搜档网
当前位置:搜档网 › 微波技术与天线实验3利用HFSS仿真分析矩形波导

微波技术与天线实验3利用HFSS仿真分析矩形波导

微波技术与天线实验3利用HFSS仿真分析矩形波导
微波技术与天线实验3利用HFSS仿真分析矩形波导

微波技术与天线实验报告

实验名称:实验3:利用HFSS仿真分析矩形波导

学生班级:

学生姓名:

学生学号:

实验日期:2011年月日

一、 实验目的

学会HFSS 仿真波导的步骤,画出波导内场分布随时间变化图,理解波的传播与截止概念;计算传播常数并与理论值比较。

二、 实验原理

矩形波导的结构如图1,波导内传播的电磁波可分为TE 模和TM 模。

x

y

z

图 1矩形波导

1)

TE 模,0=z E 。

cos

cos z

z mn m x n y H H e a b

γππ-= 2cos sin x mn c z n m x n y E H b a b

j k e γπππωμ-=

2

sin cos z y mn c j m m x n y E H e k a a b

γωμπππ-=-

2sin

cos z x mn c m m x n y H H e k a

a b

γλπ

ππ-=

2cos

sin z y mn c n m x n y H H e k b

a b

γλπ

ππ-=

其中,c k

mn H 是与激励源有关的待定常数。

2)

TM 模

Z H =0,

由Z E 的边界条件同样可得无穷多个TM 模。注意:对于mn TM 和mn TE 模,m, n 不能同时为零,否则全部的场分量为零。

mn TM 和mn TE 模具有相同的截止波数计算公式,即

c k (mn TM )=c k (mn TE )

所以,它们的截止波长c λ和截止频率c f 的计算公式也是一样的,即

c λ(mn TM )=c λ(mn TE )=

2

2

2??

? ??+??? ??b n a m

c f (mn TM )=c f (mn TE )

对于给定的工作频率或波长,只有满足传播条件(f >c f 或λ

以a=23mm ,b=10mm 的空心矩形波导为例,由截止频率的计算公式

22)()(21b

n

a m f c +=

με

,可以计算G H z f c T E 52.610=,GHz f cTE 04.1320=,GHz f cTE 1501=,所以波导单模工作的频率范围为6.562-13.123GHz 。

三、实验步骤

1、工程设置

打开HFSS,出现新的工程窗口(如图2)。

图2 HFSS工程窗口

(1)设置求解类型Driven Modal(模式激励)。

在菜单中点击HFSS>Solution Type,出现Solution Type窗口,选择Driven Modal(如图3),点击OK。

图3设置求解类型Solution Type窗口

(2)设置模型单位毫米

在菜单栏中点击Modeler>Units,出现Set ModelUnits窗口,选择mm,点击OK(如图4)。

图4设置模型单位Set Model Units窗口

(3)保存工程命名为waveguide

点击工具栏中的,将工程名字设为waveguide。

2、画长方体,材料为真空,名字为wavguide

(1)画长方体

点击工具栏中的(Draw box)画矩形波导的长方体模型,在屏幕右下角

出现长方体顶点信息,输入顶点坐标如图5,按回车键;屏幕右下角出现长方体尺寸信息,输入如图6,按回车键结束画图过程。

图5长方体顶点坐标

图6长方体尺寸设置

在屏幕右侧窗口显示画出的长方体;点击工具,将长方体全部显示在窗

口中(如图7)。

(2)设置长方体属性

在屏幕中间模型列表中的Box1为画出的长方体(如图),双击Box1,出现Propoties:Project1窗口,将Name一栏的value由Box1改为waveguide。

3、设置边界条件

(1)选择波导的四个纵向面。

通过Edit>select>faces,将鼠标设置为选择面的状态(如图2)。

通过按钮(旋转功能)以及ctrl 键实现选择多个面,或者通过edit>select>by name (如图3),结合ctrl 键选中face10、11、12、9(如图4)。

(2)将这四个面设置为理想导体边界。

可以通过点击HFSS>Boundaries>Assign> Perfect E 实现,或者点击鼠标右键>Assign Boundary> Perfect E (如图5)。

图2 select faces界面

图3 select by name界面

图4 select face界面

图5 设置Perfect E边界条件

4、设置激励源wave port

(1)选中波导的一个端口面(垂直于z轴的平面)。

(2)点击HFSS>Excitations>Assign>Wave port,或者点击鼠标右键>assign excitation>wave port(如图6)。

(3)另外一个端口面执行同样的操作。

图6 设置wave port界面

5、设置求解频率

(1)在菜单栏中点击HFSS>Analysis Setup>Add Solution Setup

(2)在求解设置窗口中,设置Solution Frequency:13Ghz,其它设为默认值

6、计算及后处理

在菜单栏中点击HFSS>Analyze all

9)画场分布图

在菜单栏中点击HFSS>Fields>Plot Fields>E,画出电场强度的幅度分布(如图7)。

在Project Manager窗口中,选择dipole>HFSSDesign1>Field Overlays,点击鼠标右键>Animate>OK,可以演示电场强度幅度随着时间变化情况,观察理解

