搜档网
当前位置:搜档网 › 牛人解说数学体系

牛人解说数学体系

牛人解说数学体系
牛人解说数学体系

集合论:现代数学的共同基础

现代数学有数不清的分支,但是,它们都有一个共同的基础——集合论——因为它,数学这个庞大的家族有个共同的语言。集合论中有一些最基本的概念:集合(set),关系(relation),函数(function),等价(equivalence),是在其它数学分支的语言中几乎必然存在的。对于这些简单概念的理解,是进一步学些别的数学的基础。我相信,理工科大学生对于这些都不会陌生。

不过,有一个很重要的东西就不见得那么家喻户晓了——那就是“选择公理” (Axiom of Choice)。这个公理的意思是“任意的一群非空集合,一定可以从每个集合中各拿出一个元素。”——似乎是显然得不能再显然的命题。不过,这个貌似平常的公理却能演绎出一些比较奇怪的结论,比如巴拿赫-塔斯基分球定理——“一个球,能分成五个部分,对它们进行一系列刚性变换(平移旋转)后,能组合成两个一样大小的球”。正因为这些完全有悖常识的结论,导致数学界曾经在相当长时间里对于是否接受它有着激烈争论。现在,主流数学家对于它应该是基本接受的,因为很多数学分支的重要定理都依赖于它。在我们后面要回说到的学科里面,下面的定理依赖于选择公理:

拓扑学:Baire Category Theorem

实分析(测度理论):Lebesgue 不可测集的存在性

泛函分析四个主要定理:Hahn-Banach Extension Theorem, Banach-Steinhaus Theorem (Uniform boundedness principle), Open Mapping Theorem, Closed Graph Theorem

在集合论的基础上,现代数学有两大家族:分析(Analysis)和代数(Algebra)。至于其它的,比如几何和概率论,在古典数学时代,它们是和代数并列的,但是它们的现代版本则基本是建立在分析或者代数的基础上,因此从现代意义说,它们和分析与代数并不是平行的关系。

分析:在极限基础上建立的宏伟大厦

微积分:分析的古典时代——从牛顿到柯西

先说说分析(Analysis)吧,它是从微积分(Caculus)发展起来的——这也是有些微积分教材名字叫“数学分析”的原因。不过,分析的范畴远不只是这些,我们在大学一年级学习的微积分只能算是对古典分析的入门。分析研究的对象很多,包括导数(derivatives),积分(integral),微分方程(differential equation),还有级数(infinite series)——这些基本的概念,在初等的微积分里面都有介绍。如果说有一个思想贯穿其中,那就是极限——这是整个分析(不仅仅是微积分)的灵魂。

一个很多人都听说过的故事,就是牛顿(Newton)和莱布尼茨(Leibniz)关于微积分发明权的争论。事实上,在他们的时代,很多微积分的工具开始运用在科学和工程之中,但是,微积分的基础并没有真正建立。那个长时间一直解释不清楚的“无穷小量”的幽灵,困扰了数学界一百多年的时间——这就是“第二次数学危机”。直到柯西用数列极限的观点重新建立了微积分的基本概念,这门学科才开始有了一个比较坚实的基础。直到今天,整个分析的大厦还是建立在极限的基石之上。

柯西(Cauchy)为分析的发展提供了一种严密的语言,但是他并没有解决微积分的全部问题。在19世纪的时候,分析的世界仍然有着一些挥之不去的乌云。而其中最重要的一个没有解决的是“函数是否可积的问题”。我们在现在的微积分课本中学到的那种通过“无限分割区间,

取矩阵面积和的极限”的积分,是大约在1850年由黎曼(Riemann)提出的,叫做黎曼积分。但是,什么函数存在黎曼积分呢(黎曼可积)?数学家们很早就证明了,定义在闭区间内的连续函数是黎曼可积的。可是,这样的结果并不令人满意,工程师们需要对分段连续函数的函数积分。

实分析:在实数理论和测度理论上建立起现代分析

在19世纪中后期,不连续函数的可积性问题一直是分析的重要课题。对于定义在闭区间上的黎曼积分的研究发现,可积性的关键在于“不连续的点足够少”。只有有限处不连续的函数是可积的,可是很多有数学家们构造出很多在无限处不连续的可积函数。显然,在衡量点集大小的时候,有限和无限并不是一种合适的标准。在探讨“点集大小”这个问题的过程中,数学家发现实数轴——这个他们曾经以为已经充分理解的东西——有着许多他们没有想到的特性。在极限思想的支持下,实数理论在这个时候被建立起来,它的标志是对实数完备性进行刻画的几条等价的定理(确界定理,区间套定理,柯西收敛定理,Bolzano-Weierstrass Theorem和Heine-Borel Theorem等等)——这些定理明确表达出实数和有理数的根本区别:完备性(很不严格的说,就是对极限运算封闭)。随着对实数认识的深入,如何测量“点集大小”的问题也取得了突破,勒贝格创造性地把关于集合的代数,和Outer content(就是“外测度”的一个雏形)的概念结合起来,建立了测度理论(Measure Theory),并且进一步建立了以测度为基础的积分——勒贝格(Lebesgue Integral)。在这个新的积分概念的支持下,可积性问题变得一目了然。

上面说到的实数理论,测度理论和勒贝格积分,构成了我们现在称为实分析(Real Analysis)的数学分支,有些书也叫实变函数论。对于应用科学来说,实分析似乎没有古典微积分那么“实用”——很难直接基于它得到什么算法。而且,它要解决的某些“难题”——比如处处不连续的函数,或者处处连续而处处不可微的函数——在工程师的眼中,并不现实。但是,我认为,它并不是一种纯数学概念游戏,它的现实意义在于为许多现代的应用数学分支提供坚实的基础。下面,我仅仅列举几条它的用处:

黎曼可积的函数空间不是完备的,但是勒贝格可积的函数空间是完备的。简单的说,一个黎曼可积的函数列收敛到的那个函数不一定是黎曼可积的,但是勒贝格可积的函数列必定收敛到一个勒贝格可积的函数。在泛函分析,还有逼近理论中,经常需要讨论“函数的极限”,或者“函数的级数”,如果用黎曼积分的概念,这种讨论几乎不可想像。我们有时看一些paper 中提到Lp函数空间,就是基于勒贝格积分。

勒贝格积分是傅立叶变换(这东西在工程中到处都是)的基础。很多关于信号处理的初等教材,可能绕过了勒贝格积分,直接讲点面对实用的东西而不谈它的数学基础,但是,对于深层次的研究问题——特别是希望在理论中能做一些工作——这并不是总能绕过去。

在下面,我们还会看到,测度理论是现代概率论的基础。

拓扑学:分析从实数轴推广到一般空间——现代分析的抽象基础

随着实数理论的建立,大家开始把极限和连续推广到更一般的地方的分析。事实上,很多基于实数的概念和定理并不是实数特有的。很多特性可以抽象出来,推广到更一般的空间里面。对于实数轴的推广,促成了点集拓扑学(Point- set Topology)的建立。很多原来只存在于实数中的概念,被提取出来,进行一般性的讨论。在拓扑学里面,有4个C构成了它的核心:

Closed set(闭集合)。在现代的拓扑学的公理化体系中,开集和闭集是最基本的概念。一切从此引申。这两个概念是开区间和闭区间的推广,它们的根本地位,并不是一开始就被认识

到的。经过相当长的时间,人们才认识到:开集的概念是连续性的基础,而闭集对极限运算封闭——而极限正是分析的根基。

Continuous function (连续函数)。连续函数在微积分里面有个用epsilon-delta语言给出的定义,在拓扑学中它的定义是“开集的原像是开集的函数”。第二个定义和第一个是等价的,只是用更抽象的语言进行了改写。我个人认为,它的第三个(等价)定义才从根本上揭示连续函数的本质——“连续函数是保持极限运算的函数” ——比如y是数列x1, x2, x3, … 的极限,那么如果f 是连续函数,那么f(y) 就是f(x1), f(x2), f(x3), …的极限。连续函数的重要性,可以从别的分支学科中进行类比。比如群论中,基础的运算是“乘法”,对于群,最重要的映射叫“同态映射”——保持“乘法”的映射。在分析中,基础运算是“极限”,因此连续函数在分析中的地位,和同态映射在代数中的地位是相当的。

