搜档网
当前位置:搜档网 › 线性方程组求解方法

线性方程组求解方法

线性方程组求解方法
线性方程组求解方法

华北水利水电大学

线性方程组地求解方法

课程名称:线性代数

专业班级:

成员组成:

联系方式:

年月日

线性方程组地求解方法

摘要:线性方程组地求解方法在代数学中有着极其重要地作用,线性代数地主要研究对象是线性方程组,线性代数地基本工具是矩阵及其基本理论,线性方程组求解地地实质可以理解为矩阵地初等变换,不管是线性方程组还是矩阵,它们都来源于生产和生活实践.大量地科学技术问题,最终往往归结为解线性方程组地问题,但对于十分复杂地问题,精确地求解往往是困难地,因此在线性方程组解地结构等理论性工作取得令人满意地进展地同时,线性方程组地数值解法也得到快速发展,现在,线性方程组地数值解法在计算数学中占有重要地位.个人收集整理勿做商业用途

关键字:线性方程组,增广矩阵求解,高斯消元法求解

:,,, , , . , , , , , , , .个人收集整理勿做商业用途

;,,;个人收集整理勿做商业用途

引言:

线性方程组分为其次线性方程组和非齐次线性方程组,其解得实质又是何时有解,何时无解,有解又有多少个解.解又分为一般解(通解),零解和非零解.无论是讨论线性方程组解地结构,还是线性方程组地求解,又需要首先讨论向量组地线性相关性,即向量组地线性相关和线性无关.本节主要对线性方程组解地情况进行讨论,给出当解不唯一时通解地表示形式.另外还介绍了几种特殊地线性方程组地求解方法.线性方程组可以分成两类,一类是未知量个数与方程地个数相等,另一类是未知量个数与方程地个数不等个人收集整理勿做商业用途

线性方程组求解

线性方程组地概念

线性方程组地一般表示方式方法如下:

…,

…,

……

…,

其中(,...,:,...,)是方程组未知元地系数,(,...,:)为常数项,如果,则方程组为齐次线性方程组,≠,线性方程组为非齐次先行性方程组.如果线性方程组有解,则称线性方程组相容,否则,称线性方程组不相容.个人收集整理勿做商业用途

线性方程组地求解

对于,如果,即方程个数等于未知元个数地情形,有法则,齐次线性方程组有非零解地充分必要条件是系数矩阵地行列式,如果<,即方程个数小于未知元个数我们可以按照…,地形式添加个方程,使其满足“方程个数等于未知元个数”而得到新地齐次线性方程组根据行列式知识,显然,因此得到如下定理:如果齐次线性方程组中地方程是

个数小于未知元地个数,则其次线性方程组一定有非零解个人收集整理勿做商业用途

例如:

有非零解为任意常数

高斯消元法求解线性方程组

高斯消元法地基本思想是:通过一系列地加减进行消元运算,也就是代数中地加减消去法,将方程组化为上三角矩阵,然后,再逐一回代,解出方程组.本节将简单介绍高斯消元法地基本思想,并且运用它来解决问题,并且存在唯一解地线性方程组.个人收集整理勿做商业用途

下面我们通过具体地例子来了解高斯消元法地主要解题过程

例解线性方程组

(方程)

解:首先,我们将方程组中第二个方程减去第一个方程地倍,再将第三个方程减去第一个方程地倍,则得到等价方程组个人收集整理勿做商业用途

(方程)

其中方程中地第二,第三个方程中地已经消去了.类似地,我们将方程中地第三个方程减去第二个方程地倍,又可以消去第三个方程中地变量,最后得到与方程等价地方程组个人收集整理勿做商业用途

这个方程很容易求解.由第三个方程解出,将其带入第二个方程解出,再将,,代入第一个方程解出.个人收集整理勿做商业用途

增广矩阵求解法

增广矩阵求解法主要适用于非齐次线性方程组,当系数矩阵地秩等于增广矩阵地秩,即()(),由于可由地列向量组α,α……α线性表示,且表示法唯一地充分必要条件是α,α……α线性无关,所以我们有下述定理.个人收集整理勿做商业用途

()非齐次线性方程组有唯一解地充分必要条件是()(),如果()()<,则方程组有无穷解,如果()≠(),则方程组无解.个人收集整理勿做商业用途

()非齐次线性方程组地一般解地表达式为,其中是地一个特解,是地一般解.个人收集整理勿做商业用途

例解下列方程

求非齐次线性方程组地一般解,其中

解:利用初等变换化简矩阵():

()

()()<,方程组有无穷多解,注意到

———

解得

由此即得方程组地一般解

个人收集整理勿做商业用途

其中为任意常数.

