差中项为 【预习自测】 a n a n

等差数列与等比数列练习和解析(高考真题)

1.(2019·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( ) A .a n =2n -5 B .a n =3n -10 C .S n =2n 2 -8n D .S n =12 n 2 -2n 2.(2019·长郡中学联考)已知数列{a n }满足,a n +1+2a n =0,且a 2 =2,则{a n }前10项的和等于( ) A.1-2103 B .-1-210 3 C .210-1 D .1-210 3.已知等比数列{a n }的首项为1,公比q ≠-1,且a 5+a 4=3(a 3 +a 2),则 9 a 1a 2a 3…a 9等于( ) A .-9 B .9 C .-81 D .81 4.(2018·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=( ) A .-12 B .-10 C .10 D .12 5.(2019·山东省实验中学联考)已知等差数列{a n }的公差不为零,S n 为其前n 项和,S 3=9,且a 2-1,a 3-1,a 5-1构成等比数列,则S 5=( ) A .15 B .-15 C .30 D .25 二、填空题 6.(2019·北京卷)设等差数列{a n }的前n 项和为S n .若a 2=-3,S 5=-10,则a 5=________,S n 的最小值为________. 7.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:“有一个人走378里路,

等差数列通项公式

等差数列通项公式 教学目标 1.明确等差数列的定义. 2.掌握等差数列的通项公式,会解决知道中的三个,求另外一个的问题 3.培养学生观察、归纳能力. 教学重点 1.等差数列的概念; 2.等差数列的通项公式 教学难点 等差数列“等差”特点的理解、把握和应用 教学方法 启发式数学 教具准备 投影片1张(内容见下面) 教学过程 (I)复习回顾 师:上两节课我们共同学习了数列的定义及给出数列的两种方法――通项公式和递推公式。这两个公式从不同的角度反映数列的特点,下面看一些例子。(放投影片) (Ⅱ)讲授新课 师:看这些数列有什么共同的特点? 1,2,3,4,5,6;① 10,8,6,4,2,…;② ③ 生:积极思考,找上述数列共同特点。 对于数列①(1≤n≤6);(2≤n≤6)

对于数列②-2n(n≥1) (n≥2) 对于数列③(n≥1) (n≥2) 共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。 师:也就是说,这些数列均具有相邻两项之差“相等”的特点。具有这种特点的数列,我们把它叫做等差数。 一、定义: 等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个 常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。 如:上述3个数列都是等差数列,它们的公差依次是1,-2,。 二、等差数列的通项公式 师:等差数列定义是由一数列相邻两项之间关系而得。若一等差数列的首项是,公差 是d,则据其定义可得: 若将这n-1个等式相加,则可得: 即:即:即:…… 由此可得:师:看来,若已知一数列为等差数列,则只要知其首项和公差d,便可求 得其通项。 如数列①(1≤n≤6) 数列②:(n≥1) 数列③:(n≥1) 由上述关系还可得:即:则:=如:三、例题讲解 例1:(1)求等差数列8,5,2…的第20项 (2)-401是不是等差数列-5,-9,-13…的项?如果是,是第几项? 解:(1)由n=20,得(2)由得数列通项公式为:由题意可知,本题是要回答是否存在正整数n,使得-401=-5-4(n-1)成立解之得n=100,即-401是这个数列的第100项。