Connected set (连通集合)。比它略为窄一点的概念叫(Path connected),就是集合中任意两点都存在连续路径相连——可能是一般人理解的概念。一般意义下的连通概念稍微抽象一些。在我看来,连通性有两个重要的用场:一个是用于证明一般的中值定理(Intermediate Value Theorem),还有就是代数拓扑,拓扑群论和李群论中讨论根本群(Fundamental Group)的阶。

Compact set(紧集)。Compactness似乎在初等微积分里面没有专门出现,不过有几条实数上的定理和它其实是有关系的。比如,“有界数列必然存在收敛子列”——用compactness 的语言来说就是——“实数空间中有界闭集是紧的”。它在拓扑学中的一般定义是一个听上去比较抽象的东西——“紧集的任意开覆盖存在有限子覆盖”。这个定义在讨论拓扑学的定理时很方便,它在很多时候能帮助实现从无限到有限的转换。对于分析来说,用得更多的是它的另一种形式——“紧集中的数列必存在收敛子列”——它体现了分析中最重要的“极限”。Compactness在现代分析中运用极广,无法尽述。微积分中的两个重要定理:极值定理(Extreme Value Theory),和一致收敛定理(Uniform Convergence Theorem)就可以借助它推广到一般的形式。

从某种意义上说,点集拓扑学可以看成是关于“极限”的一般理论,它抽象于实数理论,它的概念成为几乎所有现代分析学科的通用语言,也是整个现代分析的根基所在。

微分几何:流形上的分析——在拓扑空间上引入微分结构

拓扑学把极限的概念推广到一般的拓扑空间,但这不是故事的结束,而仅仅是开始。在微积分里面,极限之后我们有微分,求导,积分。这些东西也可以推广到拓扑空间,在拓扑学的基础上建立起来——这就是微分几何。从教学上说,微分几何的教材,有两种不同的类型,一种是建立在古典微机分的基础上的“古典微分几何”,主要是关于二维和三维空间中的一些几何量的计算,比如曲率。还有一种是建立在现代拓扑学的基础上,这里姑且称为“现代微分几何”——它的核心概念就是“流形”(manifold)——就是在拓扑空间的基础上加了一套可以进行微分运算的结构。现代微分几何是一门非常丰富的学科。比如一般流形上的微分的定义就比传统的微分丰富,我自己就见过三种从不同角度给出的等价定义——这一方面让事情变得复杂一些,但是另外一个方面它给了同一个概念的不同理解,往往在解决问题时会引出不同的思路。除了推广微积分的概念以外,还引入了很多新概念:tangent space, cotangent space, push forward, pull back, fibre bundle, flow, immersion, submersion 等等。

近些年,流形在machine learning似乎相当时髦。但是,坦率地说,要弄懂一些基本的流形算法,甚至“创造”一些流形算法,并不需要多少微分几何的基础。对我的研究来说,微分几何最重要的应用就是建立在它之上的另外一个分支:李群和李代数——这是数学中两大家族分析和代数的一个漂亮的联姻。分析和代数的另外一处重要的结合则是泛函分析,以及在其

基础上的调和分析。

代数:一个抽象的世界

关于抽象代数

回过头来,再说说另一个大家族——代数。

如果说古典微积分是分析的入门,那么现代代数的入门点则是两个部分:线性代数(linear algebra)和基础的抽象代数(abstract algebra)——据说国内一些教材称之为近世代数。

代数——名称上研究的似乎是数,在我看来,主要研究的是运算规则。一门代数,其实都是从某种具体的运算体系中抽象出一些基本规则,建立一个公理体系,然后在这基础上进行研究。一个集合再加上一套运算规则,就构成一个代数结构。在主要的代数结构中,最简单的是群(Group)——它只有一种符合结合率的可逆运算,通常叫“乘法”。如果,这种运算也符合交换率,那么就叫阿贝尔群(Abelian Group)。如果有两种运算,一种叫加法,满足交换率和结合率,一种叫乘法,满足结合率,它们之间满足分配率,这种丰富一点的结构叫做环(Ring),如果环上的乘法满足交换率,就叫可交换环(Commutative Ring)。如果,一个环的加法和乘法具有了所有的良好性质,那么就成为一个域(Field)。基于域,我们可以建立一种新的结构,能进行加法和数乘,就构成了线性代数(Linear algebra)。

代数的好处在于,它只关心运算规则的演绎,而不管参与运算的对象。只要定义恰当,完全可以让一只猫乘一只狗得到一头猪:-)。基于抽象运算规则得到的所有定理完全可以运用于上面说的猫狗乘法。当然,在实际运用中,我们还是希望用它干点有意义的事情。学过抽象代数的都知道,基于几条最简单的规则,比如结合律,就能导出非常多的重要结论——这些结论可以应用到一切满足这些简单规则的地方——这是代数的威力所在,我们不再需要为每一个具体领域重新建立这么多的定理。

抽象代数有在一些基础定理的基础上,进一步的研究往往分为两个流派:研究有限的离散代数结构(比如有限群和有限域),这部分内容通常用于数论,编码,和整数方程这些地方;另外一个流派是研究连续的代数结构,通常和拓扑与分析联系在一起(比如拓扑群,李群)。我在学习中的focus主要是后者。

线性代数:“线性”的基础地位

对于做Learning, vision, optimization或者statistics的人来说,接触最多的莫过于线性代数——这也是我们在大学低年级就开始学习的。线性代数,包括建立在它基础上的各种学科,最核心的两个概念是向量空间和线性变换。线性变换在线性代数中的地位,和连续函数在分析中的地位,或者同态映射在群论中的地位是一样的——它是保持基础运算(加法和数乘)的映射。

在learning中有这样的一种倾向——鄙视线性算法,标榜非线性。也许在很多场合下面,我们需要非线性来描述复杂的现实世界,但是无论什么时候,线性都是具有根本地位的。没有线性的基础,就不可能存在所谓的非线性推广。我们常用的非线性化的方法包括流形和kernelization,这两者都需要在某个阶段回归线性。流形需要在每个局部建立和线性空间的

映射,通过把许多局部线性空间连接起来形成非线性;而kernerlization则是通过置换内积结构把原线性空间“非线性”地映射到另外一个线性空间,再进行线性空间中所能进行的操作。而在分析领域,线性的运算更是无处不在,微分,积分,傅立叶变换,拉普拉斯变换,还有统计中的均值,通通都是线性的。

泛函分析:从有限维向无限维迈进

在大学中学习的线性代数,它的简单主要因为它是在有限维空间进行的,因为有限,我们无须借助于太多的分析手段。但是,有限维空间并不能有效地表达我们的世界——最重要的,函数构成了线性空间,可是它是无限维的。对函数进行的最重要的运算都在无限维空间进行,比如傅立叶变换和小波分析。这表明了,为了研究函数(或者说连续信号),我们需要打破有限维空间的束缚,走入无限维的函数空间——这里面的第一步,就是泛函分析。

泛函分析(Functional Analysis)是研究的是一般的线性空间,包括有限维和无限维,但是很多东西在有限维下显得很trivial,真正的困难往往在无限维的时候出现。在泛函分析中,空间中的元素还是叫向量,但是线性变换通常会叫作“算子”(operator)。除了加法和数乘,这里进一步加入了一些运算,比如加入范数去表达“向量的长度”或者“元素的距离”,这样的空间叫做“赋范线性空间”(normed space),再进一步的,可以加入内积运算,这样的空间叫“内积空间”(Inner product space)。

大家发现,当进入无限维的时间时,很多老的观念不再适用了,一切都需要重新审视。

所有的有限维空间都是完备的(柯西序列收敛),很多无限维空间却是不完备的(比如闭区间上的连续函数)。在这里,完备的空间有特殊的名称:完备的赋范空间叫巴拿赫空间(Banach space),完备的内积空间叫希尔伯特空间(Hilbert space)。