电磁波从端口1向端口2传播的过程。

图7 波导中电场强度幅度分布

10)观察数据结果

点击HFSS>Results>Solution Data(如图8),在Matrix Data项中可以查看S 参数以及传播常数Gamma等参数(如图9)。

图8 查看solution data界面

图9 S参数及Gamma

实验二矩形波导TE10的仿真设计与电磁场分析解读

] 实验二、矩形波导TE10的仿真设计与电磁场分析 一、实验目的: 1、熟悉HFSS软件的使用; 2、掌握导波场分析和求解方法,矩形波导TE10基本设计方法; 3、利用HFSS 软件进行电磁场分析,掌握导模场结构和管壁电流结构规律和特点。 二、预习要求 1、《 2、导波原理。 3、矩形波导TE10模式基本结构,及其基本电磁场分析和理论。 4、HFSS软件基本使用方法。 三、实验原理与参考电路 导波原理 3.1.1. 规则金属管内电磁波 对由均匀填充介质的金属波导管建立如图1 所示坐标系, 设z轴与波导的轴线相重合。由于波导的边界和尺寸沿轴向不变, 故称为规则金属波导。为了简化起见, 我们作如下假设: \ ①波导管内填充的介质是均匀、线性、各向同性的; ②波导管内无自由电荷和传导电流的存在; ③波导管内的场是时谐场。 图1 矩形波导结构 本节采用直角坐标系来分析,并假设波导是无限长的,且波是沿着z方向无衰减地传输,由电磁场理论, 对无源自由空间电场E和磁场H满足以下矢量亥姆霍茨方程: ` 式中β为波导轴向的波数,E0(x,y)和H0(x,y)分别为电场和磁场的复振幅,它仅是坐标x和y的函数。 以电场为例子,将上式代入亥姆霍兹方程 ,并在直角坐标内展开,即有 (,) (,) j z j z E E x y e H H x y e β β - - ?= ? ? = ?? 式1 220 E k E ?+=

2222 2 2222222222220 T c E E E E k E k E x y z E E E k E x y E k E β????+=+++?????=+-+??=?+=式2 k c 表示电磁波在与传播方向相垂直的平面上的波数,如果导波沿z 方向传播,则 k 为自由空间中同频率的电磁波的波数。 由麦克斯韦方程组的两个旋度式,很易找到场的横向分量和纵向分量的关系式。具体过程从略,这里仅给出结果: 《 从以上分析可得以下结论: ^ (1)场的横向分量即可由纵向分量; (2) 既满足上述方程又满足边界条件的解有许多, 每一个解对应一个波型也称之为模式,不同的模式具有不同的传输特性; (3)k c 是在特定边界条件下的特征值, 它是一个与导波系统横截面形状、 尺寸及传输模式有关的参量。 由于当相移常数β=0时, 意味着波导系统不再传播, 亦称为截止, 此时k c =k, 故将k c 称为截止波数。 对于横电模(Ez=0)和横磁模(Hz=0)上式分别可以简化为 TE 模或H 模 ~ TM 模或E 模 3.1.2 矩形波导中传输模式及其场分布 由于矩形波导的四壁都是导体,根据边界条件波导中不可能传输TEM 模,只能传输TE 或TM 模。 % 这里只分析TE 模(Ez=0) 对于TE 模只要解Hz 的波动方程。即 2222()() 4 ()()z z x c z z y c z z x c z z y c H E j E k y x H E j E k x y H E j H k x y H E j H k y x ωμβωμββωεβωε???=-+???? ???=-? ???????=-+???? ???=-+????式2222,,z z x y c c z z x y c c H H E j E j k y k x H H H j H j k y k y ωμωμωμωμ???=-=????? ???=-=???? 式522222 222T c E E E x y k k β????=+???? ?=-?其中 式3 222 c x y k k k =+2222,,z z x y c c z z x y c c E E H j H j k y k x E E E j E j k y k y ωεωεβωμ??? ==-???? ????=-=-???? 式622200 0220z z c z H H k H x y ??++=??式7

HFSS天线仿真实验报告

HFSS天线仿真实验报告 半波偶极子天线设计 通信0905 杨巨 U200913892 2012-3-7

半波偶极子天线仿真实验报告 一、实验目的 1、学会简单搭建天线仿真环境的方法,主要是熟悉HFSS软件的使用方法 2、了解利用HFSS仿真软件设计和仿真天线的原理、过程和方法 3、通过天线的仿真,了解天线的主要性能参数,如驻波比特性、smith圆图特性、方向图 特性等 4、通过对半波偶极子天线的仿真,学会对其他类型天线仿真的方法 二、实验仪器 1、装有windows系统的PC一台 2、HFSS13.0软件 3、截图软件 三、实验原理 1、首先明白一点:半波偶极子天线就是对称阵子天线。 2、 对称振子是中间馈电,其两臂由两段等长导线构成的振子天线。一臂的导线半径为a,长度为l。两臂之间的间隙很小,理论上可以忽略不计,所以振子的总长度L=2l。对称振子的长度与波长相比拟,本身已可以构成实用天线。 3、 在计算天线的辐射场时,经过实践证实天线上的电流可以近似认为是按正弦律分布。取图1的坐标,并忽略振子损耗,则其电流分布可以表示为: 式中,Im为天线上波腹点的电流;k=w/c为相移常数、根据正弦分布的特点,对称振子的末端为电流的波节点;电流分布关于振子的中心店对称;超过半波长就会出现反相电流。 4、 在分析计算对称振子的辐射场时,可以把对称振子看成是由无数个电流I(z)、长度为dz的电流元件串联而成。利用线性媒介中电磁场的叠加原理,对称振子的辐射场是这些电流元辐射场之矢量和。

电流元I(z)dz所产生的辐射场为 图2 对称振子辐射场的计算 如图2 所示,电流元I(z)所产生的辐射场为 其中 5、方向函数 四、实验步骤 1、设计变量 设置求解类型为Driven Model 类型,并设置长度单位为毫米。 提前定义对称阵子天线的基本参数并初始化 2、创建偶极子天线模型,即圆柱形的天线模型。 其中偶极子天线的另外一个臂是通过坐标轴复制来实现的。 3、设置端口激励 半波偶极子天线由中心位置馈电,在偶极子天线中心位置创建一个平行于YZ面的矩形面作为激励端口平面。 4、设置辐射边界条件 要在HFSS中计算分析天线的辐射场,则必须设置辐射边界条件。这里创建一个沿Z轴放置的圆柱模型,材质为空气。把圆柱体的表面设置为辐射边界条件。 5、外加激励求解设置 分析的半波偶极子天线的中心频率在3G Hz,同时添加2.5 G Hz ~3.5 G Hz频段内的扫频设置,扫频类型为快速扫频。

