搜档网
当前位置:搜档网 › 航空电子产品结构设计中的电磁兼容性(EMC)设计

航空电子产品结构设计中的电磁兼容性(EMC)设计

航空电子产品结构设计中的电磁兼容性(EMC)设计
航空电子产品结构设计中的电磁兼容性(EMC)设计

航空电子产品结构设计中的电磁兼容性(EMC)设计

摘要:本文简述了航空电子产品电磁兼容设计的重要性,着重介绍了电磁兼容性结构设计的重要内容之一——屏蔽设计的原理及几种屏蔽设计的实用方法。

关键词:电磁兼容性屏蔽

一引言

电磁兼容性技术又称环境电磁学,是近代发展起来的新的学科领域。它涉及到电路设计、结构设计、工艺及安装等方面的问题。随着电子技术的发展,电子设备的发射功率将更高,无线电射频源的密度将更太,未来的电磁环境也将更加严酷。现在我国已经将电磁兼容性能提高到与产品指标同等重要的地位,不满足电磁兼容性要求的军品不能装机。对于从事军工产品的设计人员来说,应该尤为重视产品的电磁兼容性设计。在飞机中,窄小的空间装备着大量的各种类型的电子设备,如接收系统、发射系统、控制设备、天线、雷达等等,导致电磁环境极为复杂,相互间的电磁干扰非常严重。系统电磁兼容性设计不良的飞机,发生防御电子系统和进攻电子系统的相互干扰不能同时工作,甚至发生通信设备导致武备系统误动作的情况都是不乏其例的。

二电磁干扰方式

电子设备结构设计中常见的电磁干扰方式主要有:

传导干扰

传导干扰一般是指通过电源,电缆,布线系统,接地系统引起的串扰。

辐射干扰

在高频情况下,电磁能量比较容易产生辐射。通常,在 MHz 以上,辐射就较明显,当导线长度超过四分之一波长时,辐射功率将很大。

三电磁兼容(EMC)设计的主要内容及方法

电磁兼容设计的主要方法有屏蔽、滤波、接地等。屏蔽是结构设计中的主要使用方法。

3.1屏蔽

电磁屏蔽是利用金属板、网、盖、罩、盒等屏蔽体阻止或减小电磁能量传播所采取的一种结构措施。常用的方法有静电屏蔽,磁屏蔽和电磁屏蔽。

(1)静电屏蔽

静电屏蔽主要是为了抑制寄生电容的耦合,使电路由于分布电容泄漏出来的电磁能量经屏蔽接地而不致于串入其它电路,从而使干扰得到抑制。静电屏蔽的基本方法是采用低电阻率材料作屏蔽体,在感应源与受感器之间加一块与机壳接触良好的金属隔板网、罩或盒。可用铜、铝材做屏蔽外壳,要求不高的也可用钢材。机壳必须是导电良好、稳定可靠的导电体。静电屏蔽必须保证良好的接地,否则屏蔽效果将大大下降。

(2)磁屏蔽

磁屏蔽主要是针对一些低阻抗源。例如变压器、线圈及一些示波器、显示器就可考虑用磁屏蔽。良好的低频屏蔽必须具有合适的电导率和高磁导率。磁屏蔽的基本方法是用高磁导率材料,如铁镍合金、镍铅合金、纯铁、铜作屏蔽材料,做成屏蔽罩。

(3)电磁屏蔽

电磁屏蔽就是对高频电磁辐射的屏蔽。

电磁屏蔽的主要方法是用金属材料做成屏蔽壳体。电磁屏蔽理论指出:电磁干扰在通过屏蔽体时,一部分被反射,未被反射的部分进入屏蔽层而被吸收转化为热能,剩余的部分则穿透屏蔽层,继续向外传播。

四几种屏蔽设计的实用方法

4.1整体机箱

最理想的屏蔽体是均质无缝的,但是实际中我们避免不了在机箱上打孔、开窗等。所以在不影响装配工艺的条件下,尽量的将机箱做成整体机箱。我公司现阶段整体机箱有三种形式:机加工整体机箱、铸造机箱和焊接机箱。

4.2

在产品设计过程中,考虑到可行性和装配工艺性,往往不可避免的设计出板搭接、

4.2.1板搭接处的电磁兼容设计

四结束语

为了实现令人满意的屏蔽,设备壳体应有足够的屏蔽效果,以便将不希望有

的信号强度衰减到足以获得系统/分系统/设备的最大的电磁兼容的电平。所谓

电磁兼容就是设备在预期的电磁环境中能正常工作的能力。也就是说,设备和系统在规定的电磁环境中不受电磁干扰而降低工作性能;同时它所产生的干扰也不大于规定的极限电平,以免影响其它设备正常工作,从而达到所有设备之间互不干扰、共同运行的目的。由此可见,电磁兼容是一个整机性能指标,它与结构设计的好坏有着密切的关系。当然,结构设计得好,未必就能解决整机的电磁兼容指标;但是结构设计得不好,则极有可能导致整机电磁兼容设计的失败,这也是引起人们对电磁兼容结构设计重视的原因。