结束语

通过对线性方程组地求解方法地讨论不难看出,线性方程组地求解方法同矩阵地有关理论和方法有很深地内在联系,并且它对矩阵有关地多种问题地解决都有很大地作用.所以,为了学好线性方程组求解方法这部分内容,就必须学好代数学中矩阵地有关理论和方法.同时,学好了矩阵地有关理论与方法也就更容易去理解线性方程组这部分内容个人收集整理勿做商业用途

参考文献

[] 线性代数[].科学出版社

分工情况

个人独立完成

c 解线性方程组的几种方法

//解线性方程组 #include #include #include //----------------------------------------------全局变量定义区 const int Number=15; //方程最大个数 double a[Number][Number],b[Number],copy_a[Number][Number],copy_b[Number]; //系数行列式 int A_y[Number]; //a[][]中随着横坐标增加列坐标的排列顺序,如a[0][0],a[1][2],a[2][1]...则A_y[]={0,2,1...}; int lenth,copy_lenth; //方程的个数 double a_sum; //计算行列式的值 char * x; //未知量a,b,c的载体 //----------------------------------------------函数声明区 void input(); //输入方程组 void print_menu(); //打印主菜单 int choose (); //输入选择 void cramer(); //Cramer算法解方程组 void gauss_row(); //Gauss列主元解方程组 void guass_all(); //Gauss全主元解方程组 void Doolittle(); //用Doolittle算法解方程组 int Doolittle_check(double a[][Number],double b[Number]); //判断是否行列式>0,若是,调整为顺序主子式全>0 void xiaoqu_u_l(); //将行列式Doolittle分解 void calculate_u_l(); //计算Doolittle结果 double & calculate_A(int n,int m); //计算行列式 double quanpailie_A(); //根据列坐标的排列计算的值,如A_y[]={0,2,1},得sum=a[0][ A_y[0] ] * a[1][ A_y[1] ] * a[2][ A_y[2] ]=a[0][0]*a[1][2]*a[2][1]; void exchange(int m,int i); //交换A_y[m],A_y[i] void exchange_lie(int j); //交换a[][j]和b[]; void exchange_hang(int m,int n); //分别交换a[][]和b[]中的m和n 两行 void gauss_row_xiaoqu(); //Gauss列主元消去法 void gauss_all_xiaoqu(); //Gauss全主元消去法 void gauss_calculate(); //根据Gauss消去法结果计算未知量的值 void exchange_a_lie(int m,int n); //交换a[][]中的m和n列 void exchange_x(int m,int n); //交换x[]中的x[m]和x[n] void recovery(); //恢复数据 //主函数 void main() { int flag=1;

2021年常系数线性方程组基解矩阵的计算

常系数线性方程组基解矩阵的计算 欧阳光明(2021.03.07) 董治军 (巢湖学院数学系,安徽巢湖238000) 摘要:微分方程组在工程技术中的应用时非常广泛的,不少问题都归结于它的求解问题,基解矩阵的存在和具体寻求是不同的两回事,一般齐次线性微分方程组的基解矩阵是无法通过积分得到的,但当系数矩阵是常数矩阵时,可以通过方法求出基解矩阵,这时可利用矩阵指数exp A t,给出基解矩阵的一般形式,本文针对应用最广泛的常系数线性微分方程组,结合微分方程,线性代数等知识,讨论常系数齐次线性微分方程的基解矩阵的几个一般的计算方法. 关键词;常系数奇次线性微分方程组;基解矩阵;矩阵指数Calculation of Basic solution Matrix of Linear Homogeneous System with Constant Coefficients Zhijun Dong (Department of Mathematics,Chaohu CollegeAnhui,Chaohu) Abstract:Differential equations application in engineering technology is very extensive, when many problems are attributable to its solving problem, base solution matrix existence and specific seek is different things, general homogeneous linear differential equations is not the

典型结构大型线性代数方程组的求解

文献综述 1 前言 典型结构大型线性代数方程组的求解是许多应用领域的基础,如:结构分析、电子工程、油藏模拟、计算机辅助几何设计、大气污染研究、化学工程和经济模型模拟、核物理和计算流体力学、数值天气预报等。在数学物理及工程技术领域,如微分方程的求解、多项式插值、网络、系统控制等方面也常会碰到的大型、分块三对角矩阵为系数阵的线性方程组的求解问题。一般,动态过程的数学模型由偏微分方程描述,而偏微分方程的离散化通常导出大型线性方程组,它们可能是对称或非对称的大型稀疏线性方程组,也可能是结构化的大型稀疏线性方程组。甚至于对于依赖于时间的非线性问题,其全局计算的中间步骤也需要对线性方程组的求解。长期以来,伴随着计算环境的不断变化,人们对于求解各类大型线性方程组的适应新的计算环境的新方法的探求从来也没有停止过。目前,分布式存储并行处理机系统己经成为许多科学和工程问题的计算环境,成为求解重大挑战性问题的首选工具;工作站机群(NOWs)和PC 机群作为具有良好性价比的分布式存储并行处理机系统已广泛应用于各类科学和工程计算问题。 典型结构大型线性方程组的解法从总体上说可分为直接法和迭代法两大类。求解具有结构化系数矩阵的大型线性方程组的研究近年主要集中在直接法,而迭代法近年来已发展为求解一般大型稀疏线性方程组的主要方法。 本文所研究的内容如下: 考虑大型线性方程组,,n n n Ax b A R x b R ?=∈∈、,其中A 为三对角或块三对角系数矩阵,探讨分布式存储环境下求解大型线性方程组的高效并行算法。 在科学与工程问题中经常遇到的许多微分方程,经过适当差分或有限元离散而形成系数矩阵是块三对角的线性方程组,它们的求解是高性能并行计算的重要课题之一。目前针对求解块三对角线性方程组的并行算法的研究已经有了一些成果,通过对系数矩阵进行分解与近似处理,构造了具有良好的并行性的算法。借助现有的并行工具环境,进一步构造出了并行效率更高的并行求解算法。 2 研究现状 求解典型结构三对角线性代数方程组有多种方法,其解法总体可分为直接法和迭代法两大类。迭代法(iterative methods )[1,2]主要包括Jacobi 迭代、Gauss-Seidel 迭代、逐次松弛迭代法(SOR ),直接法包括高斯消元和几类并行算法。 迭代法 Jacobi 迭代因各个分量的修正相互独立而具有十分明显的内在并行计算特性。其主要优点是方法简单,然而它并不常是收敛的,收敛时速度常较慢。在研究如何提高收敛速度的基础上,1983年,Missirlsi 提出了并行Jacobi 型方法,并讨论了它的收敛性。胡家赣等把它推广到两参数的情形,称之为两参数并行Jacobi 型方法[3]。