在有限维空间中空间和它的对偶空间的是完全同构的,而在无限维空间中,它们存在微妙的差别。

在有限维空间中,所有线性变换(矩阵)都是有界变换,而在无限维,很多算子是无界的(unbounded),最重要的一个例子是给函数求导。

在有限维空间中,一切有界闭集都是紧的,比如单位球。而在所有的无限维空间中,单位球都不是紧的——也就是说,可以在单位球内撒入无限个点,而不出现一个极限点。

在有限维空间中,线性变换(矩阵)的谱相当于全部的特征值,在无限维空间中,算子的谱的结构比这个复杂得多,除了特征值组成的点谱(point spectrum),还有approximate point spectrum和residual spectrum。虽然复杂,但是,也更为有趣。由此形成了一个相当丰富的分支——算子谱论(Spectrum theory)。

在有限维空间中,任何一点对任何一个子空间总存在投影,而在无限维空间中,这就不一定了,具有这种良好特性的子空间有个专门的名称切比雪夫空间(Chebyshev space)。这个概念是现代逼近理论的基础(approximation theory)。函数空间的逼近理论在Learning中应该有着非常重要的作用,但是现在看到的运用现代逼近理论的文章并不多。

继续往前:巴拿赫代数,调和分析,和李代数

基本的泛函分析继续往前走,有两个重要的方向。第一个是巴拿赫代数(Banach Algebra),它就是在巴拿赫空间(完备的内积空间)的基础上引入乘法(这不同于数乘)。比如矩阵——它除了加法和数乘,还能做乘法——这就构成了一个巴拿赫代数。除此以外,值域完备的有界算子,平方可积函数,都能构成巴拿赫代数。巴拿赫代数是泛函分析的抽象,很多对于有界算子导出的结论,还有算子谱论中的许多定理,它们不仅仅对算子适用,它们其实可以从

一般的巴拿赫代数中得到,并且应用在算子以外的地方。巴拿赫代数让你站在更高的高度看待泛函分析中的结论,但是,我对它在实际问题中能比泛函分析能多带来什么东西还有待思考。

最能把泛函分析和实际问题在一起的另一个重要方向是调和分析(Harmonic Analysis)。我在这里列举它的两个个子领域,傅立叶分析和小波分析,我想这已经能说明它的实际价值。它研究的最核心的问题就是怎么用基函数去逼近和构造一个函数。它研究的是函数空间的问题,不可避免的必须以泛函分析为基础。除了傅立叶和小波,调和分析还研究一些很有用的函数空间,比如Hardy space,Sobolev space,这些空间有很多很好的性质,在工程中和物理学中都有很重要的应用。对于vision来说,调和分析在信号的表达,图像的构造,都是非常有用的工具。

当分析和线性代数走在一起,产生了泛函分析和调和分析;当分析和群论走在一起,我们就有了李群(Lie Group)和李代数(Lie Algebra)。它们给连续群上的元素赋予了代数结构。我一直认为这是一门非常漂亮的数学:在一个体系中,拓扑,微分和代数走到了一起。在一定条件下,通过李群和李代数的联系,它让几何变换的结合变成了线性运算,让子群化为线性子空间,这样就为Learning中许多重要的模型和算法的引入到对几何运动的建模创造了必要的条件。因此,我们相信李群和李代数对于vision有着重要意义,只不过学习它的道路可能会很艰辛,在它之前需要学习很多别的数学。

现代概率论:在现代分析基础上再生

最后,再简单说说很多Learning的研究者特别关心的数学分支:概率论。自从Kolmogorov 在上世纪30年代把测度引入概率论以来,测度理论就成为现代概率论的基础。在这里,概率定义为测度,随机变量定义为可测函数,条件随机变量定义为可测函数在某个函数空间的投影,均值则是可测函数对于概率测度的积分。值得注意的是,很多的现代观点,开始以泛函分析的思路看待概率论的基础概念,随机变量构成了一个向量空间,而带符号概率测度则构成了它的对偶空间,其中一方施加于对方就形成均值。角度虽然不一样,不过这两种方式殊途同归,形成的基础是等价的。

在现代概率论的基础上,许多传统的分支得到了极大丰富,最有代表性的包括鞅论(Martingale)——由研究赌博引发的理论,现在主要用于金融(这里可以看出赌博和金融的理论联系,:-P),布朗运动(Brownian Motion)——连续随机过程的基础,以及在此基础上建立的随机分析(Stochastic Calculus),包括随机积分(对随机过程的路径进行积分,其中比较有代表性的叫伊藤积分(Ito Integral)),和随机微分方程。对于连续几何运用建立概率模型以及对分布的变换的研究离不开这些方面的知识。

北大数学系本科课程

基础和专业基础必修课1301301数学分析(Ⅰ) 1301301 数学分析1301301 数学分析(Ⅲ) 1301302 高等代数(Ⅰ) 1301302 高等代数1301303 解析几何1301304 常微分方程1301305 近世代数1301306 复变函数1301307 微分几何1301308 拓扑学1301309 实变函数1301310 概率统计1301311 数学模型1301312 泛函分析1301313 偏微分方程 专业限定选修课1301401 整体微分几何1301402 计算方法1301403 运筹学1301404 组合学1301405 初等数学教学研究1301406 微分流形1301407 计算机应用(Ⅰ) 1301408 多复变变函数引论 专业任意选修课1301501图论1301502 模糊数学1301503 中学数学竞赛1301504 数学史1301505 数学软件1301506 计算代数1301507 初等数论1301508 交换代数1301509 偏微分方程数值计算1301510 数学方法论1301511 数学学习论1301512 模糊控制与模糊决策

1301513 矩阵论 1301514 微分方程定性及分岔理论基 础 1301515 代数几何 1301516 李群与李代数 1301517 控制论 另外一个版本: 北大数学科学学院本科生课程 课程号 00130011 课程名数学分析(一) 课程号 00130012 课程名数学分析(二) 课程号 00130013 课程名数学分析(三) 课程号 00130031 课程名高等代数(上) 课程号 00130032 课程名高等代数(下) 课程号 00130051 课程名解析几何 课程号 00130061 课程名解析几何习题课 课程号 00130072 课程名初等数论 课程号 00130081 课程名常微分方程 课程号 00130091 课程名计算机原理与算法语言 课程号 0013010. 课程名计算机实习 课程号 00130110 课程名复变函数 课程号 00130120 课程名微分几何学 课程号 00130130 课程名抽象代数(A) 课程号 00130140 课程名实变函数论 课程号 00130150 课程名偏微分方程 课程号 00130161 课程名拓朴学(一) 课程号 00130162 课程名拓朴学(二) 课程号 00130170 课程名泛函分析

模型思维-牛人顶级思维法

牛人必备的50个顶级思维模型 有一次吃饭,我一个朋友阿帅 我问:最近在学习什么? 阿帅说:我花了199元在收听一个经济方面的知识收费节目,每天10分钟左右,觉得挺有道理的。 我问:你都学到了什么? 他说:我学到了。。。。。。。。支支吾吾半天,就是要拓宽认知边界,嗯,其他想不起来了,反正老师很有名,讲的挺好。 我问:是不是每次都感觉挺有道理,感觉今天好有收获?感觉听的好过瘾? 他说:对对对 我问:是不是过几天就忘得一干二净,生活照旧? 他说:对对对,那怎么办? 我说:你是典型的碎片化学习者,碎片化学习是移动互联网时代重要的学习方法之一,但你必须先有一个框架,把碎片化的知识进行整理,才更有价值,你可以试试这个方法 第一:首先确立一个学习目标; 第二:建立自己的底层思维框架,学习核心的模块化知识,而不是点状知识,搭建自己的知识结构 第三:一定要刻意练习,让知识变成自己的,才算你学到了,学习知识有三个阶段:

?不知道最可怕,因为你会犯低级的无知错误。 ?知道了但认知深度不够,没有学到和做到,这样你会犯无能错误;很多人都是这个情况, 说到什么理论,我知道,比如说很多人听说过金字塔原理、决策树、刻意练习等概念,但是你问他,金字塔原理的一个模型、二个推理、三个逻辑、四个特征你会用吗?决策树绘制的四个步骤你会用吗?刻意练习的四步十三法会用吗?很多人就不知道了。所以我们不仅要知道概念,还要学会用法(包含用在什么地方?怎么用?),并且通过刻意练习融入自己的血液,这样我们每次写文章,写报告都用金字塔原理,每次做静态决策可以使用决策树,每次练习一个新的技能,都用刻意练习,这样才叫做有效的学习。他说:对对对,我就是这样,我就是听了很多新概念新名词,但都是停留在知道阶段,并且很多都是一知半解,根本没有学会,更别谈做到了。 他问:现在怎么办? 我说:不要自我摸索了,自我摸索需要时间代价,何不向高手学习? 以上是我和朋友的对话,关于学习,我相信很多人会有以下焦虑: ?不知道学什么?知道学习很重要,但不知道看什么书,上什么课? ?不知道怎么学?每天在碎片化学习,看微信文章、听收费音频等; ?没时间学习者?工作和学习冲突,我该选择哪一个? ?不能坚持学习?开始信心满满,坚持不了多久,在断断续续中放弃。

牛人背诵经验,绝对受益匪浅

1. 学习语言最好的、最先进的方法在中国:第一,书读百遍,其意自见。第二,熟读唐诗三百首,不会作诗也会吟。第三,读书破万卷,下笔如有神。第四,一回生,二回熟!我相信,大家都知道这些名言,但可惜的是,没有几个人能做到!所以,成功的人永远是少数! 2. “背诵”是学好英语的“唯一方法”,绝对没有第二个出路!要每个月、甚至每个星期都举行老师和学生的背诵大赛! 3. 我的一生就是因为背诵而改变!2008年,连续英语补考三次的我下决心攻克英语,于是我找来当时的畅销书格林斯潘回忆录the Age of Turbulence开始背诵。没想到书的前言introduction却包含了300多个生词,但我没有退缩。我咬紧牙关,疯狂地查了两天字典,然后又疯狂地背了十天!我现在仍然在背诵这本书,这本书彻底改变了我! 4. 为什么完形填空难、阅读难、作文难,就是因为你从来没有进行“彻底背诵”!没有“彻底背诵”就不可能有语感! 5. 语感就等于文章朗读和背诵的遍数! 6. 同学们讨厌背整本书有以下正当理由:第一、整本书难背;第二,背完就忘;第三、没时间背;第四、背完对考试帮助不大。这些理由都是充分的! 7. 背诵的五大秘诀:A、天天背,一天都不要停止,就像吃饭一样;这样你的语感天天都在提升!B、一定要跟着录音背,这样才能保证最佳效果;C、背熟了还要再背,直至融入血液;D、用零碎时间疯狂背,这样效果最好;F、抄写下来,随身携带背。 8. 背诵的最佳状态:第一、对自己的记忆力充满信心;第二、不要管能不能背下来,只管重复得够不够!只要重复得够,再难的整本书都能脱口而出! 9. 整本书背不下来和智商无关,只是因为重复得远远不够!只要疯狂重复,猪都能背整本书! 10. 我崇尚的方法是:反复重复,自然背诵!只问耕耘,不问收获!功到自然成!重复得多了,想忘记都难!不要有精神压力! 11. 要进行彻底背诵!“彻底背诵”就是重复一百遍,甚至一千遍,做到“随时随地”都能够脱口而出,而且终生难忘!就像那些武术大师一样! 12. 每个星期至少进行一大段“彻底背诵”! 13. 英语的成功其实很容易:你只要每个星期读透、背熟一段文章,一年之后绝对是一口流利的英语,当然,考试也变成“小菜一碟”!

牛人解说数学体系

[非经典不确定科学] MIT)牛人解说数学体系 为什么要深入数学的世界 作为计算机的学生,我没有任何企图要成为一个数学家。我学习数学的目的,是要想爬上巨人的肩膀,希望站在更高的高度,能把我自己研究的东西看得更深广一些。说起来,我在刚来这个学校的时候,并没有预料到我将会有一个深入数学的旅程。我的导师最初希望我去做的题目,是对appearance和motion建立一个unified的model。这个题目在当今Computer Vision中百花齐放的世界中并没有任何特别的地方。事实上,使用各种Graphical Model把各种东西联合在一起framework,在近年的论文中并不少见。 我不否认现在广泛流行的Graphical Model是对复杂现象建模的有力工具,但是,我认为它不是panacea,并不能取代对于所研究的问题的深入的钻研。如果统计学习包治百病,那么很多“下游”的学科也就没有存在的必要了。事实上,开始的时候,我也是和Vision中很多人一样,想着去做一个Graphical Model——我的导师指出,这样的做法只是重复一些标准的流程,并没有很大的价值。经过很长时间的反复,另外一个路径慢慢被确立下来——我们相信,一个图像是通过大量“原子”的某种空间分布构成的,原子群的运动形成了动态的可视过程。微观意义下的单个原子运动,和宏观意义下的整体分布的变换存在着深刻的联系——这需要我们去发掘。 在深入探索这个题目的过程中,遇到了很多很多的问题,如何描述一个一般的运动过程,如何建立一个稳定并且广泛适用的原子表达,如何刻画微观运动和宏观分布变换的联系,还有很多。在这个过程中,我发现了两个事情: ?我原有的数学基础已经远远不能适应我对这些问题的深入研究。 ?在数学中,有很多思想和工具,是非常适合解决这些问题的,只是没有被很多的应用科学的研究者重视。 于是,我决心开始深入数学这个浩瀚大海,希望在我再次走出来的时候,我已经有了更强大的武器去面对这些问题的挑战。 我的游历并没有结束,我的视野相比于这个博大精深的世界的依旧显得非常狭窄。在这里,我只是说说,在我的眼中,数学如何一步步从初级向高级发展,更高级别的数学对于具体应用究竟有何好处。 集合论:现代数学的共同基础 现代数学有数不清的分支,但是,它们都有一个共同的基础——集合论——因为它,数学这个庞大的家族有个共同的语言。集合论中有一些最基本的概念:集合(set),关系(relation),函数(function),等价(equivalence),是在其它数学分支的语言中几乎必然存在的。对于这些简单概念的理解,是进一步学些别的数学的基础。我相信,理工科大学生对于这些都不会陌生。 不过,有一个很重要的东西就不见得那么家喻户晓了——那就是“选择公理” (Axiom of Choice)。这个公理的意思是“任意的一群非空集合,一定可以从每个集合中各拿出一个元素。”——似乎是显然得不能再显然的命题。不过,这个貌似平常的公理却能演绎出一些比较奇怪的结论,比如巴拿赫-塔斯基分球定理——“一个球,能分成五个部分,对它们进行一系列刚性变换(平移旋转)后,能组合成两个一样大小的球”。正因为这些完全有悖常识的结论,导致数学界曾经在相当长时间里对于是否接受它有着激烈争论。现在,主流数学家对于它应该是基本接受的,因为很多数学分支的重要定理都依赖于它。在我们后面要回说到的学科里面,下面的定理依赖于选择公理:

概率论 历年考研真题(牛人总结)

考研概率论部分历年真题(总结) 数学一: 1(87,2分) 设在一次试验中A 发生的概率为p ,现进行n 次独立试验,则A 至少发生一次的概率为 ;而事件A 至多发生一次的概率为 。 2(87,2) 三个箱子,第一个箱子中有4个黑球1个白球,第二个箱子中有3个黑球3个白球,第三个箱子中有3个黑球5个白球。现随机地取一个箱子,再从这个箱子中取出1个球,这个球为白球的概率等于 。已知取出的球是白球,此球属于第二个箱子的概率为 。 3(88,2分) 设三次独立试验中,事件A 出现的概率相等,若已知A 至少出现一次的概率等于2719,则事件A 在一次试验中出现的概率为 。 4(88,2分) 在区间(0,1)中随机地取两个数,则事件“两数之和小于56”的概率为 。 5(89,2分) 已知随机事件A 的概率P (A )=0.5,随机事件B 的概率P (B )=0.6及条件概率P (B | A )=0.8,则和事件A B 的概率P (A B )= 。 6(89,2分) 甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为 。 7(90,2分) 设随机事件A ,B 及其和事件A B 的概率分别是0.4, 0.3和0.6,若B 表示B 的对立事件,那么积事件A B 的概率P (A B )= 。 8(91,3分) 随机地向半圆0