隔项成等差或等比修订稿

隔项成等差或等比集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

1、已知n n n a a 21=?+,则 ,,,,12531-n a a a a 是以2为公比的等比数列,若要推出 ,,,,12531-n a a a a 是以3为公差的等差数列,则与满足的关系式应该是 13n n a a n ++= 出处: (1) 已知数列{}n a 成等差数列,则数列{}n n a a ++1成等差数列;逆命题成立吗? (2) {}{}n n a ,a -212各自成等差数列,且公差相同; (2)18.设{}n a 是各项为正数的无穷数列,i A 是边长为1,i i a a +的矩形的面积(1,2,i =),则{}n A 为等比数列的充要条件是( ) (A ){}n a 是等比数列. (B )1321,, ,,n a a a -或242,,,,n a a a 是等比数列. (C )1321,, ,,n a a a -和242,,,,n a a a 均是等比数列. (D )1321,,,,n a a a -和242,, ,,n a a a 均是等比数列,且公比相同. (3)已知数列n n a ,a +1是方程n n x b x ??-+= ??? 2103的两根,求无穷数列{}n b 的各项和 (4)已知点列B 1(1,y 1)、B 2(2,y 2)、…、B n (n,y n )(n ∈N )顺次为一次函数 12141 +=x y 图像上的点,点列A 1(x 1,0)、A 2(x 2,0)、…、A n (x n ,0)(n ∈N )顺次为x 轴正半轴上的点,其中x 1=a (0<a <1),对于任意n ∈N ,点A n 、B n 、A n+1构成一个顶角的顶点为B n 的等腰三角形。 ⑴求数列{y n }的通项公式,并证明{y n }是等差数列; ⑵证明x n+2-x n 为常数,并求出数列{x n }的通项公式; ⑶在上述等腰三角形A n B n A n+1中,是否存在直角三角形?若有,求出此时a 值;若 不存在,请说明理由。 隔项成等差数列或等比数列,是否需要求前n 项和(分类讨论,注意项数)

等差数列与等比数列的基本运算

一.课题:等差数列与等比数列的基本运算 二.教学目标:掌握等差数列和等比数列的定义,通项公式和前n 项和的公式,并能利用这些知识 解决有关问题,培养学生的化归能力. 三.教学重点:对等差数列和等比数列的判断,通项公式和前n 项和的公式的应用. 四.教学过程: (一)主要知识: 1.等差数列的概念及其通项公式,等差数列前n 项和公式; 2.等比数列的概念及其通项公式,等比数列前n 项和公式; 3.等差中项和等比中项的概念. (二)主要方法: 1.涉及等差(比)数列的基本概念的问题,常用基本量1,()a d q 来处理; 2.使用等比数列前n 项和公式时,必须弄清公比q 是否可能等于1还是必不等于1,如果不能确定则需要讨论; 3.若奇数个成等差数列且和为定值时,可设中间三项为,,a d a a d -+;若偶数个成等差数列且和为定值时,可设中间两项为,a d a d -+,其余各项再根据等差数列的定义进行对称设元.若干个数个成等比数列且积为定值时,设元方法与等差数列类似. 4.在求解数列问题时要注意运用函数思想,方程思想和整体消元思想,设而不求. (三)例题分析: 例1.(1)设数列{}n a 是递增等差数列,前三项的和为12,前三项的积为48,则它的首项为 2 . (2)已知等差数列{}n a 的公差0d ≠,且139,,a a a 成等比数列,则1392410a a a a a a ++++=1316 . 例2.有四个数,其中前三个数成等差数列,后三个数成等比数列,且第一个数与第四个数的和是16,第二个数与第三个书的和是12,求这四个数. 解:设这四个数为:2 (),,,a d a d a a d a +-+,则2 ()16212a d a d a a d ?+-+=???+=? 解得:48a d =??=?或96a d =??=-?,所以所求的四个数为:4,4,12,36-;或15,9,3,1. 例3.由正数组成的等比数列{}n a ,若前2n 项之和等于它前2n 项中的偶数项之和的11倍,第3项与第4项之和为第2项与第4项之积的11倍,求数列{}n a 的通项公式. 解:当1q =时,得11211na na =不成立,∴1q ≠, ∴221122331111 (1)11(1)1111n n a q a q q q q a q a q a q a q ?--=?--??+=?? 由①得110 q =,代入②得110a =, ∴21()10 n n a -=. 说明:用等比数列前n 项和公式时,一定要注意讨论公比是否为1. 例4.已知等差数列110,116,122,, ① ②