直接法解线性方程组

直接法解线性方程组 实习题目: 仿照三对角方程组的追赶法解五对角方程组,其中系数矩阵为A,右端向量为:r。将A分解为LU。其中L为下三角,U为单位上三角。A为7*7阶的矩阵,其中对角元为4 5 6 7 8 9 10。上下次三角对角线元素为1 2 3 4 5 6 ;上下第二条对角线元素为1 2 3 4 5;右端项为:1 2 3 4 5 6 7. 要求:输出系数矩阵A,右端向量r,下三角矩阵L,单位上三角矩阵U,下三角矩阵Ly=b 的解向量y,单位上三角方程组Ux=y的解(即最终的解向量。保留七位小数。 实现方法:通过MATLAB编程实现。建立MATLAB脚本文件。 首先通仿照三对角方程组的追赶法得到五对角矩阵的实现算法。 然后又MATLAB编程实现。 实验结果(MATLAB截图):

结果分析: 通过提供的计算数据得到最终的解向量x及中间过程产生的下三角矩阵L,单位上三角矩阵U,下三角矩阵Ly=b 的解向量y。 同时为了确保算法的正确性,我还通过MATLAB的左除运算检验得使用此算法的计算结果正确。 这里由于是用MATLAB,最终结果为分数形式,考虑到精确解一般比近似解更好,因此未化成七位小数形式。 算法实现分析: 首先计算L和U的元素。由于已知L和U的特定形式(及除了对角线和上下次对角线和上下第二条对角线外,其余为0。故通过矩阵的乘法即可得到LU中元素的计算公式。(具体算法见MATLAB程序) 算法优劣点:

1.解此题时看上去要用较多的存储单元,但实际上只需存储系数矩阵A的不为0的元素。 2.A分解为LU计算完成后,后续计算x和y的“追赶过程”运算量一般来说计算量比较小。 3.此题也可用之前的LU算法求解。但此处算法与一般的LU分解的解线性方程组的算法,相比计算量小了不少。 4.对于此处特定的对称的系数矩阵A,算法还可以进一步优化。 5.由于我在此算法中A.L U的各对角值均用一个列向量表示,一个缺点在于输出A,L,U时要重新组成矩阵形式。不过优点在于减少了存储单元。 6.另一缺点是,未能将结果封装成一个文件。 后附MATLAB代码: c=[4,5,6,7,8,9,10];d=[1,2,3,4,5,6,0];b=[0,1,2,3,4,5,6];e=[1,2,3,4,5,0,0];a=[0,0,1,2,3,4,5]; r=[1 2 3 4 5 6 7]; w=zeros(7,1);x=zeros(7,1);y=zeros(7,1);m=zeros(7,1);n=zeros(7,1);h=zeros(7,1); w(1)=c(1);m(1)=d(1)/c(1);n(1)=e(1)/c(1); h(2)=b(2);w(2)=c(2)-h(2)*m(1);m(2)=(d(2)-b(2)*n(1))/w(2);n(2)=e(2)/w(2); for k=3:5 h(k)=b(k)-a(k)*m(k-2); w(k)=c(k)-a(k)*n(k-2)-h(k)*m(k-1); m(k)=(d(k)-h(k)*n(k-1))/w(k); n(k)=e(k)/w(k); end h(6)=b(6)-a(6)*m(4); w(6)=c(6)-a(6)*n(4)-h(6)*m(5); m(6)=(d(6)-h(6)*n(5))/w(6); h(7)=b(7)-a(7)*m(5); w(7)=c(7)-a(7)*n(5)-h(7)*m(6); y(1)=r(1)/w(1);y(2)=(r(2)-h(2)*y(1))/w(2); for k=3:7 y(k)=(r(k)-a(k)*y(k-2)-h(k)*y(k-1))/w(k); end x(7)=y(7); x(6)=y(6)-x(7)*m(6);