世界数学家名单

Weierstrass 魏尔斯特拉斯(古典分析学集大成者,德国人) Cantor 康托尔(Weiestrass的学生,集合论的鼻祖) 三(这是一个17世纪的家族,专门产数学家物理学家) Fatou 法都(实变函数中有一个Fatou引理,为北大实变必考的要点)Green 格林(有很多姓绿的人,反正都很牛) S.Lie 李(创造了著名的Lie群,是近代数学物理中最重要的一个概念) Euler 欧拉(后来双目失明了,但是其伟大很少有人能与之相比)Gauss 高斯(有些人不需要说明,Gauss就是一个) Sturm 斯图谟(那个Liouvel-Sturm定理的人,项武义先生很推崇他) Riemann 黎曼(不知道这个名字,就是说不知道世界上存在着数学家)Neumann 诺伊曼(造了第一台电脑,人类历史上最后一个数学物理的全才) Caratheodory 卡拉西奥多礼(外测度的创立者,曾经是贵族)Newton 牛顿(名字带牛,实在是牛) Jordan 约当(Jordan标准型,Poincare前的法国数学界精神领袖)Laplace 拉普拉斯(这人的东西太多了,到处都有) Wiener 维纳(集天才变态于一身的大家,后来在MIT做教授)Thales 泰勒斯(古希腊著名哲学家,有一个他囤积居奇发财的轶事)Maxwell 麦克斯韦(电磁学中的Maxwell方程组) Riesz 黎茨(泛函里的Riesz表示定理,当年匈牙利数学竞赛第一)Fourier 傅立叶(巨烦无比的Fourier变换,他当年黑过Galois)

Noether 诺特(最最伟大的女数学家,抽象代数之母) Kepler 开普勒(研究行星怎么绕着太阳转的人) Kolmogorov 柯尔莫戈洛夫(苏联的超级牛人烂人,一生桀骜不驯)Borel 波莱尔(学过数学分析和实分析都知道此人) Sobolev 所伯列夫(著名的Sobolev空间,改变了现代PDE的写法)Dirchlet 狄利克雷(Riemann的老师,伟大如他者廖若星辰)Lebesgue 勒贝格(实分析的开山之人,他的名字经常用来修饰测度这个名词) Leibniz 莱不尼兹(和Newton争谁发明微积分,他的记号使微积分容易掌握) Abel 阿贝尔(天才,有形容词形式的名字不多,Abelian就是一个)Lagrange 拉格朗日(法国姓L的伟人有三个,他,Laplace,Legendre) Ramanujan 拉曼奴阳(天资异禀,死于思乡病) Ljapunov 李雅普诺夫(爱微分方程和动力系统,但更爱他的妻子)Holder 赫尔得(Holder不等式,L-p空间里的那个) Poisson 泊松(概率中的Poisson过程,也是纯数学家) Nikodym 发音很难的说(有著名的Ladon-Nikodym定理) H.Hopf 霍普夫(微分几何大师,陈省身先生的好朋友)Pythagoras 毕达哥拉斯(就是勾股定理在西方的发现者) Baire 贝尔(著名的Baire纲) Haar 哈尔(有个Haar测度,一度哥廷根的大红人) Fermat 费马(Fermat大定理,最牛的业余数学家,吹牛很牛的)

考研数学150分牛人总结的公式汇总.docx

最新最全版考研数学公式,奉献给大家 高等数学公式篇 ·平方关系: sin^2(α )+cos^2(α )=1 tan^2( α )+1=sec^2( α ) cot^2( α )+1=csc^2( α ) ·积的关系: sin α =tan α *cos α cos α =cot α *sin α tan α =sin α *sec α cot α =cos α *csc α sec α =tan α *csc α csc α =sec α *cot α ·倒数关系: tan α· cot α =1 sin α· csc α =1 cos α· sec α =1 直角三角形ABC 中, 角 A 的正弦值就等于角 A 的对边比斜边, 余弦等于角 A 的邻边比斜边 正切等于对边比邻边, ·三角函数恒等变形公式 ·两角和与差的三角函数: cos( α +β )=cos α· cos-sinβα· sin β cos( α-β )=cos α· cos β +sin α· sin β sin( α±β )=sin α· cos β± cos α· sin β tan( α +β )=(tanα +tanβ-tan)/(1α· tanβ ) tan( α-β )=(tan -αtan β )/(1+tanα· tanβ ) ·三角和的三角函数: sin( α +β +γ )=sin α· cos β· cos γ +cos α· sin β· cos γ +cos-sin α· cossin β·s i nγ cos( α +β+γ )=cos α· cos β·-coscosα·γsin β·-sin α·γ cos β·-sin α·γ sin β· cos γ tan( α +β+γ )=(tan α +tan β-+tanα·γ tan β· tan-tanγ)/(1α· tan-tanβ β· tan-tanγ γ· tan α ) ·辅助角公式: Asin α +Bcosα =(A^2+B^2)^(1/2)sin(α,+t)其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) tant=B/A

2019北京大学基础数学专业考研详情介绍、经验权威指导

2019北京大学基础数学专业考研详情介绍、经验权威指导 院校简介 北京大学创办于1898年,初名京师大学堂,1912年更名为北京大学。1913年秋北京大学数学门的招生,开启了中国现代高等数学教育的先河。 1952年秋,全国高等学校进行了院系调整。北京大学数学系与清华大学数学系、燕京大学数学系经调整后,组建了新的北京大学数学力学系。1978年分设为数学系和力学系。1985年,概率统计专业独立成立了概率统计系。1995年,在数学系与概率统计系的基础上成立了北京大学数学科学学院。 数学科学学院下设五个系:数学系、概率统计系、科学与工程计算系、信息科学系和金融数学系,拥有四个本科生专业:数学与应用数学专业、统计学专业、信息与计算科学专业以及数据科学与大数据技术专业。北京大学数学研究所是教育部批准成立的研究单位,与数学科学学院紧密结合,形成院所结合的体制;数学科学学院还拥有“数学及其应用”教育部重点实验室等多个研究机构,教育部“高校数学研究与高等人才培养中心”也挂靠在数学科学学院。数学科学学院学科门类齐全,教学与科研并重,理论与应用并举,是具有重要国际影响的数学科学研究和人才培养基地。 北大数学学院暨北京国际数学研究中心拥有一支实力雄厚的师资队伍,现有教师119人,其中中科院院士7人,长江特聘教授11人,国家杰出青年基金获得者24人,他们不仅在数学研究的前沿领域上取得了杰出的成就,还长期坚持在教学岗位上,为国家培养了一批又一批高素质、高水平的创新型人才。1952年以来,数学科学学院先后为国家培养了一万多名毕业生,他们奋斗在国家建设的各条战线上,其中包括30余名两院院士。获得国家最高科技奖的吴文俊院士和王选院士是数学科学学院校友中的杰出代表。数学科学学院在2001年获得国家优秀教学成果特等奖;在教育部学科评估中,2002年、2007年、2012年北大数学均名列全国首位;2017年北大数学和统计学均获评A+并入选国家“一流学科”建设名单。 数学科学学院拥有最好的数学生源,来自全国各地的数学尖子和几乎所有取得国际数学奥林匹克竞赛金牌的中国学生均在这里学习和成长。数学科学学院全力为学生营造一流的学习环境,配备门类齐全的图书资料,充足的计算机数学实验室,覆盖面广的多种类型奖学金和科研资助。本着加强基础、重视应用、因材施教、分流培养的指导思想,学院实行全院统一招生。本科生前四学期修相同的基础课程;第四学期末,学生可以自主选择,进入所选专业方向的学习。80%以上的本科毕业生可通过免试推荐形式在国内外直接攻读硕士、博士学位,其中的半数选择出国留学;参与就业的毕业生主要从事计算机和金融保险工作。信息科学中的图像、信号处理、信息安全,金融领域中的金融模型、风险、定价、精算等都需要很强的数学功底,数学科学学院的毕业生在就业市场上备受青睐。 北京大学数学科学学院有着光荣的传统、雄厚的师资力量、良好的学术风气,她是醉心于数学科学的人们的一块净土,是从事数学科学和相关科学研究的一座殿堂,也是莘莘学子人生起跑线的首选地之一。 招生目录 学习方式 全日制 研究方向 01.代数