等差数列及其通项公式公开课教案

《等差数列及其通项公式》公开课教案教学时间:2009年12月25日上午第四节 授课班级:08商外 授课地点:职三(3) 授课教师:郭玲 一、教学任务及职业背景分析: 商务外语班学生多数数学基础较差,对数学学习也不够重视。但数学作为基础学科,是培养学生分析问题、解决问题的能力及创造能力的载体,特别是本专业学生多数准备出国,更应该加强能力的培养,以适应国外激烈竞争的环境。所以在学习数学过程中,我更强调学习的过程,强调学生探索新知识的经历和获得新知的体验,不能再让教学脱离学生的内心感受。在设计本节课时,我所考虑的不是简单告诉学生等差数列的定义和通项公式,而是通过分组分享法,创造一些数学情境,让学生自己去讨论、去发现,去分享,去体验成功。学生在课堂上的主体地位得到充分发挥,激发学习兴趣,培养团队精神,也提高他们提出问题、解决问题的能力和创造力。等差数列是学生探究特殊数列的开始,它对后续内容的学习,无论在知识上,还是在方法上都具有积极的意义。 二、教学目标: 1.知识目标:理解等差数列定义,掌握等差数列的通项公式,能根据通项公式解决 a n 、a 1 、d、n中的已知三个求另一个的问题。 2.能力目标:培养学生观察、推理、归纳能力,应用数学公式解决实际问题的能力。3.德育目标:体验从特殊到一般,又到特殊的认知规律,培养学生勇于创新的科学精神。 三、教学重点:等差数列的定义理解和对通项公式的熟悉与应用 四、教学难点:对等差数列概念中“等差”特点的理解及通项公式的灵活运用 五、教学方法:分组分享法 六、教学手段:多媒体辅助教学 七、教学过程: 【雅思、托福考试常识】 美国、英国、澳大利亚等国家都要求申请留学人员应具备雅思、托福成绩。如果达不到,就需要在国外就读价格昂贵的语言学校。雅思、托福考试词汇量一般在8000个单词左右。 (1)雅思要求:考试科目为阅读、听力、口语、写作4科,每科满分为9分,成绩一般要求平均分5分以上,费用为1450元。(2)托福要求:考试科目也为是阅读、听力、口语、写作4科,每科满分30分,总分为120,成绩一般要求总分达80分以上,费用为1370元。 (一)复习回顾:数列的定义 引例:(1)莺生原来只会500个单词,她决定从今天起每天背记15个单词,那么从今天起她的单词量逐日依次递增为: 500,515,530,545,560,575,…… (2)靓靓目前会1000个单词,她打算从今天起不再背单词了,结果不知不觉每周忘掉20个单词,那么从今天起她的单词量逐周依次递减为:1000 ,980,960,940,920 ,900,…… 【说明】:通过两个具体的数列,复习数列的定义,为后面学习等差数列的定义和等差数列的通项公式建立基础。 (二)导入新课: 这节课我们将学习这一类有特点的数列: 1000,980,960,940,920 ,900 ……① 500, 515 ,530,545,560,575 ……② 问题1:观察这些数列有什么共同的特征?请同学们思考后作答。 共同特点:从第2项起,后一项与它的前一项的差都等于同一个常数。也就是说,这些数列均具有相邻两项之差“相等”的特点。具有这种特点的数列, 我们把它叫做等差数列。 【说明】:通过例题(1)和(2)引出两个具体的等差数列,初步认识等差数列的特征,为后面的概念学习建立基础,为学习新知识创设问题情境,激发学 生的求知欲。由学生观察两个数列特点,引出等差数列的概念,对问题的 总结又培养学生由具体到抽象、由特殊到一般的认知能力。每相邻两项的 差相等——作差的顺序是后项减前项 问题2:请同学们分别用文字语言和数学语言描述等差数列的定义: 文字语言:一般的,如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么,这个数列就叫等差数列,这个常数叫做等差数列的公 差,用字母d表示。 数学语言:a 2 – a 1 = a 3 - a 2 = a 4 - a 3 = ··· = d 即:a n - a n-1 = d (n∈N+且n≥2) 或a n= a n-1 +d (n∈N+且n≥2) 问题3:分组比赛抢答,观察下列数列是否为等差数列,如果是求出公差d (1)25,20,15,10,5……√d=-5