实验二电磁波发射天线的模拟仿真

实验二电磁波发射天线的模拟仿真电动力学实验报告电磁波发射天线的模拟仿真 学院: 应用科学学院专业班级: 学生姓名: 某某某 学号: 指导教师: 完成时间: 2013年7月2号 一、实验目的 1(熟悉并了解CST 的软件环境。 2(通过实验掌握天线的实际画法及步骤。 3(了解电磁波发射天线的模拟仿真过程,进一步了解电磁波发射现象。 二、实验原理及要求 在CST微波工作室中,通常采用瞬态求解器来计算天线,典型的天线特性,如S参量(S参数)、主瓣方向、增益、效率等,都将被自动计算和显11 示。按照如下图的天线模型形自行设计可接受2GHz左右的电磁波信号的天线并仿真出结果,同时作出一定分析。(碳纳米管的半径为R,轴向方向沿z轴,长度为L,中间馈电端口缝隙为D) 三、实验步骤 1、选择天线模板 启动CST,在弹出的“Welcome”对话框中点击“OK” 按钮,创建一个新项目。然后会看到选择模板对话框,选择 Antenna(Horn,Waveguide),并点击OK按钮。 2、设置单位

用鼠标左键单击主菜单上的按钮,在下拉菜单中 选择,然后在弹出的对话框中将单位设置值更改为: mm,GHz,ns,然后点击OK按钮。 3、设置背景材料 假设天线在理想的真空环境中。用鼠标左键单击主菜单 上的按钮,在下拉菜单中选择,然后在弹出的对话框中设置各参数。 4、定义天线结构 用鼠标左键单击主菜单上的按钮,在下拉菜单中 选择 ,然后在弹出的对话框中设置各参数。其中 a,,。 5、建立模型 天线为圆柱结构,用鼠标左键单击主菜单上的按钮,在下拉菜单中选择,在出现的子菜单中选择,然后再按下键盘上的ESC键,在出现在对话框中输入碳纳米管天线的半径、长度、材料特性等参数。设置完成后点击OK按钮。 用鼠标左键单击主菜单上的按钮,在下拉菜单中选择 ,在出现的子菜单中选择,然后再按下键盘上的ESC键,在出现在对话框中输入碳纳米管天线的半径、长度、材料特性等参数。设置完成后点击OK按钮。 6、定义激励端口 为了给天线提供馈电端口,设置柱体中间部分为馈电缝隙,采用中心馈电。用鼠标左键单击主菜单上的按钮,在下拉菜单中选择,在出现的子菜单中选择,然后再按下键盘上的ESC键,在出现在对话框中输入碳纳米管天线的半径、长度、材料特性等参数,设置完成后点击OK按钮。

矩形波导中场结构模拟实验

实验 矩形波导中场结构模拟实验 一、实验目的要求: 1.通过实验编程及图像动态演示,形象具体的了解电磁波在波导中传播特性。 2.通过编写Matlab 程序,加深矩形波导中电磁波公式推导以及单模电磁波在矩形波导中的传播理解。 二、实验内容: 电磁场本身比较复杂和抽象,是涉及空间和时间的多维矢量场,需要具有较强的空间想象能力来理解它。 1.实验原理: 矩形波导是截面形状为矩形的金属波导管,如图一所示。 波导内壁面位置坐标设为:x=0和x=a ;y=0和y=b 。波导中填充介电常数为ε、磁导率为μ、电导率为σ的媒质,通常波导内填充理想介质(σ=0)。由于波导内没有自由电荷和传导电流,所以传播的电磁波是正弦电磁波。理想导电壁矩形波导中不可能传输TEM 模,只能传输TE 模或TM 模。对于矩形波导中TE MN 模的电场强度E 、磁场强度H 场分量表达式为: (02cos sin j t z x c j n m n E H x y e k b a b )ωβωμπππ???????=???????????? (1) (02sin cos j t z y c j m m n E H x y e k a a b )ωβωμπππ???????=???????????? (2) (3) 0z E =

(02sin cos j t z x c j m m n H H x y e k a a b )ωββ πππ???????=???????????? (4) (02cos sin j t z y c j n m n H H x y e k b a b )ωββπππ???????=???????????? (5) (0cos cos j t z z m n H H x y e a b )ωβππ?????=???????? (6) 其中:ω为微波角频率;m 和n 值可以取0或正整数,代表不同的TE 波场结构模式,称为TE 模,波导中可有无穷多个TE 模式;k c 为临界波束,k c 2=(m π/2)2+(n π/b )2;β为相 位常数,β= 。 波导中的一个重要参数为截止频率f c ,有 c f = (7) 当工作频率低于截止频率f c 时,电磁场衰减很快,不可能传播很远,所以波导呈现高通滤波器的特性,只有工作频率高于截止频率f c 时电磁波才能通过。具有最低截止频率的模式,成为最低模式,也称为主模,其他模式都成为高次模式。在矩形波导内传输 的所有模型中,TE 10模为主模。 2. 实验步骤: 设置矩形波导宽边a =22.86mm ,窄边b =10.16mm ,波导内媒质为空气,当工作频率f 为9.84GHz 时,波导中只能传输TE 10模。 利用Matlab 显示矩形波导TE10模的电磁场分布的程序设计过程: (1)根据已知参数m ,n ,a ,b 和f 编程计算kc ,β和ω角频率等参数。 Matlab 中代码实现: a=22.86*1e-3; b=10.16*1e-3; f=9.84*1e9; m=1; n=0; miu=4*pi*1e-7; eps=8.854*1e-12; %E=2.71828; kc=((m*pi/a)^2+(n*pi/b)^2)^0.5; w=2*pi*f; beta=(miu*eps*w^2-kc^2)^0.5; (2)根据式1-6定义的各场强变量,以电场强度、磁场强度各分量为因变量,以时间t 为自变量。 Matlab 中代码实现: ngrid=20; x=[0:a/ngrid:a];y=[0:b/2:b]; z=[0:0.04/ngrid:0.04];%定义x ,y ,z 坐标空间矩阵 %公式表示 for p=0:ngrid%执行循环p 赋初值0,循环步长为1,总步长ngrid for q=0:2 for r=0:ngrid%三层循环,赋值ex 、ey 、ez 、hx 、hy 、hz 空间上的数值 ex(p,q,r)=j*(w*miu/kc^2)*(n*pi/b)*cos((m*pi/a)*x(p))*sin((n*pi/b)*y(q))*exp(j*(