清华大学牛人学习数学的方法有哪些

清华大学牛人学习数学的方法有哪些 预习、听课、复习、作业的方法 1、预习的方法 预习是上课前对即将要上的数学内容进行阅读,了解其梗概,做到心中有数,以便于掌握听课的主动权。预习是独立学习的尝试,对学习内容是否正确理解,能否把握其重点、关键,洞察到隐含的思想方法等,都能及时在听课中得到检验、加强或矫正,有利于提高学习能力和养成自学的习惯,所以它是数学学习中的重要一环。 数学具有很强的逻辑性和连贯性,新知识往往是建立在旧知识的基础上。因此,预习时就要找出学习新知识所需的知识,并进行回忆或重新温习,一旦发现旧知识掌握得不好,甚至不理解时,就要及时采取措施补上,克服因没有掌握好或遗忘带来的学习障碍,为顺利学习新内容创造条件。 预习的方法,除了回忆或温习学习新内容所需的旧知识(或预备知识)外,还应该了解基本内容,也就是知道要讲些什么,要解决什么问题,采取什么方法,重点关键在哪里,等等。预习时,一般采用边阅读、边思考、边书写的方式,把内容的要点、层次、联系划出来或打上记号,写下自己的看法或弄不懂的地方与问题,最后确定听课时要解决的主要问题或打算,以提高听课的效率。在时间的安排上,预习一般放在复习和作业之后进行,即做完功课后,把下次课要学的内容看一遍,其要求则根据当时具体情况灵活掌握。如果时间允许,可以多思考一些问题,钻研得深入一些,甚至可做做练习题或习题;时间不允许,可以少一些问题,留给听课去解决的问题就多一些,不必强求一律。 2、听课的方法

听课是学习数学的主要形式。在教师的指导、启发、帮助下学习,就可以少走弯路,减少困难,能在较短的时间内获得大量系统的数 学知识,否则事倍功半,难以提高效率。所以听课是学好数学的关键。 听课的方法,除在预习中明确任务,做到有针对性地解决符合自己的问题外,还要集中注意力,把自己思维活动紧紧跟上教师的讲课,开动脑筋,思考教师怎样提出问题,分析问题,解决问题,特 别要从中学习数学思维的方法,如观察、比较、分析、综合、归纳、演绎、一般化、特殊化等,就是如何运用公式、定理,了解其中隐 含着的思想方法。 听课时,一方面理解教师讲的内容,思考或回答教师提出的问题,另一方面还要独立思考,鉴别哪些知识已经听懂,哪些还有疑问或 有新的问题,并勇于提出自己的看法。如果课内一时不可能解决, 就应把疑问或问题记下,留待自己去解决或请教老师,并继续专心 听老师讲课,切勿因一处没有听懂,思维就停留在这里,而影响后 面的听课。一般,听课时要把老师讲课的要点、补充的内容与方法 记下,以备复习之用。 3、复习的方法 复习就是把学过的数学知识再进行学习,以达到深入理解、融会贯通、精炼概括、牢固掌握的目的。复习应与听课紧密衔接、边阅 读教材边回忆听课内容或查看课堂笔记,及时解决存在的知识缺陷 与疑问。对学习的内容务求弄懂,切实理解掌握。如果有的问题经 过较长时间的思索,还得不到解决,则可与同学商讨或请老师解决。 复习还要在理解教材的基础上,沟通知识间的内在联系,找出其重点、关键,然后提炼概括,组成一个知识系统,从而形成或发展 扩大数学认知结构。 复习是对知识进行深化、精炼和概括的过程,它需要通过手和脑积极主动地开展活动才能达到,因此,在这个过程中,提供了发展 和提高能力的极好机会。数学的复习,不能仅停留在把已学的知识

【考研数学】143分牛人的重点及难点归纳辅导笔记(完全免费)

数学重点、难点归纳辅导 第一部分 集合与映射 §1.集合 §2.映射与函数 本章教学要求:理解集合的概念与映射的概念,掌握实数集合集合的表示法,函数的表示法与函数的一些基本性质。 2数列极限 §1.实数系的连续性 §2.数列极限 §3.无穷大量 §4.收敛准则 本章教学要求:掌握数列极限的概念与定义,掌握并会应用数列的收敛准则,理解实数系具有连续性的分析意义,并掌握实数系的一系列基本定理。 第三章函数极限与连续函数 §1.函数极限 §2.连续函数 §3.无穷小量与无穷大量的阶 §4.闭区间上的连续函数 本章教学要求:掌握函数极限的概念,函数极限与数列极限的关系,无穷小量与无穷大量阶的估计,闭区间上连续函数的基本性质。 第四章微分 §1.微分和导数 §2.导数的意义和性质 §3.导数四则运算和反函数求导法则 §4.复合函数求导法则及其应用 §5.高阶导数和高阶微分 本章教学要求:理解微分,导数,高阶微分与高阶导数的概念,性质及相互关系,熟练掌握求导与求微分的方法。 第五章微分中值定理及其应用 §1.微分中值定理 §2.L'Hospital法则 §3.插值多项式和Taylor公式 §4.函数的Taylor公式及其应用 §5.应用举例 §6.函数方程的近似求解 本章教学要求:掌握微分中值定理与函数的Taylor公式,并应用于函数性质的研究,熟练运用L'Hospital法则计算极限,熟练应用微分于求解函数的极值问题与函数作图问题。 第六章不定积分

§1.不定积分的概念和运算法则 §2.换元积分法和分部积分法 §3.有理函数的不定积分及其应用 本章教学要求:掌握不定积分的概念与运算法则,熟练应用换元法和分部积分法求解不定积分,掌握求有理函数与部分无理函数不定积分的方法。 第七章定积分(§1 —§3) §1.定积分的概念和可积条件 §2.定积分的基本性质 §3.微积分基本定理 第七章定积分(§4 —§6) §4.定积分在几何中的应用 §5.微积分实际应用举例 §6.定积分的数值计算 本章教学要求:理解定积分的概念,牢固掌握微积分基本定理:牛顿—莱布尼兹公式,熟练定积分的计算,熟练运用微元法解决几何,物理与实际应用中的问题,初步掌握定积分的数值计算。 第八章反常积分 §1.反常积分的概念和计算 §2.反常积分的收敛判别法 本章教学要求:掌握反常积分的概念,熟练掌握反常积分的收敛判别法与反常积分的计算。 第九章数项级数 §1.数项级数的收敛性 §2.上级限与下极限 §3.正项级数 §4.任意项级数 §5.无穷乘积 本章教学要求:掌握数项级数敛散性的概念,理解数列上级限与下极限的概念,熟练运用各种判别法判别正项级数,任意项级数与无穷乘积的敛散性。 第十章函数项级数 §1.函数项级数的一致收敛性 §2.一致收敛级数的判别与性质 §3.幂级数 §4.函数的幂级数展开 §5.用多项式逼近连续函数 本章教学要求:掌握函数项级数(函数序列)一致收敛性概念,一致收敛性的判别法与一致收敛级数的性质,掌握幂级数的性质,会熟练展开函数为幂级数,了解函数的幂级数展开的重要应用。 第十一章 Euclid空间上的极限和连续 §1.Euclid空间上的基本定理