线性方程组的解法

线性方程组的解法 1 引言 在科学研究和大型工程设计中出现了越来越多的数学问题,而这些问题往往需要求数值解。在进行数值求解时,经离散后,常常归结为求解形如Ax= b的大型线性方程组。而如插值公式,拟合公式等的建立,微分方程差分格式的构造等,均可归结为求解线性方程组的问题.在工程技术的科学计算中,线性方程组的求解也是最基本的工作之一.因此,线性方程组的解法一直是科学和工程计算中研究最为普遍的问题,它在数值分析中占有极其重要的地位。20世纪50年代至70年代,由于电子计算机的发展,人们开始考虑和研究在计算机上用迭代法求线性方程组Ax =b的近似解,用某种极限过程去逐渐逼近精确解,并发展了许多非常有效的迭代方法,迭代法具有需要计算机存储单元少、程序设计简单、原始系数矩阵在计算过程中始终不变等优点。例如Jacobi方法、Gauss—Seidel 方法、SOR方法、SSOR 方法,这几种迭代方法是最常用的一阶线性定常迭代法。 2 主要算法 20世纪50年代至70年代,人们开始考虑和研究用迭代法求解线性方程组。 Ax = b (1) 的近似解,发展了许多有效的方法,其中有Jacobi方法、Gauss—Seidel方法,SOR方法、SSOR方法,这几种迭代方法均属一阶线性定常迭代法,即若系数矩阵A的一个分裂:A =M-N ;M 为可逆矩阵,线性方程组(1)化为: (M-N)X =b; →M X = NX + b; →X= M -1NX+ M-1b 得到迭代方法的一般公式: X(k+1)=HX(k)+d (2) 其中:H =MN-1,d=M-1b,对任意初始向量X(0) 一阶定常迭代法收敛的充分必要条件是: 迭代矩H的谱半径小于1,即ρ(H) < 1;又因为对于任何矩阵范数恒有ρ(H)≤‖H‖,故又可得到收敛的一个充分条件为:‖H‖< 1。 2.1 Jacobi迭代法 若D为A的对角素构成的对角矩阵,且对角线元素全不为零。系数矩阵A的一个分解:A =

Matlab线性方程组求解(Gauss消去法)

Matlab线性方程组求解 1. Gauss消元法: function x=DelGauss(a,b) % Gauss消去法 [n,m]=size(a); nb=length(b); det=1; %存储行列式值 x=zeros(n,1); for k=1:n-1 for i=k+1:n if a(k,k)==0 return end m=a(i,k)/a(k,k); for j=k+1:n a(i,j)=a(i,j)-m*a(k,j); end b(i)=b(i)-m*b(k); end det=det*a(k,k); %计算行列式 end det=det*a(n,n); for k=n:-1:1 %回代求解 for j=k+1:n b(k)=b(k)-a(k,j)*x(j); end x(k)=b(k)/a(k,k);

end Example: >> A=[1.0170 -0.0092 0.0095;-0.0092 0.9903 0.0136;0.0095 0.0136 0.9898]; >> b=[1 0 1]'; >> x=DelGauss(A,b) x = 0.9739 -0.0047 1.0010 2. 列主元Gauss消去法: function x=detGauss(a,b) % Gauss列主元消去法 [n,m]=size(a); nb=length(b); det=1; %存储行列式值 x=zeros(n,1); for k=1:n-1 amax=0; %选主元 for i=k:n if abs(a(i,k))>amax amax=abs(a(i,k));r=i; end end if amax<1e-10 return; end if r>k %交换两行 for j=k:n

总结求线性方程组的方法

总结求线性方程组的方法-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

华北水利水电大学 总结求线性方程组的方法 课程名称:线性代数 专业班级: 成员组成: 联系方式: 2014年12月31日

摘要:线性方程组的求解是当代代数学中的一个重要组成部分。它广泛应用在数学以及其他领域。它与矩阵、线性变换、行列式、向量组的线性相关性,二次型,这些型之间有着相当密切的联系。线性方程组是线性代数中一个相当基础的内容必须要学会以及熟悉内容。本文章主要说明和讨论线性方程组的基本结构,然后应用克拉莫法则,高斯消元法来来求解。 关键词:线性方程组、高斯消元法、克拉莫法则; Summary for the method of liner equations Abstract: Solution of the system of linear equations is an important component part of algebra. It is widely used in mathematics and other areas. It and determinant, matrix, linear transformation, linear correlation vector group, quadratic form, has the close relation. System of linear equations is a very basic content in linear algebra must grasp and familiar with the content. This article mainly explain and discuss the basic structure of system of linear equations, then apply law of kramer, gauss elimination method to solve.