数列高考题隔项问题 -

数列中的隔项问题 裂项求和 数列中的放缩问题 1.已知()21+= n n a n 求n S 2.已知()2)1(1++= n n n a n 求n S 3.求证: n 11n 131211n 121222-<+++<+- 2,≥∈n N n 4.求证: )11123(21n 13121222+--<+++n n 2,≥∈n N n 5.求证: )1n (2n 13121)21(2-<+++< -+ n 2,≥∈n N n 数列中的隔项问题 1(2014新课标)已知数列{}n a 的前项和是n S ,11,0n a a =≠,11n n n a a S λ+=-, 其中λ为常数, (I )证明:2n n a a λ+-= (II )是否存在λ,使得{}n a 为等差数列? 并说明理由. 2 在数列中,已知11,121+= =+n n a a a ,96100a a =则=+1615a a 3 (2013天津,理19) 已知首项为32 的等比数列{a n }不是..递减数列,其前n 项和为S n (n ∈N *), 且S 3+a 3,S 5+a 5,S 4+a 4成等差数列. (1)求数列{a n }的通项公式; (2)设T n =1n n S S - (n ∈N *),求数列{T n }的最大项的值与最小项的值.

4.(2012新课标卷)(12)数列{n a }满足1(1)21n n n a a n ++-=-,则{n a }的前60项和为 A.3690 B.3660 C.1845 D.1830 5.(2013湖南,理15)设S n 为数列{a n }的前n 项和,S n =(-1)n a n -12 n ,n ∈N *,则 (1)a 3=__________ (2)S 1+S 2+…+S 100=__________. 6.(2013课标全国Ⅰ,理12)设△A n B n C n 的三边长分别为a n ,b n ,c n ,△A n B n C n 的面积为S n ,n =1,2,3,….若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=2n n c a +,c n +1=2 n n b a +,则( ). A .{S n }为递减数列 B .{S n }为递增数列 C .{S 2n -1}为递增数列,{S 2n }为递减数列 D .{S 2n -1}为递减数列,{S 2n }为递增数列 7.(2013江西,理17)正项数列{a n }的前n 项和S n 满足:2n S -(n 2+n -1)S n -(n 2+n )=0. (1)求数列{a n }的通项公式a n ; (2)令22 1(2)n n n b n a +=+,数列{b n }的前n 项和为T n .证明:对于任意的n ∈N *,都有T n <564. 8(2013浙江,理18)在公差为d 的等差数列{a n }中,已知a 1=10,且a 1,2a 2+2,5a 3成等比数列. (1)求d ,a n ; (2)若d <0,求|a 1|+|a 2|+|a 3|+…+|a n |. 9.(2012广东理)设数列{}n a 的前n 项和为n S ,满足1*1221()n n n S a n N ++=-+∈, 且123,5,a a a +成等差数列。 (1)求1a 的值; (2)求数列{}n a 的通项公式。 (3)证明:对一切正整数n ,有 1211132 n a a a +++<

等差数列与等比数列十大例题

等差数列与等比数列十大例题 例1、已知等差数列{}n a 满足:37a =,5726a a +=,{}n a 的前n 项和为n S . (Ⅰ)求n a 及n S ; (Ⅱ)令b n = 2 1 1 n a -(n ∈N *),求数列{}n b 的前n 项和n T . 【解析】(Ⅰ)设等差数列{}n a 的公差为d ,因为37a =,5726a a +=,所以有 11 27 21026a d a d +=?? +=?,解得13,2a d ==, 所以321)=2n+1n a n =+-(;n S =n(n-1) 3n+22 ?=2n +2n 。 (Ⅱ)由(Ⅰ)知2n+1n a =,所以b n = 2 1 1n a -=21=2n+1)1-(114n(n+1)?=111(-)4n n+1 ?, 所以n T = 111111(1-+++-)4223n n+1?- =11(1-)=4n+1?n 4(n+1) , 即数列{}n b 的前n 项和n T = n 4(n+1) 。 【命题意图】本题考查等差数列的通项公式与前n 项和公式的应用、裂项法求数列的和,熟练数列的基础知识是解答好本类题目的关键。 例2、 设n S 为数列{}n a 的前n 项和,2n S kn n =+,* n N ∈,其中k 是常数. (I ) 求1a 及n a ; (II )若对于任意的* m N ∈,m a ,2m a ,4m a 成等比数列,求k 的值. 解(Ⅰ)当1,111+===k S a n , 12)]1()1([,2221+-=-+--+=-=≥-k kn n n k n kn S S a n n n n (*) 经验,,1=n (*)式成立, 12+-=∴k kn a n (Ⅱ)m m m a a a 42,, 成等比数列,m m m a a a 42 2.=∴, 即)18)(12()14(2 +-+-=+-k km k km k km ,整理得:0)1(=-k mk ,