班级中的牛人

班级中的牛人 如果把班级比作夜空,那么他就是夜空中最亮的星;如果把班级比作海洋,那么他就是海洋中璀璨的珍珠;如果把班级比作大地,那么他就是大地上最坚硬的一块石头。 那个人,顶着帅气的板寸头,即使架着一副眼镜,也挡不住他的精神气儿。他那充满智慧的目光犹如深深的潭水。 他就是这样闪闪发光又沉着稳重的一个人。在那个朝霞映天,红日如血的日子里,我们正在学习《说和做》,枯燥极了。但是,他却在一笔一画地记着笔记,丝毫不受外界的影响,他就像闻一多先生那样,做了也不说。下课后,他捧着语文书钻研起来,手中的书犹如武林秘籍般,视若珍宝。一次次语文课上的努力凝结成了次次考试的硕果。 不仅是语文,数学亦是如此,英语是如此,其他学科亦是如此,他能够宁静专一,像诸葛亮说

的一样,以学广才,以志成学。 做了不说,宁静专一,这是他的一个方面---作为求学者的方面,但最令我佩服的还是他做为运动员的那一方面。 结实高大的他有着无与伦比的优势,课前跑步时他也是默默又做得最出色的那一个。 而且,他的排球技术也十分好,从最开始的练习到后来的过关,他都是一气呵成。每次练习,他都不会偷懒,本来就有基础的他再加上这刻苦的练习,技术可谓是突飞猛进。最早他就能打到80多个,能当师父了。慕名而来的弟子很多,我也是其中一个。而最近要期末考试了,先后有七八人达到了优,其中也有人出于他的门下,他却没了动静。原来他还在练习,他已经能够站着不动打到上百个了。接着,他去李老师那儿过关。一次!只用了唯一一次机会,他就达到了优。

他就像一只鸟,想要飞得更高。"三年不飞, 一飞冲天;三年不鸣,一鸣惊人。"于是,他便 有了"一鸣惊人"这个威风无比的称号。 他是卓越的求学者,也是杰出的运动员。他有 着默默无闻的精神,有着宁静专一的性格。有着1%的资质和99%的努力。"一鸣惊人"的你是我的榜样。 你好,杨一鸣!

考研数学的牛人叶盛标老师

专业学位研究生欲摆脱山寨之名打破认同尴尬 2011年02月18日04:24人民网-人民日报我要评论(33) 字号:T|T 转播到腾讯微博 2010年9月,清华大学经济管理学院工商管理硕士研究生(论坛) 入学活动。人民图片 转播到腾讯微博 北京语言大学,几位我国首批汉语国际教育专业硕士研究生同老师在一起。段正永摄 转播到腾讯微博

转播到腾讯微博 在我国,专业学位研究生从1991年起建立,迄今已经发展近二十载。目前,己基本形成以硕士学位为主,博士、硕士、学士三个学位层次并举的专业学位体系。 从2009年开始,我国逐步加大了专业学位研究生培养的步伐,扩大招生比例、增设招生专业,到2015年,我国将形成学术型研究生和学位型研究生各占半壁江山的总体格局。 但是,针对专业学位研究生,社会公众并不十分了解,其与“学术型研究生”的区别,是否授予学位及学历,教学质量是否能够得以保障……都需要释疑解惑。本期周刊,通过深度报道、言论、图表等形式,力图让专业学位研究生为公众更为了解;通过对专家建设性意见的报道,力图推动专业学位研究生发展得更为稳健。 编者

应用统计硕士、税务硕士、国际商务硕士、保险硕士……2010年,继人们熟知的“法律硕士”、“教育硕士”、“工程硕士”等几类专业硕士之后,又有19种专业学位研究生进入研究生招生范围。 2011年,教育部就继续扩大专业学位研究生招生范围和规模问题下发通知,要求各招生单位除将招生计划的增量部分主要用来安排专业学位研究生招生外,将2010年学术型研究生招生规模数按原则上不少于5%的比例调至专业学位。有专家预测,到2015年,专业学位研究生规模占研究生总规模的比例将由现在的约30%增长到50%。也就是说,到那时,“专业学位研究生”与“学术型研究生”将各占半壁江山。 专业学位研究生,旨在改变以往研究生教育实践能力缺乏的现状,推动高水平大学面向企业和社会培养大批能够解决实际应用问题的高层次专门人才。尽管始终伴随着“质量不高”的质疑,甚至被冠以“山寨”之称,但自1991年以来一直在探索前行,如今面对国家大力发展专业学位研究生的契机,惟有政府、教育行政部门、高校、企业齐心协力,方能用高质量的人才培养结果摆脱“山寨”之名,达到预期的人才培养效果。 “我们不是山寨研究生” 打破专业学位研究生的“身份认同尴尬” 【关注】长江大学2009级农业推广专业学位硕士生武凯:当初是考研(论坛) 失利,服从调剂选择专业学位的。调剂的时候纠结了很久,周围亲戚、朋友一直在质疑,劝我慎重考虑。尤其是当我向一位硕士毕业的姐姐请教时,她想了一会儿跟我说,“嗯,跟在职硕士也还是有点不一样,你们这个叫做‘山寨’硕士吧。”虽然知道是个玩笑,但心里真的不好受,这跟普通的硕士到底有什么区别呢?将来找工作时,用人单位会承认我的学位吗? 武凯的担心、顾忌和犹豫,代表了学生、家长、社会公众长期以来对专业学位研究生的普遍认知,甚至一些教育界人士对专业学位研究生也持质疑和担忧的心态。华东师范大学高等教育研究所副教授韩映雄指出,专业学位的招考时间长期游离于全日制的学术学位硕士研究生全国入学统一考试体系之外,这使其产生“假冒”之嫌,因为一般民众只知道每年1月前后举行的入学考试是正规的硕士研究生入学考试,而大部分的专业学位研究生是在每年10月份参加入学考试。而且专业学位攻读者在培养机构内并不能得到与全日制学术学位硕士研究生同等的待遇。制度上的设计和人们的传统观念使得专业学位的学生产生了很深的“身份认同尴尬”。 华中科技大学(微博)教育科学研究院副院长别敦荣曾指出,尽管专业学位设置审批暂行办法确认了专业学位与学士型学位没有高下之分,但“两股道”区别对待的政策设计,导致专业学位的实际地位不高、社会认同度低,进而使得人们对专业学位研究生教育质量的标准产生疑惑。目前,除了临床医学、口腔医学、工商管理硕士、法律硕士和软件工程硕士等专业学位颁发学历、学位双证书之外,

数学分析上

数 学 分 析(I ) (周课时5加习题课时2)(共80课时) (1)集合与函数 (6课时) 实数概述,绝对值不等式,区间与邻域,有界集,确界原理,函数概念。 (2)数列极限 (12课时) 数列。数列极限的N -∑定义。收敛数列的性质:唯一性、有界性、保号性、不等式性质、迫敛性、有理运算。子列。数列极限存在的条件;单调有限定理、柯西收敛原理。 ????????????? ??+n n 11、STOLZ 定理。 (3)函数极限 (10课时) 函数极限概念(x x x →∞→与。瞬时函数的极限。δ-∑定义、M -∑定义)函数极限的性质:唯一性、局部有界性、局部保号性、不等式性质、迫敛性、有理运算。 函数极限存在的条件:归结原则、柯西准则。 两个重要极限:1sin lim ,)11(lim 0==+→∞→x x e x x x x 无穷小量与无穷大量及其阶的比较。 (4)函数的连续性 (14课时) 函数在一点的连续性。单侧连续性。间断点及其分类。在区间上连续的函数。连续函数的局部性质:有界性、保号性、连续函数的有理运算、复合函数的连续性。闭区间上连续函数的性质:有界性、取得最大最小值性、介值性、一致连续性。初等函数的连续性。 (5)极限与连续性(续)(15课时) 实数完备性的基本定理:区间套定理、数列的柯西收敛准则、聚点原理、致密性定理、有限覆盖定理、实数完备性基本定理的等价性。闭区间上连续函数性质的说明。实数系。压缩映射原理。 (6)导数与微分 (8课时) 引入问题(切线问题与瞬时速度问题)。导数的定义。单侧导数。导函数。导数的几何意义。和、积、商的导数。反函数的导数。复合函数的导数。初等函数的导数。 微分概念。微分的几何意义。微分的运算法则。一阶微分形式的不变性。微分在近似