电磁兼容天线仿真实验报告

电磁场与电磁兼容 实验报告 学号: 姓名: 院系: 专业: 教师: 05月20日

半波对称振子天线阵最大辐射方向控制 实验工具 ?Expert MININEC Classic电磁场数值仿真软件 实验目的 根据要求的参数,利用仿真软件设计和分析自由空间或地面上的细、直线天线的电磁场数值,并完成以下要求: ?改变每幅天线馈电电流的相位控制最大增益的方向:要求的最大增益方向是:1. 00 ;2. 400;3. 800 (选择与自己学号后2位数最近的度数) ?根据运行结果指出: 1.增益方向性图; 2.最大增益; 3.最大增益方向。 实验参数 ?频率 f = 300MHz,波长λ = 1m ?四分之一波长单极子天线L=0.25λ,四个半波长对称振子排列在一条直线上,相邻两幅天线的间隔是四分之一波长 实验过程 ?建立几何模型:点—> 线,尺寸,环境,坐标等 半波对称振子放在 YOZ 平面内,相邻振子的间距是四分之一波长 0.25m。

图1 问题描述图2 –图4 几何模型 图3 图4 ?定义电特性:频率,电压,当前节点 ZENITH(DEG) 对应球坐标系中的θ, AZIMUTH (DEG) 对应球坐标系中的φ 图5 电特性—频率图6 馈电电流相位设置

图7 球坐标参数θ、ψ以及间隔设置 ?选择模式:辐射模式 ?求解项:近场 ?调试、运行 表格中出现“No detected violations ”表明设置正确 图8 选择运行平面图9 调试结果 ?显示结果 3D display 显示所设计天线的图形 天线增益方向性图中给出了最大增益值和最大增益方向、以及半功率增益带宽的计算结果。

实验二矩形波导TE10的仿真设计与电磁场分析解读

实验二、矩形波导TE 10的仿真设计与电磁场分析 一、实验目的: 1、 熟悉HFSS 软件的使用; 2、 掌握导波场分析和求解方法,矩形波导TE 10基本设计方法; 3、 利用HFSS 软件进行电磁场分析,掌握导模场结构和管壁电流结构规律和特点。 二、预习要求 1、 导波原理。 2、 矩形波导TE 10模式基本结构,及其基本电磁场分析和理论。 3、 HFSS 软件基本使用方法。 三、实验原理与参考电路 3.1 3.1.1. 对由均匀填充介质的金属波导管建立如图1 所示坐标系, 设z 轴与波导的轴线相重合。由于波导的边界和尺寸沿轴向不变, 故称为规则金属波导。为了简化起见, 我们作如下假设: ① 波导管内填充的介质是均匀、 线性、 各向同性的; ② 波导管内无自由电荷和传导电流的存在; ③ 波导管内的场是时谐场。 图1 矩形波导结构 本节采用直角坐标系来分析,并假设波导是无限长的,且波是沿着z 方向无衰减地传输,由电磁场理论, 对无源自由空间电场E 和磁场H 满足以下矢量亥姆霍茨方程: 式中β为波导轴向的波数,E 0(x,y)和H 0(x,y)分别为电场和磁场的复振幅,它仅是坐标x 和y 的函数。 以电场为例子,将上式代入亥姆霍兹方程 ,并在直角坐标内展开,即有 22222 2222222222220T c E E E E k E k E x y z E E E k E x y E k E β????+=+++?????=+-+??=?+=式2 k c 表示电磁波在与传播方向相垂直的平面上的波数,如果导波沿z 方向传播,则 k 为自由空间中同频率的电磁波的波数。 由麦克斯韦方程组的两个旋度式,很易找到场的横向分量和纵向分量的关系式。具体过程从略,这里00(,)(,)j z j z E E x y e H H x y e ββ--?=??=?? 式1220E k E ?+=22222222T c E E E x y k k β????=+?????=-?其中式3 222c x y k k k =+

HFSS天线仿真实验报告

[键入公司名称] [键入文档标题] 通信0905 杨巨 U2 2012-3-7 半波偶极子天线仿真实验报告 一、实验目的 1、学会简单搭建天线仿真环境的方法,主要是熟悉HFSS软件的使用方法 2、了解利用HFSS仿真软件设计和仿真天线的原理、过程和方法 3、通过天线的仿真,了解天线的主要性能参数,如驻波比特性、smith圆图特性、方向图 特性等 4、通过对半波偶极子天线的仿真,学会对其他类型天线仿真的方法 二、实验仪器 1、装有windows系统的PC一台 2、HFSS13.0软件 3、截图软件 三、实验原理 1、首先明白一点:半波偶极子天线就是对称阵子天线。

对称振子是中间馈电,其两臂由两段等长导线构成的振子天线。一臂的导线半径为a,长度为l。两臂之间的间隙很小,理论上可以忽略不计,所以振子的总长度L=2l。对称振子的长度与波长相比拟,本身已可以构成实用天线。 在计算天线的辐射场时,经过实践证实天线上的电流可以近似认为是按正弦律分布。取图1的坐标,并忽略振子损耗,则其电流分布可以表示为:式中,Im为天线上波腹点的电流;k=w/c为相移常数、根据正弦分布的特点,对称振子的末端为电流的波节点;电流分布关于振子的中心店对称;超过半波长就会出现反相电流。 4、 在分析计算对称振子的辐射场时,可以把对称振子看成是由无数个电流I(z)、长度为dz的电流元件串联而成。利用线性媒介中电磁场的叠加原理,对称振子的辐射场是这些电流元辐射场之矢量和。 电流元I(z)dz所产生的辐射场为 图2 对称振子辐射场的计算 如图2 所示,电流元I(z)所产生的辐射场为 其中 5、方向函数 四、实验步骤 1、设计变量 设置求解类型为Driven Model 类型,并设置长度单位为毫米。 提前定义对称阵子天线的基本参数并初始化 2、创建偶极子天线模型,即圆柱形的天线模型。 其中偶极子天线的另外一个臂是通过坐标轴复制来实现的。 3、设置端口激励 半波偶极子天线由中心位置馈电,在偶极子天线中心位置创建一个平行于YZ面的矩形面作为激励端口平面。 4、设置辐射边界条件 要在HFSS中计算分析天线的辐射场,则必须设置辐射边界条件。这里创建一个沿Z轴放置的圆柱模型,材质为空气。把圆柱体的表面设置为辐射边界条件。 5、外加激励求解设置 分析的半波偶极子天线的中心频率在3G Hz,同时添加2.5 G Hz ~3.5 G Hz频段内的扫频设置,扫频类型为快速扫频。 6、设计检查和运行仿真计算 7、HFSS天线问题的数据后处理 具体在实验结果中阐释。 五、实验结果 1、回波损耗S11 回波损耗回波损耗是电缆链路由于阻抗不匹配所产生的反射,是一对线自身的反射,是天线设计需要关注的参数之一。 图中所示是在2.5 G Hz ~3.5 G Hz频段内的回波损耗,设计的偶极子天线中心频率约为3 G Hz,S11<-10dBd的相对带宽BW=(3.25-2.775)/3*100%=15.83%