在设计一个新产品时,一开始就必须考虑到电磁兼容问题。如果忽视了这一

问题,到新产品度制时,干扰问题会暴露出来。因此及早地解决电磁干扰问题不仅是行之有效的,而且会大大降低产品成本。

电磁兼容性(EMC)仿真

设计早期对电磁兼容性(EMC)问题的考虑 随着产品复杂性和密集度的提高以及设计周期的不断缩短,在设计周期的后期解决电磁兼容性(EMC)问题变得越来越不切合实际。在较高的频率下,你通常用来计算EMC的经验法则不再适用,而且你还可能容易误用这些经验法则。结果,70%~90%的新设计都没有通过第一次EMC测试,从而使后期重设计成本很高,如果制造商延误产品发货日期,损失的销售费用就更大。为了以低得多的成本确定并解决问题,设计师应该考虑在设计过程中及早采用协作式的、基于概念分析的EMC仿真。 较高的时钟速率会加大满足电磁兼容性需求的难度。在千兆赫兹领域,机壳谐振次数增加会增强电磁辐射,使得孔径和缝隙都成了问题;专用集成电路(ASIC)散热片也会加大电磁辐射。此外,管理机构正在制定规章来保证越来越高的频率下的顺应性。再则,当工程师打算把辐射器设计到系统中时,对集成无线功能(如Wi-Fi、蓝牙、WiMax、UWB)这一趋势提出了进一步的挑战。 传统的电磁兼容设计方法 正常情况下,电气硬件设计人员和机械设计人员在考虑电磁兼容问题时各自为政,彼此之间根本不沟通或很少沟通。他们在设计期间经常使用经验法则,希望这些法则足以满足其设计的器件要求。在设计达到较高频率从而在测试中导致失败时,这些电磁兼容设计规则有不少变得陈旧过时。 在设计阶段之后,设计师制造原型并对其进行电磁兼容性测试。当设计中考虑电磁兼容性太晚时,这一过程往往会出现种种EMC问题。

对设计进行昂贵的修复通常是唯一可行的选择。当设计从系统概念设计转入具体设计再到验证阶段时,设计修改常常会增加一个数量级以上。所以,对设计作出一次修改,在概念设计阶段只耗费100美元,到了测试阶段可能要耗费几十万美元以上,更不用提对面市时间的负面影响了。 电磁兼容仿真的挑战 为了在实验室中一次通过电磁兼容性测试并保证在预算内按时交货,把电磁兼容设计作为产品生产周期不可分割的一部分是非常必要的。设计师可借助麦克斯韦(Maxwell)方程的3D解法就能达到这一目的。麦克斯韦方程是对电磁相互作用的简明数学表达。但是,电磁兼容仿真是计算电磁学的其它领域中并不常见的难题。 典型的EMC问题与机壳有关,而机壳对EMC影响要比对EMC性能十分重要的插槽、孔和缆线等要大。精确建模要求模型包含大大小小的细节。这一要求导致很大的纵横比(最大特征尺寸与最小特征尺寸之比),从而又要求用精细栅格来解析最精细的细节。压缩模型技术可使您在仿真中包含大大小小的结构,而无需过多的仿真次数。 另一个难题是你必须在一个很宽的频率范围内完成EMC的特性化。在每一采样频率下计算电磁场所需的时间可能是令人望而却步的。诸如传输线方法(TLM)等的时域方法可在时域内采用宽带激励来计算电磁场,从而能在一个仿真过程中得出整个频段的数据。空间被划分为在正交传输线交点处建模的单元。电压脉冲是在每一单元被发射和散射。你可以每隔一定的时间,根据传输线上的电压和电流计算出电场和磁场。

电子产品防水结构设计流程图

1.ID造型; 一个完整产品的设计过程,是从ID造型开始的,收到客户的原始资料(可以是草图,也可以是文字说明),ID即开始外形的设计;ID绘制满足客户要求的外形图方案,交客户确认,逐步修改直至客户认同;也有的公司是ID绘制几种草案,由客户选定一种,ID再在此草案基础上绘制外形图;外形图的类型,可以是2D 的工程图,含必要的投影视图;也可以是JPG 彩图;不管是哪一种,一般需注名整体尺寸,至于表面工艺的要求则根据实际情况,尽量完整;外形图确定以后,接下来的工作就是结构设计工程师(以下简称MD)的了; 顺便提一下,如果客户的创意比较完整,有的公司就不用ID直接用MD做外形图; 如果产品对部结构有明确的要求,有的公司在ID绘制外形图同时MD就要参与进来协助外形的调整; MD开始启动,先是资料核对,ID给MD的资料可以是JPG彩图,MD将彩图导入PROE后描线;ID给MD的资料还可以是IGES线画图,MD将IGES线画图导入PROE后描线,这种方法精度较高;此外,如果是手机设计,还需要客户提供完整的电子方案,甚至实物; 2。建摸阶段, 以我的工作方法为例,MD根据ID提供的资料,先绘制一个基本形状(我习惯用BASE作为文件名);BASE就象大楼的基石,所有的表面元件都要以BASE的曲面作为参考依据; 所以MD做3D的BASE和ID做的有所不同,ID侧重造型,不必理会拔模角度,而MD不但要在BASE里做出拔模角度,还要清楚各个零件的装配关系,建议结构部的同事之间做一下小围的沟通,交换一下意见,以免走弯路; 具体做法是先导入ID提供的文件,要尊重ID的设计意图,不能随意更改; 描线,PROE是参数化的设计工具,描线的目的在于方便测量和修改; 绘制曲面,曲面要和实体尽量一致,也是后续拆图的依据,可以的话尽量整合成封闭曲面局部不顺畅的曲面还可以用曲面造型来修补; BASE完成,请ID确认一下,这一步不要省略建摸阶段第二步,在BASE的基础上取面,拆画出各个零部件,拆分方式以ID的外形图为依据; 面/底壳,电池门只需做初步外形,里面掏完薄壳即可; 我做MP3,MP4的面/底壳壁厚取1.50mm,手机面/底壳壁厚取2.00mm,挂墙钟面/底壳壁厚取2.50mm,防水产品面/底壳壁厚可以取3.00mm; 另外面/底壳壁厚4.00mm的医疗器械我也做过,是客人担心强度一再坚持的,其实3.00mm 已经非常保险了,壁厚太厚很容易缩水,也容易产生应力引起变形,担心强度不足完全 可以通过在部拉加强筋解决,效果远好过单一的增加壁厚; 建摸阶段第三步,制作装配图,将拆画出各个零部件按装配顺序分别引入,选择参考中心 重合的对齐方式;放入电子方案,如LCD,LED,BATTERY,COB。。。将各个零部件引入装配图时,根据需要将有些零部件先做成一个组件,然后再把组件引入装配图时。 例如做翻盖手机时,总装配图里只有两个组件,上盖是一个组件,下盖是一个组件。上盖组件里面又分为A壳组件,B壳组件和LCD组件。下盖组件里面又分为C壳组件,D壳组件,主板组件和电池组件等。还可以再往下分 3、初始造型阶段:分三个方面; A:由造型工程师设计出产品的整体造型(ODM);可由客户选择方案或自主开发。 B: 客户提供设计资料,例如:IGS档(居多)或者是图片(OEM)。 C: 由原有的外形的基础上更改;可由客户选择方案或自主开发。