第一章-第四讲-n元线性方程组求解

第四讲 n 元线性方程组求解 上一讲我们介绍了当n 元一次线性方程组的系数矩阵A 可逆时,可求出方程组解1X A b -=, 实际上这也是方程组的唯一解。如果方程组系数矩阵A 不可逆或A 不是方阵时,该如何来讨论方程组的解?这一讲将通过矩阵的初等变换来研究n 元一次线性方程组(齐次、非齐次)在什么条件下有解、如何求解以及各种解的表达形式等. n 元一次线性方程组是指形如 ???????=+++=+++=+++m n mn m m n n n n b x a x a x a b x a x a x a b x a x a x a ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ22112 22221211 1212111 ... ...(4.1) 令 111212122212 n n m m mn a a a a a a A a a a ?? ? ?= ? ???L L L L L L L ,12n x x X x ?? ? ?= ? ???M ,12m b b b b ?? ? ?= ? ??? M 则方程组的矩阵方程形式AX b =.其中:A 称为方程组(4.1)的系数矩阵,°()A A b =称为方程组(4.1)的增广矩阵。 当b O ≠时,称(4.1)式为一元线性非齐次线性方程组; 当b O =时,称 (4.2 ) 式为一元线性齐次线性方程组,其矩阵形式AX O =. 111122121122221122000 n n n n m m mn n a x a x a x a x a x a x a x a x a x +++=??+++=?? ??+++=?L L L L L L L L L L L L L L L ... ...(4.2) 显然X O =是(4.2)式的当然解。所以说,齐次线性方程组的解只有两种情况:唯一解(零解)和无穷多解(非零解)。 把非齐次线性方程组(4.1)式的每个方程右边的常数项都换成0,所得到的齐次线性方程组称为原方程组的导出齐次线性方程组,简称导出组。(即:(4.2)是(4.1)的导出组) 在第二讲的例2.12中,非齐次方程组的解是通过对方程组的增广矩阵实施初等行变换得到的. 那么,这种求解方法是不是对任意的线性方程组都适用?答案是肯定的。下面我们就给出理论证明. 定理4.1 若将非齐次线性方程组AX b =的增广矩阵°()A A b =用初等行变换化为

第三章 解线性方程组的直接方法

习题 3.1 1. 求下列方阵的秩: (1)??? ?? ??--340313021201;(2)????? ??----174034301320;(3)??????? ? ?---------12433023221453334 311 ;(4)??????? ??------34732038234202173132. 2. 求下列方阵的逆矩阵: (1) ?? ? ?? ? ?323513123; (2) ????? ?? ??-----1210232112201023. 3. 解下列矩阵方程 (1) 设 ???? ? ??--=????? ??--=1322 31,113122214B A ,求X 使B AX =; (2) 设 ??? ? ??-=? ???? ??---=132 321,433312120B A ,求X 使B XA =; (3) ?? ??? ??-=????? ??-=????? ??-=112510324, 123011113,1120111111C B A ,求X 使C AXB =. 4. 求下列行列式 (1)? ? ? ??? ??????71 1 0251020214214 ;(2)????????????-260523211213 141 2;(3)?? ? ???????---ef cf bf de cd bd ae ac ab ; (4) ????????????---d c b a 100110011001. 5. 判断下列线性方程组解的情况,如果有唯一解,则求出解. ???????=+++-=----=+-+=+++;01123,2532,242,5)1(432143214 3214321x x x x x x x x x x x x x x x x ? ? ???????=+=++=++=++=+;15,065,065,065,165)2(545434323212 1x x x x x x x x x x x x x (3) ? ?? ??=-++=-+-=-+-;3222, 2353, 132432143214321x x x x x x x x x x x x (4) ?????=---=--+=+++.034,0222,022432143214321x x x x x x x x x x x x 习题 3.2 1. 用回代法解上三角形线性方程组 (1)??? ????==+-=-+=++;63,3,6333,8484443432321x x x x x x x x x (2)?? ???? ?-=-=+--=+--=-+.63,1032,92,9244343242 1x x x x x x x x x 2. 用回代法解下三角形线性方程组

线性方程组解的判定

1 / 3 第四节 线性方程组解的判定 从本节开始,讨论含有n 个未知量、m 个方程的线性方程组的解. 11112211211222221122n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++=??+++=????+++= ? (13—2) 主要问题是要判断出方程组(13-2)何时有解?何时无解?有解时解有多少?如何求出方程组的解。 线性方程组有没有解,以及有怎样的解,完全决定于方程组的系数和常数项。因此,将线性方程组写成矩阵形式或向量形式,以矩阵或向量作为讨论线性方程组的工具,将带来极大的方便。 方程组(13-2)中各未知量的系数组成的矩阵111212122212n n m m mn a a a a a a A a a a ??????=?????? 称为方程组(13-2)的系数矩阵.由各系数与常数项组成的矩阵,称为增广矩阵,记作A ,即 11121121 222212n n m m mn m a a a b a a a b A a a a b ??????=?????? 方程组(13-2)中的未知量组成一个n 行、1列的矩阵(或列向量),记作X ;常数项组成一个m 行、1列 的矩阵(或列向量),记作b ,即12n x x X x ??????=??????,12m b b b b ??????=?????? 由矩阵运算,方程组(13—2)实际上是如下关系111212122212 n n m m mn a a a a a a a a a ????????????12n x x x ????????????=12m b b b ???????????? 即 AX=b

解线性方程组的直接解法

解线性方程组的直接解法 一、实验目的及要求 关于线性方程组的数值解法一般分为两大类:直接法与迭代法。直接法是在没有舍入误差的情况下,通过有限步运算来求方程组解的方法。通过本次试验的学习,应该掌握各种直接法,如:高斯列主元消去法,LU分解法和平方根法等算法的基本思想和原理,了解它们各自的优缺点及适用范围。 二、相关理论知识 求解线性方程组的直接方法有以下几种: 1、利用左除运算符直接求解 线性方程组为b x\ =即可。 A Ax=,则输入b 2、列主元的高斯消元法 程序流程图: 输入系数矩阵A,向量b,输出线性方程组的解x。 根据矩阵的秩判断是否有解,若无解停止;否则,顺序进行; 对于1 p :1- =n 选择第p列中最大元,并且交换行; 消元计算; 回代求解。(此部分可以参看课本第150页相关算法) 3、利用矩阵的分解求解线性方程组 (1)LU分解 调用matlab中的函数lu即可,调用格式如下: [L,U]=lu(A) 注意:L往往不是一个下三角,但是可以经过行的变换化为单位下三角。 (2)平方根法