等差数列的通项公式

2.2.2 等差数列的通项公式 2.2.2 等差数列的通项公式 (共 1 课时) 一、知识与技能 1.明确等差中项的概念 2.进一步熟练掌握等差数列的通项公式及推导公式,能通过通项公式与图象认识等差数列的性质 3.能用图象与通项公式的关系解决某些问题 二、过程与方法 1.通过等差数列的图象的应用,进一步渗透数形结合思想、函数思想;通过等差数列通项公式的运用,渗透方程思想 2.发挥学生的主体作用,讲练相结合,作好探究性学习 3.理论联系实际,激发学生的学习积极性 三、情感态度与价值观 1.通过对等差数列的研究,使学生明确等差数列与一般数列的内在联系,从而渗透特殊与一般的辩证唯物主义观点 2.通过体验等差数列的性质的奥秘,激发学生的学习兴趣 教学重点等差数列的定义、通项公式、性质的理解与应用 一些相关问题 导入新课 师同学们,上一节课我们学习了等差数列的定义,等差数列的通项公式,哪位同学能回忆一下什么样的数列叫等差数列? 生我回答,一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,即a n-a n-1=d(n≥2,n∈N*),这个数列就叫做等差数列,这个常数就叫做等差数列的公差(通常用字母“d”表示

师 对,我再找同学说一说等差数列{a n }的通项公式的内容是什么? 生1 等差数列{a n }的通项公式应是a n =a 1+(n -1)d 生2 等差数列{a n }还有两种通项公式:a n =a m +(n -m)d 或a n =p n +q(p 、q 是常数 师 好!刚才两位同学说得很好,由上面的两个公式我们还可以得到下面几种计算公差d 的公式:①d =a n -a n -1;②11--=n a a d n ;③m n a a d m n --=.你能理解与记忆它们吗? 生3 公式②11--= n a a d n 与③m n a a d m n --=记忆规律是项的值的差比上项数之间的差(下标之差 [合作探究] 探究内容:如果我们在数a 与数b 中间插入一个数A ,使三个数a ,A ,b 成等差数列,那么数A 应满足什么样的条件呢? 师 本题在这里要求的是什么 生 当然是要用a ,b 来表示数A 师 对,但你能根据什么知识求?如何求?谁能回答 生 由定义可得A -a =b -A ,即2 b a A += 反之,若2b a A += ,则A -a =b -A 由此可以得?+=2 b a A a ,A , b 成等差数列 推进新课 我们来给出等差中项的概念:若a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项 根据我们前面的探究不难发现,在一个等差数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等差中项 如数列:1,3,5,7,9,11,13…中5是3与7的等差中项,也是1和9的等差中项 9是7和11的等差中项,也是5和13的等差中项 [方法引导] 等差中项及其应用问题的解法关键在于抓住a ,A ,b 成等差数列A =a +b ,

等差数列与等比数列

等差数列与等比数列 一.选择题 (1)在等差数列{a n }中, a 7=9, a 13=-2, 则a 25= ( ) A -22 B -24 C 60 D 64 (2) 在等比数列{a n }中, 存在正整数m, 有a m =3, a m+5=24, 则, a m+15= ( ) A 864 B 1176 C 1440 D 1536 (3)已知等差数列{}n a 的公差为2,若431,,a a a 成等比数列, 则2a = ( ) A –4 B –6 C –8 D –10 (4)设数列{}n a 是等差数列,且n S a a ,6,682=-=是数列{}n a 的前n 项和,则 ( ) A S 4+><,则使前n 项和0n S >成 立的最大自然数n 是: ( ) A .4005 B .4006 C .4007 D .4008 (7) 数列{a n }的前n 项和S n =3n -c, 则c=1是数列{a n }为等比数列的 ( ) A 充分非必要条件 B 必要非充分条件 C 充分必要条件 D 既非充分又非必要条件 (8) 在等比数列{a n }中, a 1<0, 若对正整数n 都有a n 1 B 0