电子产品结构设计与制造工艺

第一章概述 1.1电子设备结构设计与制造工艺 1.1.1现代电子设备的特点 当前,电子技术广泛地应用于国防、国民经济各部门以及人民生活等各个领域。 由于生产和科学技术的发展,新工艺和新材料应用,超小型化元器件和中大规模、超大规模集成电路的研制和推广,使电子设备在电路上和结构上产生巨大的变化。小型化、超小型化、微型化结构的出现,使得一些传统的设计方法逐渐被机电结合、光点结合等新技术所取代,再加上电子设备要适应更加广泛的用途和恶劣苛刻的工作环境,就使当代电子设备具有不同于过去的特点。这些特点可归纳为以下几方面: 1.设备组成较复杂,组装密度大 现代电子设备要求具有多种功能,设备组成较复杂,元器件、零部件数量多,且设备体积要小,组装密度大。尤其是超大规模集成电路及其衍生的各种功能模块的出现,使电子设备的组装密度较过去提高了很多。 2.设备使用范围广,所处的工作环境条件复杂。 现代电子设备往往要在恶劣而苛刻的环境条件下工作。有时要承受高温、低温和巨大温差变化;高湿度和低气压;强烈的冲击和振动;外界的电磁干扰等。这些都会对电子设备的正常工作产生影响。 3.设备可靠性要求高、寿命长 现代电子设备要求具有较高的可靠性和足够的工作寿命。可靠性低的电子设备将失去使用价值。高可靠性的电子设备,不仅元器件质量要求高,在电路设计和结构设计中都要作出较大的努力。 4.设备要求高精度、多功能和自动化

现代电子设备往往要求高精度、多功能和自动化,有的还引入了计算机系统,因而其控制系统较为复杂。精密机械广泛地应用于电子设备是现代电子设备的一大特点。自控技术、遥控遥测技术、计算机数据处理技术和精密机械的紧密结合,有的电子设备要求有智能实现人机交流,使电子设备的精度和自动化程度达到了相当高的水平。 上述电子设备的特点,只是对整体而言,具体到某种设备又各具自己的特点。由于当代电子设备具有上述特点,对电路设计和结构设计的要求更高了,设计、生产人员充分了解电子设备的特点,对于确保电子设备的性能满足使用要求十分必要的。 1.1.2 电子设备的制造工艺和结构设计 工艺工作是企业生产技术的中心环节,是组织生产和指导生产的一种重要手段。在产品的设计阶段,它的内容是确定产品的制造方案并完善生产前的技术准备工作;在产品的生产制造阶段,它的主要内容是组织指导符合设计要求的加工生产,直至出厂为止而采取的必要的技术和管理措施。工艺工作按内容可分为工艺技术和工艺管理,前者是生产实践劳动技能和应用科学研究成果的积累和总结,是工艺工作的核心;后者是对工艺工作的计划、组织、协调与实施,是保证工艺技术在生产中贯彻和发展的管理科学。工艺技术的实现和发展是由科学的工艺管理工作来保证和实现的。工艺工作将各个部门、各个生产环节联系起来成为一个完整的整体。它的着眼点就是促进每项工作操作简单、流畅、高效率、低强度。 设计和制造电子设备,除满足工作性能的要求外,还必须满足加工制造的要求,电路性能指标的实现,要通过具体的产品结构体现出来。电子设备是随着电子技术的发展而发展的,其结构和构成形式也随之发生变化。初期的设备较简陋,考虑的主要问题是电路设计。到二十世纪四十年代,出现了将复杂设备分为若干部件,树立起结构级别的先进想法;为防止气候影响,研制出密封外壳;为防止机械过载而研制出减振器,设备结构功能进一步完善,结构设计成为电子设备设计的内容。随后,由于军用电子技术的发展和野战的需要,结构设计的内容逐步丰富起来。目前,结构设计在电子设备的设计中占有较大的

华为电磁兼容性结构设计规范_第三版

华为技术有限公司企业技术规范 DKBA0.400.0022 REV.3.0 电磁兼容性结构设计规范 2003-11-30发布2003-11-30实施 华为技术有限公司

内部公开 前言 本规范于1999年12月25日首次发布。 本规范于2001年7月30日第一次修订。 本规范于2003年10月30日第二次修订。 本规范起草单位:华为技术有限公司结构造型设计部 本规范授予解释单位:华为技术有限公司结构造型设计部本 华为机密,未经许可不得扩散 第1页,共1页

内部公开 目录 1 范围 ... ....................................................................................................................................................... ..4 2 引用标准 ... . (4) 3 术语 ... ....................................................................................................................................................... ..4 4 电磁兼容基本概念... (5) 4.1 电磁兼容定义 ... .............................................................................................................................. ..5 4.2 电磁兼容三要素 ... ........................................................................................................................... .5 4.3 通讯产品电磁兼容一般要求 ... ..................................................................................................... ..6 5 电磁屏蔽基本理论... (7) 5.1 屏蔽效能 ... ....................................................................................................................................... .7 5.2 屏蔽体的缺陷 ... .............................................................................................................................. ..7 5.2.1缝隙屏蔽 ... (7) 5.2.2开孔屏蔽 ... (8) 5.2.3电缆穿透 ... . (10) 6 屏蔽设计 ... .. (12) 6.1 结构屏蔽效能 ... .......................................................................................................................... (12) 6.2 屏蔽方案与成本 ... ....................................................................................................................... ..12 6.3 缝隙屏蔽设计 ... .......................................................................................................................... (13) 6.3.1紧固点连接缝隙 ... . (13) A. 减小缝隙的最大尺寸 ... ........................................................................................................................... .. 13 B. 增加缝隙深度 ... ........................................................................................................................................ .. 14 C. 紧固点间距 ... ........................................................................................................................................... (15) 6.3.2安装屏蔽材料 ... ....................................................................................................................... ..17 6.3.3屏蔽材料的选用 ... . (18) A. 常用屏蔽材料................................................................... .. 18 B. 常用屏蔽材料性能参数 ... ........................................................................................................................ . 24 6.4 开孔屏蔽设计 ... .......................................................................................................................... (25) 6.4.1通风孔屏蔽 ... .......................................................................................................................... (25) 6.4.2局部开孔屏蔽 ... ....................................................................................................................... ..26 6.5 塑胶件屏蔽 ... . (27) 6.6 单板局部屏蔽 ... .......................................................................................................................... (28) 6.6.1盒体式屏蔽盒 ... ....................................................................................................................... ..28