调用matlab 中的函数chol 即可,调用格式如下: R=chol (A ) 输出的是一个上三角矩阵R ,使得R R A T =。 三、研究、解答以下问题 问题1、先将矩阵A 进行楚列斯基分解,然后解方程组b Ax =(即利用平方根法求解线性方程组,直接调用函数): ??????? ??--------=19631699723723312312A ,?????? ? ??-=71636b 解答: 程序: A=[12 -3 2 1;-3 23 -7 -3;2 -7 99 -6;1 -3 -6 19]; R=chol(A) b=[6 3 -16 7]'; y=inv(R')*b %y=R'\b x=inv(R)*y %x=R\y 结果: R =3.4641 -0.8660 0.5774 0.2887 0 4.7170 -1.3780 -0.5830 0 0 9.8371 -0.7085 0 0 0 4.2514 y =1.7321 0.9540 -1.5945 1.3940 x =0.5463 0.2023 -0.1385 0.3279 问题 2、先将矩阵A 进行LU 分解,然后解方程组b Ax =(直接调用函数): ?????????? ??----=8162517623158765211331056897031354376231A ,????????? ? ??-=715513252b

线性方程组解题方法技巧与题型归纳

线性方程组解题方法技巧与题型归纳 题型一 线性方程组解的基本概念 【例题1】如果α1、α2是方程组 123131233231 2104 x x ax x x x ax x --=?? -=??-++=? 的两 个不同的解向量,则a 的取值如何 解: 因为α1、α2是方程组的两个不同的解向量,故方程组有无穷多解,r(A)= r(Ab)<3, 对增广矩阵进行初等行变换: 21131132031022352104002314510a a a a a a a ----???? ? ?-→-- ? ? ? ?-----???? 易见仅当a=-2时,r(A)= r(Ab)=2<3, 故知a=-2。 【例题2】设A 是秩为3的5×4矩阵, α1、α2、 α3是非齐次线性方程组Ax=b 的三个不同的解,若α1+α2+2α3=(2,0,0,0)T , 3α1+α2= (2,4,6,8)T ,求方程组Ax=b 的通解。 解:因为r(A)= 3,所以齐次线性方程组Ax=0的基础解系由4- r(A)= 1个向量构成, 又因为(α1+α2+2α3)-(3α1+α2) =2(α3-α1)=(0,-4,-6,-8)T , 是Ax=0的解, 即其基础解系可以是(0,2,3,4)T , 由A (α1+α2+2α3)=Aα1+Aα2+2Aα3=4b 知1/4

(α1+α2+2α3)是Ax=b 的一个解, 故Ax=b 的通解是 ()1,0,0,00,2,3,42T T k ?? + ??? 【例题3】已知ξ1=(-9,1,2,11)T ,ξ2=(1,- 5,13,0)T ,ξ3=(-7,-9,24,11)T 是方程组 12234411223441 234432332494x a x x a x d x b x x b x x x x c x d +++=?? +++=??+++=?的三个解,求此方程组的通解。 分析:求Ax=b 的通解关键是求Ax=0的基础解系,判断r(A)的秩。 解:A 是3×4矩阵, r(A)≤3,由于A 中第2,3两行不成比例,故r(A)≥2,又因为 η1=ξ1-ξ2=(-10,6,-11,11)T , η2=ξ2-ξ3= (8,4,-11,-11)T 是Ax=0的两个线性无关的解向量, 于是4- r(A)≥2,因此r(A)=2,所以ξ1+k 1η1+k 2η2是通解。 总结: 不要花时间去求方程组,太繁琐,由于ξ1-ξ2,ξ1-ξ3或ξ3-ξ1,ξ3-ξ2等都可以构成齐次线性方程组的基础解系,ξ1,ξ2,ξ3都是特解,此类题答案不唯一。 题型2 线性方程组求解

线性方程组解法综述

线性方程组解法综述 Prepared on 22 November 2020

线性方程组解法的研究综述 摘要:这篇论文在说明了线性方程组的应用目的的基础上,提出了线性方程组求解的研究现状,并列举了常用的求解方法,同时说明了它们的应用条件,剖析了各种方法的不足之处。 关键词高斯消元迭代病态方程组 一、问题提出 在自然科学和工程实际应用中,有许多问题的求解最终都转化为线性方程组的求解问题。例如,电学中的网络问题,曲线拟合中常用的最小二乘法、样条函数插值、解非线性方程组、求解偏微分方程的差分法、有限元法和边界元法以及目前工程实践中普遍存在的反演问题等。特别是在图像恢复、模型参数估计、解卷积、带限信号外推、地震勘探等众多领域,都需要求解线性方程组。 由于线性方程组问题在理论上的重要性和在工程实际应用中的大量存在,多年来人们在这方面做了广泛深入的研究和探讨,并取得了许多有价值的成果.由于模型误差、测量误差、计算误差等各种误差的存在,常常使得线性方程组中的系数矩阵和非齐次项信息具有某种程度的近似性(即扰动性),这种近似性显然会使得线性方程组的求解不容易得到真实的理论解。此时,不同的求解方法由于运算机理不一样,求解过程中误差积累程度就不一样,因此必然会使得不同的求解方法得到的解具有不同的逼近真解的误差程度,尤其对具有病态性的方程组而言,由于病态线性方程组的条件数很大,数据误差以及计算过程中引入的舍入误差往往会使线性方程组的解不稳定,即不管原始数据的误差多么小,都可能造成解的很大变化,使线性方程组的解严重失真。因此,许多现有的方