矩形波导计算matlab代码

利用Matlab实现矩形波导电磁场分布图的绘制(附源程序)通过Matlab 计算并绘出任意时刻金属矩形波导的主模TE10 模的电磁场分布图。波导尺寸、工作频率及时刻均由外部给定。 A.矩形波导中传输的主模为TE10模。设金属波导尺寸为a*b,TE10模的截止波长为 2*a。其电磁场分量可推导表示如下:?(1-1)上式中各参量如下,(1-2)B.用Matlab画电磁力线的步骤:1.由外部给定的波导尺寸、工作频率参照(1-2)式计算得到参量。2.由外部给定的绘图精度,分别确定电场和磁场的坐标点。按照公式(1-1)计算得到电场、磁场的分量。3.用quiver3函数,绘制磁场分布。允许图像叠加。4.用quiver3函数,绘制电场分布。不允许图像叠加。C.三维的电力磁力线分布效果图

图1 图2 C.附程序清单 rectwavestrct1(22.86,10.16,6,1,9.84*10^9,0.03); %main function rectwavestrct1(ao,bo,d,H0,f,t) %画矩形波导场结构所有计算单位为米输入为毫米 %f l0 工作频率/波长 %lg 波导波长%lc TE10模截止波长 %a b 波导尺寸%c 传输方向这里取为波导波长%d 采样精度%t t时刻的场结构图 a=ao/1000; b=bo/1000;

lc=2*a; %TE10截止频率 l0=3*10^8/f; u=4*pi*10^(-7); if(l0>lc) return; else clf; lg=l0/((1-(l0/lc)^2)^0.5); c=lg; B=2*pi/lg; w=B/(3*10^8); x=0:a/d:a; y=0:b/d:b; z=0:c/d:c; [x1,y1,z1]=meshgrid(x,y,z); %mesh(x1,y1,z1); hx=-B.*a.*H0.*sin(pi./a.*x1).*sin(w*t-B.*z1)./pi; hz=H0.*cos(pi./a.*x1).*cos(w*t-z1.*B); hy=zeros(size(y1)); quiver3(z1,x1,y1,hz,hx,hy,'b'); hold on; x2=x1-0.001; y2=y1-0.001; z2=z1-0.001; ex=zeros(size(x2)); ey=w.*u.*a.*H0.*sin(pi./a.*x2).*sin(w*t-B.*z2)./pi; ez=zeros(size(z2)); quiver3(z2,x2,y2,ez,ex,ey,'r'); xlabel('传输方向'); ylabel('波导宽边a'); zlabel('波导窄边b'); hold off; end %------------------------------------------------------------------End Code----------------------------------

矩形波导模式和场结构分析毕业设计论文

毕业设计(论文)题目:矩形波导模式和场结构分析

目录 第一章绪论 (1) 1.1 选题背景及意义 (3) 1.2 国内外研究概况及发展趋势 (3) 1.3 本课题研究目标及主要内容 (4) 1.4 本章小结 (6) 第二章矩形波导的基本原理 (7) 2.1 导波的一般分析 (7) 2.1.1规则矩形波导内的电磁波 (7) 2.1.2波导传输的一般特性 (8) 2.2 矩形波导的分析 (8) 2.2.1矩形波导电磁场解 (8) 2.2.2矩形波导中的波型及截止波长 (11) 2.3 本章小结 (12) 第三章矩形波导的设计 (13) 3.1 创建矩形波导模型 (13) 3.2 求解设置 (20) 3.3 设计检查和运行仿真 (22) 3.3.1设计检查 (22) 3.3.2运行仿真分析 (23) 3.4 本章小结 (24) 第四章HFSS仿真结果及其分析 (25) 4.1 HFSS软件仿真原理 .............................. 错误!未定义书签。 4.2 HFSS仿真实现 (26) 4.3 仿真结果分析 (32) 4.4 本章小结....................................... 错误!未定义书签。第五章小结与展望 .. (33) 5.1 工作总结 (33) 5.2 工作展望 (33) 参考文献 (33) 致谢 (35) 附录 A 常用贝塞尔函数公式错误!未定义书签。