最新电子产品结构设计过程资料

电子产品的结构设计过程 一个完整产品的结构设计过程 1.ID造型; a.ID草绘............ b.ID外形图............ c.MD外形图............ 2.建模; a.资料核对............ b.绘制一个基本形状............ c.初步拆画零部件............ 1.ID造型; 一个完整产品的设计过程,是从ID造型开始的,收到客户的原始资料(可以是草图,也可以是文字说明),ID即开始外形的设计;ID绘制满足客户要求的外形图方案,交客户确认,逐步修改直至客户认同;也有的公司是ID绘制几种草案,由客户选定一种,ID再在此草案基础上绘制外形图;外形图的类型,可以是2D 的工程图,含必要的投影视图;也可以是JPG彩图;不管是哪一种,一般需注名整体尺寸,至于表面工艺的要求则根据实际情况,尽量完整;外形图确定以后,接下来的工作就是结构设计工程师(以下简称MD)的了; 顺便提一下,如果客户的创意比较完整,有的公司就不用ID直接用MD做外形图; 如果产品对内部结构有明确的要求,有的公司在ID绘制外形图同时MD就要参与进来协助外形的调整; MD开始启动,先是资料核对,ID给MD的资料可以是JPG彩图,MD将彩图导入PROE后描线;ID给MD的资料还可以是IGES线画图,MD将IGES线画图导入PROE后描线,这种方法精度较高;此外,如果是手机设计,还需要客户

提供完整的电子方案,甚至实物; 2。建摸阶段, 以我的工作方法为例,MD根据ID提供的资料,先绘制一个基本形状(我习惯用BASE作为文件名);BASE就象大楼的基石,所有的表面元件都要以BASE 的曲面作为参考依据; 所以MD做3D的BASE和ID做的有所不同,ID侧重造型,不必理会拔模角度,而MD不但要在BASE里做出拔模角度,还要清楚各个零件的装配关系,建议结构部的同事之间做一下小范围的沟通,交换一下意见,以免走弯路; 具体做法是先导入ID提供的文件,要尊重ID的设计意图,不能随意更改; 描线,PROE是参数化的设计工具,描线的目的在于方便测量和修改; 绘制曲面,曲面要和实体尽量一致,也是后续拆图的依据,可以的话尽量整合成封闭曲面局部不顺畅的曲面还可以用曲面造型来修补; BASE完成,请ID确认一下,这一步不要省略建摸阶段第二步,在BASE的基础上取面,拆画出各个零部件,拆分方式以ID的外形图为依据; 面/底壳,电池门只需做初步外形,里面掏完薄壳即可; 我做MP3,MP4的面/底壳壁厚取1.50mm,手机面/底壳壁厚取2.00mm,挂墙钟面/底壳壁厚取2.50mm,防水产品面/底壳壁厚可以取3.00mm; 另外面/底壳壁厚4.00mm的医疗器械我也做过,是客人担心强度一再坚持的,其实3.00mm 已经非常保险了,壁厚太厚很容易缩水,也容易产生内应力引起变形,担心强度不足完全 可以通过在内部拉加强筋解决,效果远好过单一的增加壁厚; 建摸阶段第三步,制作装配图,将拆画出各个零部件按装配顺序分别引入,选择参考中心 重合的对齐方式;放入电子方案,如LCD,LED,BATTERY,COB。。。将各个零部件引入装配图时,根据需要将有些零部件先做成一个组件,然后再把组件引入装配图时。 例如做翻盖手机时,总装配图里只有两个组件,上盖是一个组件,下盖是一个组

电磁兼容EMC设计指南

EDP电磁兼容设计平台专注EMC解决方案,规范EMC设计流程; 打造智能化的EMC设计平台。 1、企业面临的EMC设计应用现状 ?投入成本高,解决问题周期长;为解决产品EMC问题,不断进行测试验证, 反复的进行改版设计。 ?企业设计人员EMC知识储备不全面;解决EMC问题往往靠设计人员过去的 工作经验。 ?EMC设计流程不规范,EMC设计没有参透于电子产品开发过程各个阶段(总 体方案阶段、设计阶段、开发阶段、测试阶段、认证阶段等)。 ?公司技术文献和多年积累的产品开发经验不能良好的共享、消化,没有一个 系统将公司无形的技术经验转化为有形的产品开发技术要求。 2、企业面临的EMC问题 ?激烈的产品竞争要求企业开发的产品有更高的品质。 ?快速的市场变化要求企业有更高的产品开发效率。 ?高规格的EMC认证和EMC设计技术要求企业有更高的产品开发能力。 ?规范化的企业文化要求有更高效的产品开发流程。 3、EDP电磁兼容设计平台优势 ?赛盛技术多位专家10多年的经验融合荟萃; ?赛盛技术多项产品电磁兼容设计专利技术; ?智能化标准化项目管理设计平台 ?几十种典型接口电磁兼容解决方案; ?上百种PCB层叠电磁兼容设计方案; ?完整的电磁兼容布线设计规则; ?完整的结构屏蔽电磁兼容设计方案; ?多行业电缆与连接器电磁兼容解决方案; ?多行业、近百个产品实际电磁兼容设计验证与经验总结;