MIT(麻省理工学院计算机)牛人解说数学体系

MIT(麻省理工学院计算机)牛人解说数学体系 在过去的一年中,我一直在数学的海洋中游荡,research进展不多,对于数学世界的阅历算是有了一些长进。 为什么要深入数学的世界 作为计算机的学生,我没有任何企图要成为一个数学家。我学习数学的目的,是要想爬上巨人的肩膀,希望站在更高的高度,能把我自己研究的东西看得更深广一些。说起来,我在刚来这个学校的时候,并没有预料到我将会有一个深入数学的旅程。我的导师最初希望我去做的题目,是对appearance和motion建立一个unified的model。这个题目在当今Computer Vision中 百花齐放的世界中并没有任何特别的地方。事实上,使用各种Graphical Model把各种东西联合在一起framework,在近年的论文中并不少见。 我不否认现在广泛流行的Graphical Model是对复杂现象建模的有力工具,但是,我认为它不是panacea,并不能取代对于所 研究的问题的深入的钻研。如果统计学习包治百病,那么很多“下游”的学科也就没有存在的必要了。事实上,开始的时候,我也是和Vision中很多人一样,想着去做一个Graphical Model——我的导师指出,这样的做法只是重复一些标准的流程,并没有很大的价值。经过很长时间的反复,另外一个路径慢慢被确立下来——我们相信,一个图像是通过大量“原子”的某种空间分布构成的,原子群的运动形成了动态的可视过程。微观意义下的单个原子运动,和宏观意义下的整体分布的变换存在着深刻的联系——这需要我们去发掘。 在深入探索这个题目的过程中,遇到了很多很多的问题,如何描述一个一般的运动过程,如何建立一个稳定并且广泛适用的原子表达,如何刻画微观运动和宏观分布变换的联系,还有很多。在这个过程中,我发现了两个事情: ? 我原有的数学基础已经远远不能适应我对这些问题的深入研究。 ? 在数学中,有很多思想和工具,是非常适合解决这些问题的,只是没有被很多的应用科学的研究者重视。 于是,我决心开始深入数学这个浩瀚大海,希望在我再次走出来的时候,我已经有了更强大的武器去面对这些问题的挑战。我的游历并没有结束,我的视野相比于这个博大精深的世界的依旧显得非常狭窄。在这里,我只是说说,在我的眼中,数学如何一步步从初级向高级发展,更高级别的数学对于具体应用究竟有何好处。 集合论:现代数学的共同基础

北京大学数学科学学院考研参考书目汇总

北京大学数学科学学院考研参考书目汇总 考试科目编号: 01 数学分析 02 高等代数 03 解析几何 04 实变函数 05 复变函数 06 泛函分析 07 常微分方程 08 偏微分方程 09 微分几何 10 抽象代数 11 拓扑学 12 概率论 13 数理统计 14 数值分析 15 数值代数 16 信号处理 17 离散数学 18 数据结构与算法 01 数学分析( 150 分) 考试参考书: 1. 方企勤等,数学分析(一、二、三册)高教出版社。 2. 陈纪修、於崇华、金路,数学分析(上、下册),高教出版社。 02 高等代数( 100 分) 考试参考书: 1. 丘维声,高等代数(第二版) 上册、下册,高等教育出版社,2002年, 2003年。 高等代数学习指导书(上册),清华大学出版社,2005年。 高等代数学习指导书(下册),清华大学出版社,2009年。 2. 蓝以中,高等代数简明教程(上、下册),北京大学出版社,2003年(第一版第二次印刷)。 03 解析几何( 50 分) 考试参考书: 1. 丘维声,解析几何(第二版),北京大学出版社,(其中第七章不考)。 2. 吴光磊,田畴,解析几何简明教程,高等教育出版社, 2003年。 04 实变函数( 50 分) 考试参考书:

1. 周民强,实变函数论,北京大学出版社, 2001年。 05 复变函数( 50 分) 考试参考书: 1. 方企勤,复变函数教程,北京大学出版社。 06 泛函分析( 50 分) 考试参考书: 1. 张恭庆、林源渠,泛函分析讲义(上册),北京大学出版社。 07 常微分方程( 50 分) 考试参考书: 1. 丁同仁、李承治,常微分方程教程,高等教育出版社。 2. 王高雄、周之铭、朱思铭、王寿松,常微分方程(第二版),高等教育出版社。 3. 叶彦谦,常微分方程讲义(第二版)人民教育出版社。 08 偏微分方程( 50 分) 考试参考书: 1. 姜礼尚、陈亚浙,数学物理方程讲义(第二版),高等教育出版。 2. 周蜀林,偏微分方程,北京大学出版社。 09 微分几何( 50 分) 考试参考书: 1. 陈维桓,微分几何初步,北京大学出版社(考该书第1-6章)。 2. 王幼宁、刘继志,微分几何讲义,北京师范大学出版社。 10 抽象代数( 50 分) 考试参考书: 1. 丘维声 , 抽象代数基础,高等教育出版社,2003年。 2. 聂灵昭、丁石孙,代数学引论(第一、二、三、四、七章,第八章第1、2、3节),高等教育出版社,2000年第二版。

MIT牛人解说数学体系(增加部分英文翻译和备注)

在过去的一年中,我一直在数学的海洋中游荡,research进展不多,对于数学世界的阅历算是有了一些长进。 为什么要深入数学的世界 作为计算机的学生,我没有任何企图要成为一个数学家。我学习数学的目的,是要想爬上巨人的肩膀,希望站在更高的高度,能把我自己研究的东西看得更深广一些。说起来,我在刚来这个学校的时候,并没有预料到我将会有一个深入数学的旅程。我的导师最初希望我去做的题目,是对appearance 和motion建立一个unified的model。这个题目在当今Computer Vision中百花齐放的世界中并没有任何特别的地方。事实上,使用各种Graphical Model把各种东西联合在一起framework,在近年的论文中并不少见。 我不否认现在广泛流行的Graphical Model是对复杂现象建模的有力工具,但是,我认为它不是panacea(万应灵药),并不能取代对于所研究的问题的深入的钻研。如果统计学习包治百病,那么很多“下游”的学科也就没有存在的必要了。事实上,开始的时候,我也是和Vision中很多人一样,想着去做一个Graphical Model——我的导师指出,这样的做法只是重复一些标准的流程,并没有很大的价值。经过很长时间的反复,另外一个路径慢慢被确立下来——我们相信,一个图像是通过大量“原子”的某种空间分布构成的,原子群的运动形成了动态的可视过程。微观意义下的单个原子运动,和宏观意义下的整体分布的变换存在着深刻的联系——这需要我们去发掘。 在深入探索这个题目的过程中,遇到了很多很多的问题,如何描述一个一般的运动过程,如何建立一个稳定并且广泛适用的原子表达,如何刻画微观运动和宏观分布变换的联系,还有很多。在这个过程中,我发现了两个事情: 我原有的数学基础已经远远不能适应我对这些问题的深入研究。 在数学中,有很多思想和工具,是非常适合解决这些问题的,只是没有被很多的应用科学的研究者重视。 于是,我决心开始深入数学这个浩瀚大海,希望在我再次走出来的时候,我已经有了更强大的武器去面对这些问题的挑战。 我的游历并没有结束,我的视野相比于这个博大精深的世界的依旧显得非常狭窄。在这里,我只是说说,在我的眼中,数学如何一步步从初级向高级发展,更高级别的数学对于具体应用究竟有何好处。 集合论:现代数学的共同基础 现代数学有数不清的分支,但是,它们都有一个共同的基础——集合论——因为它,数学这个庞大的家族有个共同的语言。集合论中有一些最基本的概念:集合(set),关系(relation),函数(function),等价(equivalence),是在其它数学分支的语言中几乎必然存在的。对于这些简单概念的理解,是进一步学些别的数学的基础。我相信,理工科大学生对于这些都不会陌生。

相关主题