矩形波导模式和场结构分析 第一章 绪论 1.1选题背景及意义 矩形波导(circular waveguide)简称为矩波导,是截面形状为矩形的长方形的金属管。若将同轴线的内导线抽走,则在一定条件下,由外导体所包围的矩形空间也能传输电磁能量,这就是矩形波导。矩波导加工方便,具有损耗小和双极化特性,常用于要求双极化模的天线的馈线中,也广泛用作各种谐振腔、波长计,是一种较常用的规则金属波导。 矩波导有两类传输模式,即TM 模和TE 模。其中主要有三种常用模式,分别是主模TE 11模、矩对称TM 01模、低损耗的TE 01模。在不同工作模式下,截止波长、传输特性以及场分布不尽相同,同时,各种工作模式的用途也不相同。导模的场描述了电磁波在波导中的传输状态,可以通过电力线的疏密来表示场得强与弱。 本毕业课题是分析矩形波导中存在的模式、各种模式的场结构和传播特性,着重讨论11TE 、01TE 和01TM 三个常用模式,并利用MATLAB 和三维高频电磁仿真软件HFSS 可视化波导中11TE 、01TE 和01TM 三种模式电场和磁场波结构。 1.2国内外研究概况及发展趋势 由于电磁场是以场的形态存在的物质,具有独特的研究方法,采取重叠的研究方法是其重要的特点,即只有理论分析、测量、计算机模拟的结果相互佐证,才可以认为是获得了正确可信的结论。时域有限差分法就是实现直接对电磁工程问题进行计算机模拟的基本方法。在近年的研究电磁问题中,许多学者对时域脉冲源的传播和响应进行了大量的研究,主要是描述物体在瞬态电磁源作用下的理论。另外,对于物体的电特性,理论上具有几乎所有的频率成分,但实际上,只有有限的频带内的频率成分在区主要作用。 英国物理学家汤姆逊(电子的发现者) 在1893 年发表了一本论述麦克斯韦电磁理论的书,肯定了矩金属壁管子(即矩波导) 传输电磁波的可实现性, 预言波长可与矩柱直径相比拟, 这就是微波。他预言的矩波导传输, 直到1936 年才实现。汤姆逊成为历史上第一位预言波导的科学家。这证明科学预言可以大大早于技术的发展, 同时也表明了应用数学的威力。英国物理学家瑞利在1897 年发表了论文, 讨论矩形截面和矩形截面“空柱”中的电磁振动, 它们对应后来的矩形波导和矩波导, 并引进了截止波长的概念。瑞利得到了矩形波导中主模的场方程组,这是雷达中最常用的模式,

综合实验报告LTE仿真实验

综合实验报告—LTE 学号: 姓名: 日期: 2016/2017学年第一学期

实验1 LTE无线接入网设备配置 实验目的: 1. 掌握LTE无线接入网的网元名称及其作用。 2. 掌握实验中各网元的线缆名称及其作用。 实验内容: 1. 完成一个LTE无线接入网站点机房的设备配置。 实验要求: 1. 完成大型城市万绿市A站点机房的设备配置。 实验步骤: 设备配置步骤如下: 1.单击仿真平台中的“设备配置”按钮,然后选择仿真场景中的某站点机房。 2.添加设备:包括BBU、RRU、ANT、PTN、ODF、GPS。 3.连接RRU和ANT。ANT1连接到RRU1,使用“天线跳线”,将ANT1左边1脚和 RRU的1脚,同理将对应的4脚连接起来。因为默认使用的是2×2的天线模式。 注意相互对应,不能连串。 4.连接RRU和BBU。使用“成对LC-LC光纤”,把TX0-RX0~TX2-RX2与RRU1~RRU3 对应连接起来。 5.连接BBU和GPS。使用“GPS馈线”,一端将馈线与GPS连接,另一端连接到BBU的IN 口。 6.连接BBU与PTN。使用“成对LC-LC光纤”,点击设备指示图里的BBU,将光纤接到BBU 的TXRX端口上,另一端连接到设备指示图里的PTN设备槽位1的GE1端口上。 7.连接ODF和PTN。单击ODF进入到ODF架内部,使用“成对LC-FC光纤”,将某市站 点机房和该市汇聚机房连接起来。这里要使用两对LC-FC线,分别连接到PTN的端口3和4口上。 至此,该市某站点机房的设备配置就完成了,从“设备指示图”中可观察到设备间的连接情况。 设备之间连接关系表 图3-1 万绿市核心网设备配置接口使用情况

电磁场与微波技术实验2矩形波导仿真与分析

实验二 矩形波导仿真与分析 一、实验目的: 1、 熟悉HFSS 软件的使用; 2、 掌握导波场分析和求解方法,矩形波导高次模的基本设计方法; 3、 利用HFSS 软件进行电磁场分析,掌握导模场结构和管壁电流结构规律和特点。 二、预习要求 1、 导波原理。 2、 矩形波导模式基本结构,及其基本电磁场分析和理论。 3、 HFSS 软件基本使用方法。 三、实验原理 由于矩形波导的四壁都是导体,根据边界条件波导中不可能传输TEM 模,只能传输TE 或TM 模。 这里只分析TE 模(Ez=0) 对于TE 模只要解Hz 的波动方程。即 采用分离变量,并带入边界条件解上式,得出TE 模的横向分量的复振幅分别为 (1)矩形波导中传输模式的纵向传输特性 ①截止特性 波导中波在传输方向的波数β由式9 给出 222000220z z c z H H k H x y ??++=??式7000220002200020002()cos()sin()()sin()cos()()sin()cos()()cos()sin()z x c c z y c c y x H c x y H c H n m n E j j H x y k y k b a b H m m n E j j H x y k x k a a b E m m n H j H x y Z k a a b E n m n H j H x y Z k b a b ωμωμπππωμωμπππβπππβπππ??==?????==-?????=-=???==??式8 22222c c k k ππβλλ=-=-式9

式中k 为自由空间中同频率的电磁波的波数。要使波导中存在导波,则β必须为实数,即 k 2>k 2c 或λ<λc(f >f c ) 式10 如果上式不满足,则电磁波不能在波导内传输,称为截止。故k c 称为截止波数。 矩形波导中TE 10模的截止波长最长,故称它为最低模式,其余模式均称为高次模。由于TE 10模的截止波长最长且等于2a,用它来传输可以保证单模传输。当波导尺寸给定且有a >2b 时,则要求电磁波的工作波长满足 当工作波长给定时,则波导尺寸必须满足 ②相速度v p 和相波长λp 导行波的相速度是指某种波型的电磁波的等相位面沿着轴向传播的速度。由等相位面方程很易求得相速度为 导行波的相波长是指某种波型的等相位面在一个周期内沿轴向传播的距离,又称为波导波长。其值为 四、实验步骤 4.1 工程设置 设计与实验一中一样的矩形波导 4.2改变波导内部介质后的仿真 将波导内部介质从air 改为glass 。对前后场分布和传输情况进行对比。 22a a b λλ<<>式1122a b λλλ<<<式12p v ωβ=式 1312p p v f ωπλβββ=====式14式15