等比数列和等差数列公式

等比数列:是一种特殊数列。它的特点是:从第2项起,每一项与前一项的比都是一个常数。称为公比,符号为q。 公比公式 根据等比数列的定义可得: 通项公式 我们可以任意定义一个等比数列 这个等比数列从第一项起分别是,公比为q,则有: a2 = a1q, a3 = a2q = a1q2, a4 = a3q = a1q3, , 以此类推可得,等比数列的通项公式为: a n = a n ? 1q = a1q n ? 1, 求和公式 对于上面我们所定义的等比数列,即数列。我们将所有项进行累加。 于是把称为等比数列的和。记为: 如果该等比数列的公比为q,则有: (利用等比数列通项公式)(1) 先将两边同乘以公比q,有: (1)式减去该式,有: (q ? 1)S n = a1? a1q n (2) 然后进行一定的讨论 当时,

而当q = 1时,由(2)式无法解得通项公式。 但我们可以发现,此时: = na1 ?综上所述,等比数列的求和公式为: ?经过推导,可以得到另一个求和公式:当q≠1时 (更正:分母为1-q) 当时, 等比数列无限项之和 由于当及n 的值不断增加时,q n的值便会不断减少而且趋于0,因此无限项之和: (更正:分母为1-q)性质 如果数列是等比数列,那么有以下几个性质: ? 证明:当时, ?对于,若,则 证明: ∵ ∴

?等比中项:在等比数列中,从第二项起,每一项都是与它等距离的前后两项的等比中项。即等比数列中有三项,,,其中,则有 ?在原等比数列中,每隔k项取出一项,按原来顺序排列,所得的新数列仍为等比数列。 ?也成等比数列。 等差数列 等差数列是数列的一种。在等差数列中,任何相邻两项的差相等。该差值称为公差。例如数列 就是一个等差数列。在这个数列中,从第二项起,每项与其前一项之差都等于2,即公差为2。 通项公式 如果一个等差数列的首项标为,公差标为,那么该等差数列第项的表达式为: . 等差数列的任意两项之间存在关系: 等差中项 给定任一公差为的等差数列。从第二项开始,前一项加后一项的和的値为该项的两倍。例: 证明: 设, 则 ∵(矛盾) ∴ 证毕

等差数列与等比数列的类比练习题(带答案)

等差数列与等比数列的类比 一、选择题(本大题共1小题,共5.0分) 1.记等差数列{a n}的前n项和为S n,利用倒序求和的方法得S n=n(a1+a n) 2 ; 类似地,记等比数列{b n}的前n项积为T n,且b n>0(n∈N?),类比等差数列求和的方法,可将T n表示成关于首项b1,末项b n与项数n的关系式为( ) A. (b1b n)n B. nb1b n 2C. nb1b n D. nb1b n 2 1. A 二、填空题(本大题共9小题,共45.0分) 2.在公差为d的等差数列{a n}中有:a n=a m+(n?m)d(m、n∈N+), 类比到公比为q的等比数列{b n}中有:______ . 2. b n=b m?q n?m(m,n∈N?) 3.数列{a n}是正项等差数列,若b n=a1+2a2+3a3+?+na n 1+2+3+?+n ,则数列{b n}也为等差数列,类比上述结论,写出正项等比数列{c n},若d n=______ 则数列{d n}也为等比数列. 3. (c 1 c22c33…c n n)1 4.等差数列{a n}中,有a1+a2+?+a2n+1=(2n+1)a n+1,类比以上性 质,在等比数列{b n}中,有等式______ 成立. 4. b1b2…b2n+1=b n+1 2n+1 5.若等比数列{a n}的前n项之积为T n,则有T3n=(T2n T n )3;类比可得到以下正确结论:若等差数列的前n项之和为S n,则有______ . 5. S3n=3(S2n?S n) 6.已知在等差数列{a n}中,a11+a12+?+a20 10=a1+a2+?a30 30 ,则在等比数列{b n} 中,类似的结论为______ 10b11?b12?…?b20=30b1?b2?b3?…?b30 7.在等比数列{a n}中,若a9=1,则有a1?a2…a n=a1?a2…a17?n(n< 17,且n∈N?)成立,类比上述性质,在等差数列{b n}中,若b7=0,则有______ . b1+b2+?+b n=b1+b2+?+b13?n(n<13,且n∈N?)

相关主题