法都是无效的,病态线性方程组的求解变得相当困难。求解线性方程组的最常用的方法主要有直接法和迭代法两大类,其中直接法中最常用的方法是高斯消元法。但是,该方法求解病态线性方程组时不能得到合理的解,误差很大。 二、研究现状 目前关于线性方程组的数值解法一般有两大类。一类是直接方法,另一类是迭代方法。直接方法最基本的是高斯消元法及其变形,这类方法是解低阶稠密矩阵方程组的有效方法,近十几年来直接法在求解具有较大型稀疏矩阵方程组方面取得了较大进展。迭代法就是用某种迭代过程去逐步逼近线性方程组的精确解,迭代法具有需要计算机的存储单元较少,程序设计简单,原始系数矩阵在计算过程中始终不变等优点,但存在收敛性及收敛速度问题。迭代法是解大型稀疏矩阵方程组的重要方法。当前对迭代算法的研究已经较为成熟,但如何使之适合新体系模型,以获得更好的性能加速一直是应用和体系设计者关心的问题。 三、常用方法比较 1.直接方法 直接方法是指假设计算过程中不产生舍入误差,经过有限次运算可求得方程组的精确解的方法。事实上,由于舍入误差的存在,用直接法一般也只能求得方程组的近似解。直接方法中主要有三种方法:克拉默法则、高斯消元法、LU 分解法。 (1)克拉默法则 设有线性方程组( n 个未知数 n 个方程)

线性方程组的解法及其应用

线性方程组的解法及其应用 The solution of linear equation and its application 专业:测控技术与仪器 班级: 2010-1班 作者:刘颖 学号: 20100310110105

摘要 线性方程组是线性代数的一个重要组成部分,也在现实生产生活中有着广泛的运用,在电子工程、软件开发、人员管理、交通运输等领域都起着重要的作用。在一些学科领域的研究中,线性方程组也有着不可撼动的辅助性作用,在实验和调查后期利用线性方程组对大量的数据进行处理是很方便简捷的选择。本文主要围绕如何解线性方程组来进行讲解,对于不同类型的线性方程组的不同方法,并简述线性方程组的一些实际应用。 关键词: 齐次线性方程组,非齐次线性方程组,克莱姆法则,消元法,矩阵,矩阵的秩,特解,通解。

Abstract Linear equations linear algebra is one of the important component parts, and in real life has extensive production use,and it plays an important role in electronic engineering, software development, personnel management, transportation, etc. In some discipline study, it also has the reigns of linear equations of the auxiliary function.In experiment and survey using the linear equations of the late on the data processing is very convenient simple choice. This article, focusing on how to solve linear equations to explain, for different types of linear equations of different methods, and briefly introduces some of the practical application of linear equations. Keywords: Homogeneous linear equations, Non homogeneous linear equation,Clem’s law,Elimination method,Matrix,Rank of matrix,Special solution,General solution.

线性方程组的求解方法与应用

湖北民族学院理学院2016届 本科毕业论文(设计) 线性方程组的求解方法及应用 学生姓名:付世辉学号: 0 专业:数学与应用数学指导老师:刘先平 答辩时间:装订时间:

A Graduation Thesis (Project) Submitted to School of Science, Hubei University for Nationalities In Partial Fulfillment of the Requiring for BS Degree In the Year of 2016 The calculation method and application of the system of linear equations Student Name: Fu Shihui Student No.: 0 Specialty:Mathematics And Applied Mathematics Supervisor: Liu Xianping Date of Thesis Defense:Date of Bookbinding:

摘要 线性方程组在数学领域中的应用非常广泛,是线性代数的主要内容之一. 矩阵及其基本理论是学习线性代数的一种基本工具,矩阵的初等变换则是线性方程组求解的工具. 线性方程组常用的求解方法有一般消元法、克拉默法则、LU分解法等一系列方法,根据问题的不同,我们在求解的过程中选择的方法也就多种多样. 这些方法可以很好地解决线性方程组的求解问题,在求解过程中,向量和矩阵起着一个不可或缺的作用. 在线性方程组的应用方面,除了跟数学理论知识有着密不可分的联系,还和我们的实际生活联系的极其紧密. 关键词:线性方程组,矩阵,初等变换,克拉默法则,LU分解法

线性方程组解法综述

线性方程组解法的研究综述 摘要:这篇论文在说明了线性方程组的应用目的的基础上,提出了线性方程组求解的研究现状,并列举了常用的求解方法,同时说明了它们的应用条件,剖析了各种方法的不足之处。 关键词高斯消元迭代病态方程组