4、EMC设计平台介绍 利用计算机技术,整合人工智能、数据库、互联网等开发手段,对于现有的电磁兼容技术资源(包括各种设计规则,解决方案等)以及企业产品研发积累的技术检验等进行全面的管理和应用,实现现阶段对于企业电磁兼容的研发流程规范化和研发工程师电磁兼容设计的技术支持和辅助开发;未来电磁兼容专家系统一提供智能化技术支持(包括产品开发电磁兼容风险评估功能,自动检查和纠正电磁兼容设计功能、产品设计系统仿真和功能电路仿真等)为主要目标和发展方向。 电磁兼容设计平台:主要包括PCB设计、原理图设计、结构设计、电缆设计等四部分组成;系统依据用户设计要求和EMC设计要素,智能化输出相应的产品PCB设计方案、产品原理图设计方案、产品结构设计方案、产品电缆设计方案,然后用户依据产品信息保存方案(方案为标准技术设计模板,内容依据设计内容自动生成格式化的文件)。 使用电磁兼容设计(EDP)软件,会让我们很轻松的完成这些复杂困难的工作,用户输入产品产品设计的相关要素,软件就能够智能化输出产品EMC设计方案。 不管企业之前是否有电磁兼容设计经验?是否有电磁兼容设计规范?是否有电磁兼容标准化设计流程?是否有电磁兼容技术专家?企业在应用EDP软件后,EDP软件能够快速帮助企业解决以下方面问题: 1、快速提升企业产品电磁兼容性能:系统一旦使用上就能够快速地指导企业产品进行电磁兼容有效的设计工作,迅速提升企业产品的电磁兼容性能; 2、能够解决企业多型号产品同时开发,技术专家资源不够使用的情况:智能化的软件可以同时多款多个型号产品,不用设计阶段并行进行开发;能够在很短的时间内给出相应的设计方案,结合产品设计要求指导设计人员进行设计,不耽误产品由于专家资源不足而造成正常设计进度延误; 3、提高产品研发人员EMC技术设计水平:由于有规范化、标准化的方案输出,设计人员在进行新产品开发的时候,能够参考、学习标准化的技术方案;提升自身EMC设计知识水平,减少后期类似设计问题; EDP软件在手,EMC设计得心应手!

emc结构设计

[导读]电磁屏蔽是利用金属板、网、盖、罩、盒等屏蔽体阻止或减小电磁能量传播所采取的一种结构措施 期刊文章分类查询,尽在期刊图书馆 李永梅(东南大学成贤学院江苏南京210088)【摘要】EMC设计是电子设备设计中的重要环节。本文依据EMC的基本原理,综合考虑了屏蔽材料、屏蔽方式、缝隙和孔的处理等诸多因素,结合机械加工的手段和工艺,对机箱EMC的结构设计方法进行分析和探讨。【关键词】机箱;电磁屏蔽;结构设计1.引言随着科学技术的迅速发展,现代各种电子、电气、信息设备的数量和种类越来越多,性能越来越先进,其使用场合和数量密度也越来越高。这就使得电子设备工作时常受到各种电磁干扰,包括自身干扰和来自其它设备的干扰,同时也对其它设备产生干扰[1]。在这种情况下,要保证设备在各种复杂的电磁环境中正常工作,则在结构设计阶段就必须认真考虑电磁兼容性设计。如果忽视了这一问题,到新产品使用时,干扰问题就会暴露出来。因此及早地解决电磁干扰问题是电子设备机箱结构设计时必须考虑的重要环节。 2.理论基础电子设备结构中常见的电磁干扰方式主要有传导干扰和辐射干扰两种,因此电磁兼容(EMC)设计的主要方法有屏蔽、滤波、接地等。 2.1屏蔽电磁屏蔽是利用金属板、网、盖、罩、盒等屏蔽体阻止或减小电磁能量传播所采取的一种结构措施。常用的方法有静电屏蔽,磁屏蔽和电磁屏蔽。电子设备结构设计人员在着手电磁兼容性设计时,必须根据产品所提出的抗

干扰要求进行有针对性的电磁屏蔽设计。屏蔽通常有静电屏蔽、磁屏蔽和电磁屏蔽三种。 2.2滤波电路中的干扰信号常常通过电源线、信号线、控制线等进入电路造成干扰,所以对公用电源线及通过干扰环境的导线一般均要设置滤波电路。 2.3接地接地问题在电磁兼容性设计中也是一个极其重要的问题,正确的接地方法可以减少或避免电路间的互相干扰。根据不同的电路可用不同的接地方法。通常组合单元电路接地有串联一点接地、并联一点接地和多点接地三种方式。整机接地方式也是保障产品电磁兼容性的主要措施之一。由于其功能不同,故电路差别甚大,接地状况也不大相同。一般常用的方法是:将模拟电路、数字电路、机壳分开,各自独立接地,避免相互间的干扰,最后三地合一接入大地,这种方式较好地抑制了电磁噪声,减少了数字信号和模拟信号之间的干扰。 3.机箱EMC 的结构设计一电子设备中的机箱,机箱有电源线、信号线、控制线等的穿入及穿出以及散热用的通风孔、调节用的调节孔、显示窗等,同时机箱也是由多个零件组合而成,各部分的连接处难免有泄漏。如何抑制电磁能从上述因素中泄漏,就成了电磁兼容性的关键。在这里仅介绍几种结构设计中比较简单可行的方法: 3.1缝隙的屏蔽 缝隙指的是连接后要拆卸的,如机箱上下盖、前后面板和箱体的连接缝,这类连接通常用螺钉来紧固。这类情形增加屏蔽效能的途径有如下:(1)增加缝隙深度,也就是增加箱体及盖板的配合宽度。(2)在结合处加入导电衬垫或者提高结合面的加工精度,即减少缝隙长度。一般比较经济的办法是在接合面安装导电衬垫。这样既可以