双极天线方向图仿真实验报告(B5)

天线与电波传播实验报告级队区队学员姓名学号实验组别3同组人无实验日期实验成绩实验项目:双极天线方向图仿真实验 实验目的: 1.熟悉matlab 的使用。 2.加深对双极天线工作原理的理解; 3.理解双极天线的方向性及天线臂长、架设高度对 天线方向性的影响; 实验器材:计算机一台、matlab 软件。 实验原理阐述、实验方案: 双极天线可以理解成架设在地面上的对称振子,因此,研究双级天线的性质(这里主要指方向性)可以分两步进行。 1.对称振子的方向性 (1)电基本振子的远区辐射场 如果对称振子的电流分布已知,则由电基本振子的远区辐射场表达式沿对称振子几分,就可以得到对称振子的辐射场表达式。 电基本振子的远区(满足kr>>1,即πλ<<2r )辐射场表达式如下:

?????????====θλπ=θλ=?θ-θ-?0E E H H e sin r Il 60j E e sin r 2Il j H r r jkr jkr (1-1) 式中: I——电基本振子的电流; l——电基本振子的长度; r——远区中一点到电基本振子的距离。 根据远区辐射场的性质可知,Eθ和Hφ的比值为常数(称为媒质的波阻抗),所以,在研究天线的辐射场时,只需要讨论其中的一个量即可。通常总是采用电场强度作为分析的主体。 (2)对称振子的电流分布 如果将细对称振子看成是末端开路的传输线张开形成,则细对称振子的电流分布与末端开路线上的电流分布相似,即非常接近于正弦驻波分布。 以振子中心为原点,忽略振子损耗,则细对称振子的电流分布为: ???≤+≥-=-=0 z )z l (k sin I 0z )z l (k sin I )z l (k sin I )z (I m m m (1-2) (3)对称振子的辐射场及方向函数

行波天线方向图仿真实验报告(B5)

天线与电波传播实验报告 08 级队区队学员姓名学号 实验组别 3 同组人实验日期2011.12.22 实验成绩 实验项目:行波天线方向图仿真实验 实验目的: 1.加深对行波天线工作原理的理解; 2.理解行波单导线的长度对天线方向性的影响; 3.了解菱形天线的参数选取。 实验器材: 1.计算机 2.MATLAB软件 实验原理阐述、实验方案: 一、实验原理 1.行波单导线的方向性 行波单导线是指天线上电流按行波分布的单导线天线。设长度为l 的导线沿z轴放置,如图2所示,导线上电流按行波分布,即天线沿线各点电流振幅相等,相位连续滞后,其馈电点置于坐标原点。设输入端电流为I0,忽略沿线电流的衰减,则线上电流分布为

'jk z 0e I )'z (I -= (2-1) z o R r kz cos θ??l dz ′ θ 图2 行波单导线及其坐标 行波单导线辐射场的分析方子相似法与对称振,即首先把天线分割成许多个电基本振子,而后取所有电基本振子辐射场的总和,故 ?θ-θθλ =l 0)cos 'z r (jk 'jk z 0 'dz e e sin r I 60j E )cos 1(2 k l j jk r 0e )]cos 1(2 kl sin[cos 1sin e r I 60j θ--θ-θ-θλ= (2-2) 式中,r 为原点至场点的距离;θ为射线与z 轴之间的夹角。由上式可得行波单导线的方向函数为 ) cos 1()]cos 1(2 kl sin[ sin )(f θ-θ-θ =θ (2-3) 根据上式可画出行波单导线的方向图如图3所示,由图可以看出行波单导线的方向性具有如下特点:

矩形波导天线的HFSS仿真

1 天线的主要参数 时变的电流和被加速的电荷都可以产生辐射,辐射产生的电磁能量能够在空间中传播。天线能够定向辐射和接收电磁波能量。天线按照工作性质可以分为发射天线和接收天线;按照用途可以分为通信天线、雷达天线、广播天线和电视天线等;按照波段可以分为长波天线、中波天线和短波天线等。一般常见的天线结构为线天线、环天线、面天线、喇叭天线、介质天线、微带天线和裂缝天线等。为了实现特定的工程任务,天线经常也组成天线阵列。 1.1 方向图 天线的空间辐射在不同方向是不同的,可以用方向性函数(,)f θ?来描述。根据方向性函数绘制的天线辐射(或接收)场强-振幅-方向三维特性的图形简称为方向图。工程也常采用两个互相正交主平面上的剖面图来描述天线的方向性,一般为俯视图和水平面方向图。 绘制某一平面的方向图时,可以采用极坐标方式。方向图一般呈花瓣状,所以也称为波瓣图,其中最大的波瓣称为主瓣,其余的称为副瓣或旁瓣。 方向图主瓣上两个半功率电平点之间的夹角称为主瓣宽度或半功率波束宽度。电场最大值Emax 所在的波瓣称为主瓣。在Emax 的两边, 电场下降到最大值2时,对应功率为最大方向的一半,这两个辐射方向之间的夹角即为主瓣宽度。 1.2 方向性系数 发射天线的方向性系数表征天线辐射的能量在空间分布的集中能力,定义为相同辐射情况下,天线在给定方向的辐射强度与平均辐射强度之比: 220 (,)(,)E D E θ?θ?= (1-1) 式中,(),E θ?是该天线在(),θ?方向下某点的场强,0E 是全方向点源天线在同一点产生的场强。 一般情况下关心的均为最大辐射方向的方向系数。 接收天线的方向性系数表征天线从空间接收电磁能量的能力,即在相同来波场强的能量下,天线在某方向接收时向负载输出功率与点源天线在同方向接收是向负载输出功率之比。发射天线的方向性系数和接收天线的方向性系数虽然在定