一、问题提出 在自然科学和工程实际应用中,有许多问题的求解最终都转化为线性方程组的求解问题。例如,电学中的网络问题,曲线拟合中常用的最小二乘法、样条函数插值、解非线性方程组、求解偏微分方程的差分法、有限元法和边界元法以及目前工程实践中普遍存在的反演问题等。特别是在图像恢复、模型参数估计、解卷积、带限信号外推、地震勘探等众多领域,都需要求解线性方程组。 由于线性方程组问题在理论上的重要性和在工程实际应用中的大量存在,多年来人们在这方面做了广泛深入的研究和探讨,并取得了许多有价值的成果.由于模型误差、测量误差、计算误差等各种误差的存在,常常使得线性方程组中的系数矩阵和非齐次项信息具有某种程度的近似性(即扰动性),这种近似性显然会使得线性方程组的求解不容易得到真实的理论解。此时,不同的求解方法由于运算机理不一样,求解过程中误差积累程度就不一样,因此必然会使得不同的求解方法得到的解具有不同的逼近真解的误差程度,尤其对具有病态性的方程组而言,由于病态线性方程组的条件数很大,数据误差以及计算过程中引入的舍入误差往往会使线性方程组的解不稳定,即不管原始数据的误差多么小,都可能造成解的很大变化,使线性方程组的解严重失真。因此,许多现有的方法都是无效的,病态线性方程组的求解变得相当困难。求解线性方程组的最常用的方法主要有直接法和迭代法两大类,其中直接法中最常用的方法是高斯消元法。但是,该方法求解病态线性方程组时不能得到合理的解,误差很大。 二、研究现状 目前关于线性方程组的数值解法一般有两大类。一类是直接方法,另一类是迭代方法。直接方法最基本的是高斯消元法及其变形,这类方法是解低阶稠密矩阵方程组的有效方法,近十几年来直接法在求解具有较大型稀疏矩阵方程组方面取得了较大进展。迭代法就是用某种迭代过程去逐步逼近线性方程组的精确解,迭代法具有需要计算机的存储单元较少,程序设计简单,原始系数矩阵在计算过程中始终不变等优点,但存在收敛性及收敛速度问题。迭代法是解大型稀疏矩阵方程组的重要方法。当前对迭代算法的研究已经较为成熟,但如何使之适合新体

线性方程组的几种求解方法

线性方程组的几种解法 线性方程组形式如下: 常记为矩阵形式 其中 一、高斯消元法 高斯(Gauss)消元法的基本思想是:通过一系列的加减消元运算,也就是代数中的加减消去法,将方程组化为上三角矩阵;然后,再逐一回代求解出x 向量。现举例说明如下: (一)消元过程 第一步:将(1)/3使x 1的系数化为1 得 再将(2)、(3)式中x 1的系数都化为零,即由(2)-2×(1)(1) 得 )1(32)2( (03) 4 32=+x x )1(321)1(......23132=++ x x x

由(3)-4×(1)(1) 得 第二步:将(2)(1) 除以2/3,使x 2系数化为1,得 再将(3)(1) 式中x 2系数化为零,即 由(3)(1) -(-14/3)*(2)(2) ,得 第三步:将(3)(2) 除以18/3,使x 3系数化为1,得 经消元后,得到如下三角代数方程组: (二)回代过程 由(3)(3) 得 x 3=1, 将x 3代入(2)(2) 得x 2=-2, 将x 2 、x 3代入(1)(1) 得x 2=1 所以,本题解为[x]=[1,2,-1]T (三)、用矩阵演示进行消元过程 第一步: 先将方程写成增广矩阵的形式 第二步:然后对矩阵进行初等行变换 初等行变换包含如下操作 (1) 将某行同乘或同除一个非零实数 ) 3(3)3(......1-=x )2(3)3( (63) 18-=x ) 2(32) 2(......02=+x x ) 1(32)3( (63) 10 314-=-- x x

(2)将某行加入到另一行 (3)将任意两行互换 第三步:将增广矩阵变换成上三角矩阵,即主对角线全为1,左下三角矩阵全为0,形式如下: 示例: (四)高斯消元的公式 综合以上讨论,不难看出,高斯消元法解方程组的公式为 1.消元 (1)令 a ij(1) = a ij , (i,j=1,2,3,…,n) b i(1) =b i , (i=1,2,3,…,n) (2)对k=1到n-1,若a kk(k)≠0,进行 l ik = a ik(k) / a kk(k) , (i=k+1,k+2,…,n) a ij(k+1) = a ij(k) - l ik * a kj(k), (i,j= k+1,k+2,…,n) b i(k+1) = b i(k) - l ik * b k(k), (i= k+1,k+2,…,n) 2.回代 若a nn(n) ≠0 x n = b n(n) / a nn(n) x i = (b i(i) – sgm(a ij(i) * x j)/- a ii(i),(i = n-1,n-2,…,1),( j = i+1,i+2,…,n ) (五)高斯消元法的条件 消元过程要求a ii(i) ≠0 (i=1,2,…,n),回代过程则进一步要求a nn(n) ≠0,但就方程组Ax=b 讲,a ii(i)是否等于0时无法事先看出来的。 注意A的顺序主子式D i(i=1,2,…,n),在消元的过程中不变,这是因为消元所作的变换是“将某行的若干倍加到另一行”。若高斯消元法的过程进行了k-1步(a ii(i) ≠0,i

相关主题