EMC结构电磁兼容设计规范

结构件电磁兼容设计规范

目 次 117.3.2 示例 (11) 7.3.1 编码描述规定 (10) 7.3 屏蔽材料的编码描述 (10) 7.2.3 示例 (10) 7.2.2 标注说明 (10) 7.2.1 绘图和标注规定 (10) 7.2 屏蔽材料的绘图和标注 (9) 7.1 屏蔽材料命名规则 (9) 7. 屏蔽材料 (8) 6.5.2 滤波器的安装 (8) 6.5.1 线缆的屏蔽措施 (8) 6.5 线缆的屏蔽 (7) 6.4.3 其他孔洞的屏蔽 (6) 6.4.2 通风孔的屏蔽 (6) 6.4.1 孔洞屏蔽效能影响因素 (6) 6.4 孔洞的屏蔽 (5) 6.3 缝隙的屏蔽 (4) 6.2 屏蔽方案的选择 (4) 6.1 屏蔽设计的基本原则 (4) 6. 结构件屏蔽设计指引 (3) 5.4 成本控制 (3) 5.3 屏蔽效能等级的确定 (2) 5.2 屏蔽效能测试标准 (2) 5.1 屏蔽效能等级的划分 (2) 5. 结构件屏蔽效能等级 (2) 4. 结构件电磁兼容设计程序要求 (1) 3. 术语 (1) 2. 引用标准 (1) 1. 范围.................................................................

129. 标识 (12) 8.3 地线的屏蔽 (12) 8.2 防静电设计 (11) 8.1 接地线 (11) 8. 接地 (11) 7.4 屏蔽材料选用原则...................................................

结构件电磁兼容设计规范 1. 范围 本规范规定了结构件电磁兼容设计(主要是屏蔽和接地)的设计指标、设计原则和具体设计方法。 本规范适应于结构设计人员进行结构件的电磁兼容设计,目的是规范机电协调中电磁兼容方面的内容,指导结构设计人员正确地选择方案和进行详细设计。 2. 引用标准 下列标准包含的条文,通过在本标准中引用而构成本标准的条文。在标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GJB 1046 《舰船搭接、接地、屏蔽、滤波及电缆的电磁兼容性要求和方法》 GJB 1210 《接地、搭接和屏蔽设计的实施》 GJB/z 25 《电子设备和设施的接地搭接和屏蔽设计指南》 MIL-HDBK-419 《电子设备和设施的接地搭接和屏蔽》 IEC 61587-3 (草案)《第三部分:IEC 60917-...和IEC 60297-...系列机箱、机柜和插箱屏蔽性能试验》 《结构件分类描述优化方案及图号缩写规则》 3. 术语 本规范中的专业术语符合IEC50-161《电磁兼容性术语》的规定。

电磁兼容EMC设计及测试技巧

电磁兼容EMC设计及测试技巧 摘要:针对当前严峻的电磁环境,分析了电磁干扰的来源,通过产品开发流程的分解,融入电磁兼容设计,从原理图设计、PCB设计、元器件选型、系统布线、系统接地等方面逐步分析,总结概括电磁兼容设计要点,最后,介绍了电磁兼容测试的相关内容。 当前,日益恶化的电磁环境,使我们逐渐关注设备的工作环境,日益关注电磁环境对电子设备的影响,从设计开始,融入电磁兼容设计,使电子设备更可靠的工作。 电磁兼容设计主要包含浪涌(冲击)抗扰度、振铃波浪涌抗扰度、电快速瞬变脉冲群抗扰度、电压暂降、短时中断和电压变化抗扰度、工频电源谐波抗扰度、静电抗扰度、射频电磁场辐射抗扰度、工频磁场抗扰度、脉冲磁场抗扰度、传导骚扰、辐射骚扰、射频场感应的传导抗扰度等相关设计。 电磁干扰的主要形式 电磁干扰主要是通过传导和辐射方式进入系统,影响系统工作,其他的方式还有共阻抗耦合和感应耦合。 传导:传导耦合即通过导电媒质将一个电网络上的骚扰耦合到另一个电网络上,属频率较低的部分(低于 30MHz)。在我们的产品中传导耦合的途径通常包括电源线、信号线、互连线、接地导体等。 辐射:通过空间将一个电网络上的骚扰耦合到另一个电网络上,属频率较高的部分(高于30MHz)。辐射的途径通过空间传递,在我们电路中引入和产生的辐射干扰主要是各种导线形成的天线效应。 共阻抗耦合:当两个以上不同电路的电流流过公共阻抗时出现的相互干扰。在电源线和接地导体上传导的骚扰电流,多以这种方式引入到敏感电路。 感应耦合:通过互感原理,将在一条回路里传输的电信号,感应到另一条回路对其造成干扰。分为电感应和磁感应两种。 对这几种途径产生的干扰我们应采用的相应对策:传导采取滤波(如我们设计中每个IC的片头电容就是起滤波作用),辐射干扰采用减少天线效应(如信号贴近地线走)、屏蔽和接地等措施,就能够大大提高产品的抵抗电磁干扰的能力,也可以有效的降低对外界的电磁干扰。 电磁兼容设计 对于一个新项目的研发设计过程,电磁兼容设计需要贯穿整个过程,在设计中考虑到电磁兼容方面的设计,才不致于返工,避免重复研发,可以缩短整个产品的上市时间,提高企业的效益。 一个项目从研发到投向市场需要经过需求分析、项目立项、项目概要设计、项目详细设计、样品试制、功能测试、电磁兼容测试、项目投产、投向市场等几个阶段。 在需求分析阶段,要进行产品市场分析、现场调研,挖掘对项目有用信息,整合项目发展前景,详细整理项目产品工作环境,实地考察安装位置,是否对安装有所限制空间,工作环境是否特殊,是否有腐蚀、潮湿、高温等,周围设备的工作情况,是否有恶劣的电磁环境,是否受限与其他设备,产品的研制成功能否大大提高生产效率,或者能否给人们的生活或工作环境带来很大的方便,操作使用方式能否容易被人们所