矩形波导的设计讲解

矩形波导模式和场结构分析 第一章 绪论 1.1选题背景及意义 矩形波导(circular waveguide)简称为矩波导,是截面形状为矩形的长方形的金属管。若将同轴线的内导线抽走,则在一定条件下,由外导体所包围的矩形空间也能传输电磁能量,这就是矩形波导。矩波导加工方便,具有损耗小和双极化特性,常用于要求双极化模的天线的馈线中,也广泛用作各种谐振腔、波长计,是一种较常用的规则金属波导。 矩波导有两类传输模式,即TM 模和TE 模。其中主要有三种常用模式,分别是主模TE 11模、矩对称TM 01模、低损耗的TE 01模。在不同工作模式下,截止波长、传输特性以及场分布不尽相同,同时,各种工作模式的用途也不相同。导模的场描述了电磁波在波导中的传输状态,可以通过电力线的疏密来表示场得强与弱。 本毕业课题是分析矩形波导中存在的模式、各种模式的场结构和传播特性,着重讨论11TE 、01TE 和01TM 三个常用模式,并利用MATLAB 和三维高频电磁仿真软件HFSS 可视化波导中11TE 、01TE 和01TM 三种模式电场和磁场波结构。 1.2国内外研究概况及发展趋势 由于电磁场是以场的形态存在的物质,具有独特的研究方法,采取重叠的研究方法是其重要的特点,即只有理论分析、测量、计算机模拟的结果相互佐证,才可以认为是获得了正确可信的结论。时域有限差分法就是实现直接对电磁工程问题进行计算机模拟的基本方法。在近年的研究电磁问题中,许多学者对时域脉冲源的传播和响应进行了大量的研究,主要是描述物体在瞬态电磁源作用下的理论。另外,对于物体的电特性,理论上具有几乎所有的频率成分,但实际上,只有有限的频带内的频率成分在区主要作用。 英国物理学家汤姆逊(电子的发现者) 在1893 年发表了一本论述麦克斯韦电磁理论的书,肯定了矩金属壁管子(即矩波导) 传输电磁波的可实现性, 预言波长可与矩柱直径相比拟, 这就是微波。他预言的矩波导传输, 直到1936 年才实现。汤姆逊成为历史上第一位预言波导的科学家。这证明科学预言可以大大早于技术的发展, 同时也表明了应用数学的威力。英国物理学家瑞利在1897 年发表了论文, 讨论矩形截面和矩形截面“空柱”中的电磁振动, 它们对应后来的矩形波导和矩波导, 并引进了

天线实验报告

实验一 半波振子天线的制作与测试 一、实验目的 1、掌握50欧姆同轴电缆与SMA 连接器的连接方法。 2、掌握半波振子天线的制作方法。 3、掌握使用“天馈线测试仪”测试天线VSWR 和回波损耗的方法。 4、掌握采用“天馈线测试仪” 测试电缆损耗的方法。 二、实验原理 (1)天线阻抗带宽的测试 测试天线的反射系数(S 11),需要用到公式(1-1): )ex p(||0 11θj Z Z Z Z S A A Γ=+-= (1-1) 根据公式(1-1),只要测试出来的|Γ|值低于某个特定的值,就可以说明在此条件下天线的阻抗Z A 接近于所要求的阻抗Z 0(匹配),在天线工程上,Z 0通常被规定为75Ω或者50Ω,本实验中取Z 0=50Ω。天线工程中通常使用电压驻波比(VSWR )ρ以及回波损耗(Return Loss ,RL )来描述天线的阻抗特性,它们和|Γ|的关系可以用公式(1-2)和(1-3)描述: | |1| |1Γ-Γ+= ρ (1-2) |)lg(|20Γ-=RL [dB] (1-3) 对于不同要求的天线,对阻抗匹配的要求也不一样,该要求列于表1-1中。 表1-1 工程上对天线的不同要求(供参考) 天线带宽 驻波系数ρ的要求 反射系数|Γ|的要求 反射损耗RL 的要求 窄带(相对带宽5%以下) ρ≤1.2或1.5 |Γ|≤0.09或0.2 ≥21dB 或14dB 宽带(相对带宽20%以下) ρ≤1.5或2 |Γ|≤0.2或0.33 ≥14dB 或10dB 超宽带 ρ≤2或2.5,甚至更大 |Γ|≤0.33或0.43 ≥10dB (2)同轴电缆的特性阻抗 本实验采用50欧姆同轴电缆,其外皮和内芯为金属,中间填充聚四氟乙烯介质(相对介电常数 2.2r ε=)。其特性阻抗计算公式如下: 060ln r b Z a ε?? = ??? (1-4) 式中 a ——内芯直径; b ——外皮内直径。

半波偶极子实验报告

邢台学院 实验报告 课程名称电磁波与天线技术 实验项目2 偶极子和单极子天线设计授课教师 专业班级 实验时间 学号 学生姓名 系部数学与信息技术学院2015~2016学年度第1学期

●实验学时:4 ●实验目的及要求: 1、掌握偶极子和单极子天线的几个基本参数; 2、使用HFSS设计半波偶极子天线。 3、使用HFSS设计单极子天线。 ●实验环境: 1、Windows操作系统 2、PC连接到Internet 实验容及步骤: 1、新建设计工程。 2、添加和定义设计变量。 3、设计建模。 4、求解设置。 5、设计检查和运行仿真计算。 6、HFSS天线问题的数据后处理。 ●实验结果及体会: 1、建立工程 菜单Project->Insert HFSS Design 2、设置求解模式 菜单HFSS->Solution Type->天线为Driven Modal

3、设置模型尺寸长度单位 菜单Modeler->Units->mm->OK 单位一般设置为毫米mm。 4、添加和定义设计变量。 5、设计建模 1)创建一个沿z轴方向放置的细圆柱体模型作为偶极子天线的一个臂2)通过沿着坐标轴复制,生成偶极子天线的另一个臂。 3)设置端口激励。 4)设置边界条件。

6、求解设置。 7、设计检查和运行仿真计算。

8、HFSS天线问题的数据后处理 1)S11扫频分析: 2)电压驻波比: 3)Smith圆图查看归一化输入阻抗: 4)输入阻抗: m1:

m2: 5)方向图: 6)三维方向图: 体会:通过仿真软件对半波偶极子设计仿真,得到符合要求的半波偶极子天线。通过仿真得到了天线的回波损耗,电压驻波比,3D方向增益图等参数。

相关主题