2021年电磁兼容与结构设计

xxxx大学硕士生课程论文 欧阳光明(2021.03.07) 电磁兼容与结构设计 电磁兼容概述 (2014—2015学年上学期) 姓名: 学号: 所在单位: 专业:

摘要 随着用电设备的增加,空间电磁能量逐年增加,人类生存环境具有浓厚的电磁环境内涵。在这种复杂的电磁环境中,如何减少相互间的电磁干扰,使各种设备正常运转,是一个亟待解决的问题;另外,恶略的电磁环境还会对人类及生态产生不良影响。电磁兼容正是为解决这类问题而迅速发展起来的学科。可以说电磁兼容是人类社会文明发展产生的无法避免的“副产品”。 电磁兼容一般指电气及电子设备在共同的电磁环境中能执行各自功能的共存状态,即要求在同一电磁环境中的上述各种设备都能正常工作,又互不干扰,达到兼容状态。电磁兼容技术是一门迅速发展的交叉学科,其理论基础涉及数学、电磁场理论、电路基础、信号分析等学科与技术,其应用范围几乎涉及到所有用电领域。 关键字:电磁兼容、电磁发射、传导耦合、辐射耦合、静电放电 1 引言 信息技术已经成为这个时代的主题,而信息时代的最突出特征,就是将电磁作为记录和传递信息的主要载体,人们对于电磁的利用无处不在。电磁日益渗入到金融、通信、电力、广播电视等事关国家安全的各个重要领域和社会生活的各个角落,电磁已经成为了信息时代中将经济、军事等各方面各部门联成一体的纽带,它与每个人工作和生活息息相关。电磁空间对国家利益的实现具有越来越深刻的影响,经济社会发展、军队建设和作战对电磁空间的依赖程度日益提高[1]。 当前人类的生存环境已具有浓厚的电磁环境内涵。一方面,电力网络、用电设备及系统产生的电磁骚扰越来越严重,设备所处电磁环境越来越复杂;另一方面,先进的电子设备的抗干扰能力越来越弱,同时电气及电子系统也越来越复杂。在这种复杂的电磁环境中,如何减少相互间的电磁干扰,使各种设备正常运行,是一个亟待解决的问题。另外,恶略的电磁环境还会对人类及生态产生不良影响。对于生产厂家而言,只有出场设备具有一定的电磁兼容性并且适应目前这一复杂的电磁环境,才能使自己的产品更具有竞争力。而对于国家安全而言,构筑电磁空间安全防御体系,已成为各国和军队建设的重要内容,随着社会信息化

电子产品设计开发流程

电子产品结构开发流程 目录 1、产品规划 2、产品开发流程 2-1、开发流程概述 2-2、外观评审 2-3、结构布局设计(经过组装后的) 2-4、机构件的设计 2-5、(工程样品验证测试) 2-5、(设计验证测试) 2-5、& (小批量过程验证测试和量产)3、结束 1、产品规划 A、确定产品的定位 ①确定产品的销售地区 ②确定产品的使用对象 ③确定产品的消费档次 ④确定产品的使用环境 B、确定产品的规格

①确定产品的使用功能 ②确定产品的外观形状 ③确定产品的检测规范 C、方案的评估 ①外观方案评估 ②工艺方案评估 ③机构方案评估 2、开发流程 2-1、开发流程概述 (1)外观的评审 (2)机构布局设计 (3)结构件的设计 (4) (5) (6) 2-2、外观评审 (1)尺寸空间评估 (2)外接元件评估 (3)标准件的选择 (4)相关规范收集 (5)外观开模分析 (6)建立3D模型

(7)制作外观手板 (8)出示资料清单 2-3、结构布局设计 (1)的确定 (2)主要零件的布局 ①元件 ②元件 ③发热元件 ④光学元件 ⑤操作元件 ⑥其他特殊元件 (3)的绘制(:时钟信号输出) (4)出据资料及清单 2-4、结构件的设计 (1)零件拆分的确定,绘制方案图—>色彩工艺 (2)评审结构方案—>散热、导光、声音、组装、重量 (3)零件结构细部设计—> (4)制作功能手板 (5)功能手板检讨—>挂钩、定位、止口、柱、美工线、 (6)零件开模分析并制作(:面向制造的设计,作用就是改进产品的制造工艺性) (7)绘制零件开模图—>3D ,2D ,特殊要求

(8)零件名称命名,申请 (9)制作(:物料清单)—>结构件的组装顺序父子关系 (10)制作进行产品跟踪(:设计失效模式及后果分析) (11)产出资料清单 2-5、 (1)图档整理(3D ,2D ) (2)资料跟踪() (3)模具跟踪(T0->T1,问题改善对策) (4)检验测量(新品首件检查,外观色彩检查) (5)首样签核 (6)组装(临时对策,永久对策) (7)测试(测试规范定义,对策) 2-6、 (1)图档资料整理(3D &2D ,) (2)跟踪 (3)模具修改跟踪(3D &2D ,跟踪)(:工程变更通知书)(4)检验测量(新品首件检查,外观色彩检查) (5)物料

电子产品的结构设计过程

电子产品的结构设计过程(转) 一个完整产品的结构设计过程 1.ID造型; a.ID草绘............ b.ID外形图............ c.MD外形图............ 2.建模; a.资料核对............ b.绘制一个基本形状............ c.初步拆画零部件............ 1.ID造型; 一个完整产品的设计过程,是从ID造型开始的,收到客户的原始资料(可以是草图,也可以是文字说明),ID即开始外形的设计;ID绘制满足客户要求的外形图方案,交客户确认,逐步修改直至客户认同;也有的公司是ID绘制几种草案,由客户选定一种,ID再在此草案基础上绘制外形图;外形图的类型,可以是2D 的工程图,含必要的投影视图;也可以是JPG彩图;不管是哪一种,一般需注名整体尺寸,至于表面工艺的要求则根据实际情况,尽量完整;外形图确定以后,接下来的工作就是结构设计工程师(以下简称MD)的了; 顺便提一下,如果客户的创意比较完整,有的公司就不用ID直接用MD做外形图; 如果产品对内部结构有明确的要求,有的公司在ID绘制外形图同时MD就要参与进来协助外形的调整; MD开始启动,先是资料核对,ID给MD的资料可以是JPG彩图,MD将彩图导入PROE后描线;ID给MD的资料还可以是IGES线画图,MD将IGES线画图导入PROE后描线,这种方法精度较高;此外,如果是手机设计,还需要客户提供完整的电子方案,甚至实物; 2建摸阶段, 以我的工作方法为例,MD根据ID提供的资料,先绘制一个基本形状(我习惯用BASE作为文件名);BASE就象大楼的基石,所有的表面元件都要以BASE的曲面作为参考依据; 所以MD做3D的BASE和ID做的有所不同,ID侧重造型,不必理会拔模角度,而MD不但要在BASE里做出拔模角度,还要清楚各个零件的装配关系,建议结构部的同事之间做一下小范围的沟通,交换一下意见,以免走弯路; 具体做法是先导入ID提供的文件,要尊重ID的设计意图,不能随意更改; 描线,PROE是参数化的设计工具,描线的目的在于方便测量和修改; 绘制曲面,曲面要和实体尽量一致,也是后续拆图的依据,可以的话尽量整合成封闭曲面局部不顺畅的曲面还可以用曲面造型来修补; BASE完成,请ID确认一下,这一步不要省略建摸阶段第二步,在BASE的基础上取面,拆画出各个零部件,拆分方式以ID的外形图为依据; 面/底壳,电池门只需做初步外形,里面掏完薄壳即可; 我做MP3,MP4的面/底壳壁厚取1.50mm,手机面/底壳壁厚取2.00mm,挂墙钟面/底壳壁厚取2.50mm,防水产品面/底壳壁厚可以取3.00mm;

电子产品结构设计中的电磁兼容性(EMC)设计

电子产品结构设计中的电磁兼容性(EMC)设计 江苏省电子信息产品质量监督检验研究院胡寅秋 1 引言 随着科学技术的迅速发展,现代各种电子、电气、信息设备及家用电器的数量和种类越来越多,性能越来越先进,其使用场合和数量密度也越来越高。这就使得电气电子系统内、设备内的相互干扰愈加严重。在这种情况下,要保证设备在各种复杂的电磁环境中正常地工作,则在结构设计阶段就必须认真考虑电磁兼容性设计。 2 电磁干扰方式 电子设备结构设计中常见的电磁干扰方式主要有: 传导干扰 传导干扰一般是指通过电源,电缆,布线系统,接地系统引起的串扰。 辐射干扰 在高频情况下,电磁能量比较容易产生辐射。通常,在MHz以上,辐射就较明显,当导线长度超过四分之一波长时,辐射功率将很大。 感应及耦合引起的干扰 3 电磁兼容(EMC)设计的主要内容及方法 电磁兼容设计的主要方法有屏蔽、滤波、接地等。 3.1屏蔽 电磁屏蔽是利用金属板、网、盖、罩、盒等屏蔽体阻止或减小电磁能量传播所采取的一种结构措施。常用的方法有静电屏蔽,磁屏蔽和电磁屏蔽。电子设备结构设计人员在着手电磁兼容性设计时,必须根据产品所提出的抗干扰要求进行有针对性的电磁屏蔽设计。 (1)静电屏蔽 静电屏蔽主要是为了抑制寄生电容的耦合,使电路由于分布电容泄漏出来的电磁能量经屏蔽接地而不致于串入其它电路,从而使干扰得到抑制。 静电屏蔽的基本方法是采用低电阻率材料作屏蔽体,在感应源与受感器之间加一块与机壳接触良好的金属隔板网、罩或盒。可用铜、铝材做屏蔽外壳,要求不高的也可用钢材。机壳必须是导电良好、稳定可靠的导电体。静电屏蔽必须保

证良好的接地,否则屏蔽效果将大大下降。 (2)磁屏蔽 磁屏蔽主要是针对一些低阻抗源。例如变压器、线圈及一些示波器、显示器就可考虑用磁屏蔽。良好的低频屏蔽必须具有合适的电导率和高磁导率。磁屏蔽的基本方法是用高磁导率材料,如铁镍合金、镍铅合金、纯铁、铜作屏蔽材料,做成屏蔽罩。磁屏蔽罩在结构上按加工工艺不同一般可分为两类:一类为用平板坯料深冲成形的,另一类为焊接成形的。 (3)电磁屏蔽 电磁屏蔽就是对高频电磁辐射的屏蔽。 电磁屏蔽的主要方法是用金属材料做成屏蔽壳体。金属材料可以是铁磁性材料,也可以是非铁磁性材料,通过对电磁场的反射和吸收损耗起到屏蔽作用,具体选用哪种材料,则应根据工作频率(f )来确定。其临界频率为 )(1067.522 0Hz t f ×= 式中,t ——材料厚度(mm ); 当f >f0时,铁磁性材料比非铁磁性材料屏蔽效果好; 当f <f0时,非铁磁材料比铁磁性材料屏蔽效果好。 一般来讲,频率大于1MHz 时,其屏蔽效能主要取决于吸收损耗。 就反射损耗而言,非铁磁材料比铁磁材料优越,反射损耗与材料厚度无关。 电磁屏蔽理论指出:电磁干扰在通过屏蔽体时,一部分被反射,未被反射的部分进入屏蔽层而被吸收转化为热能,剩余的部分则穿透屏蔽层,继续向外传播。屏蔽体所具有的这种反射和吸收电磁波能量的能力被定义为屏蔽体的屏蔽效能。假定屏蔽体是均质无缝的,则屏蔽体的屏蔽效能与干扰场的场型有关,其屏蔽效果可按下面的公式计算。 远场屏蔽效果: ))(/log(10168131.0dB f f t SE r r r r σμμσ?+=

相关主题