搜档网
当前位置:搜档网 › 相似三角形导学案(九年级)

相似三角形导学案(九年级)

相似三角形导学案(九年级)
相似三角形导学案(九年级)

4.2相似三角形

[学习目标]

1. 了解相似三角形的概念,会表示两个三角形相似.

2. 能运用相似三角形的概念判断两个三角形相似.

3. 理解“相似三角形的对应角相等,对应边成比例”的性质.

[学习重点和难点]

学习重点:相似三角形的概念

学习难点:在具体的图形中找出相似三角形的对应边,写出比例式,需要具有一定分辨能力. [课前自学,课中交流]

一、合作学习,探索新知

1、将图1中△ABC 的边长缩小到原来的2

1,并画在图1中,记为△C B A ''(点'A ,'B ,'C 分别对应点A ,B ,C ). 问题讨论一:△C B A ''与△ABC 对应角之间有什么数量关系? 问题讨论二:△C B A ''与△ABC 对应边之间有什么数量关系?

1)相似三角形的定义: 若△C

B A ''与△AB

C 相似,则记△C B A '' △

ABC,读作: △C B A '' △ABC 3

)几何语言表述图1中△C B A ''与△ABC 相似: ∵∠A= ,∠B= , ∠C= C A BC =='' ∴△C B A '' △3、(1(2图1中△C B A ''与△ 二、应用新知

例1如图2,D ,E 分别是AB ,AC 边的中点,求证:△ADE ∽△ABC.

找一找:已知:如图2,图3,图4,根据3个图形,分别写出他们的对应角和对应边的比例式.

(1)△ABC ∽△ADE ,其中DE ∥BC

(2)△ABC ∽△ADE ,其中∠ADE =∠C

(3)△ABC ∽△ADE ,其中DE ∥BC

B C A B 图3A B B

例2 如图2,△ABC ∽△ADE.已知AD:DB=1:2, BC=9㎝,求DE 的长.

变式:如图5,△ABC ∽△ADE ,AD=2㎝,AB=6㎝,AC=4㎝,求AE 的长

[当堂训练] A 巩固练习:

1.下列说法正确的是:

①两个等腰三角形一定相似②两个直角三角形一定相似③两个等边三角形一定相似.④两个等腰直角三角形一定相似⑤两个全等三角形一定相似

2.如图,D 是

AB 上一点,

ABC ∽△ACD,且AD:AC=2:3, AD=4,∠ADC=65°, ∠B=43°

(1)求∠ACB, ∠ACD 的度数;

(2)写出△ABC 与△ACD 的对应边成比例的比例式,求出相似比..

3.下面两组图形中,每组的两个三角形相似,试分别确定a,x 的值.

(1)

B 中考链接:

4.(2010广东梅州市)已知ABC DEF △∽△,相似比为3,且ABC △的周长为18,则DEF △的周长为( )

A .2

B .3

C .6

D .54

C 拓展提高:

5.已知△ABC 与△DEF 相似, △ABC 的三边为2,3,4, △DEF 的最大边为8,(1)求其余两边.

(2)若改为△DEF 的一边为8呢?求其余两边.

[教学反思] [个性化设计] B A D C B B 3657070B

人教版九年级下册相似三角形之相似模型(一)学案

相似模型(一)(讲义) ??课前预习 1. 请证明以下结论: ①如图1,在△ABC中,DE∥BC,求证:△ADE∽△ABC. ②如图2,在△ABC中,∠B=∠AED,求证:△AED∽△ABC. ③如图3,在△ABC中,∠B=∠ACD,求证:△ACD∽△ABC. ④如图4,直线AB,CD相交于点O,连接AC,BD,且 AC∥BD,求证:△AOC∽△BOD. ⑤如图5,直线AB,CD相交于点O,连接AC,BD,∠B=∠C,求证:△AOC∽△DOB. ⑥如图6,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,求证:△ADB∽△CDA,△ ADB∽△CAB. 图1 图2 图3 图4 图5 图6 ??知识点睛 1. 六种相似基本模型:

DE∥BC∠B=∠AED∠B=∠ACD A型 A C∥BD∠B=∠C AD是Rt△ABC斜边上的高 X型母子型 2. 相似、角相等、比例线段间的关系: 相似往往与_______________等信息组合搭配起来使用.多个相似之间一般会通过 ___________________来转移条件.一般碰到不熟悉的线段间关系(线段乘积等)时,常需要还原成____________来观察和分析. 3. 平行特征——作平行,得相似(构造X型、A型)

? 精讲精练 1. 如图,在△ABC中,点D是边AB上的一点,∠ADC=∠ACB,AD=2,BD=6,则边AC 的长为() A.2 B.4 C.6 D.8 2. 如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,C D=4,AD=8,则AC=________, BD=_________,BC=________. 3. 如图,在△ABC中,EF∥DC,∠AFE=∠B,AE=6,ED=3,AF=8,则AC=_________, _________.

最新浙教版九年级数学上册《相似三角形3》教学设计(精品教案)

4.3 相似三角形 教学目标: 1.了解相似三角形的概念,会表示两个三角形相似. 2.能运用相似三角形的概念判断两个三角形相似. 3.理解“相似三角形的对应角相等,对应边成比例”的性质. 重点和难点: 1.本节教学的重点是相似三角形的概念 2.在具体的图形中找出相似三角形的对应边,并写出比例式,需要学生具有一定的分辨能力,是本节教学的难点. 知识要点: 1、对应角相等,对应边成比例的两个三角形叫做相似三角形. 2、相似三角形的对应角相等,对应边成比例. 3、相似三角形对应边的比,叫做两个相似三角形的相似比(或相似系数) 重要方法: 1、全等三角形是相似三角形的特殊情况,它的相似比是1. 2、相似三角形中,利用对应角寻找对应边;反过来利用对应边寻找对应角. 3、书写相似三角形时,需要把对应顶点的字母写在对应的位置上. 教学过程

一.创设情境,导入新课 1.课件出示:①国旗上的☆,②同一底片不同尺寸的照片.以上图形之间可以通过怎样的图形变换得到? 2.经过相似变换后得到的像与原像称为相似图形.那么将一个三角形作相似变换后所得的像与原像称为相似三角形 二.合作学习,探索新知 1.合作学习 如图1,在方格纸内先任意画一个△ABC,然后画出△ABC 经某一相似变换(如放大或缩小若干倍)后得到像△A ′B ′C ′(点A ′、B ′、C ′分别对应点A 、B 、C ). 问题讨论1:△A ′B ′C ′与△ABC 对应角之间有什么关系? 问题讨论2:△A ′B ′C ′与△ABC 对应边之间有什么关系? 学生相互比较得到结论:对应角相等,对应边成比例. 2.由合作学习定义相似三角形的概念 (1)相似三角形:一般地,对应角相等,对应边成比例的两个A B C A ′ B ′C ′

27.2.1相似三角形的判定导学案

27.2.1相似三角形的判定(一) 学习目标:会用符号“∽”表示相似三角形如△ABC ∽ △C B A ''' 知道当△ABC 与△C B A '''的相似比为k 时, △C B A '''与△ABC 的相似比为1/k . 理解平行线分线段成比例定理的探究过程,并掌握该定理的应用。 学习过程: 活动一:类似相似多边形,我们如何给相似三角形下定义?请用几何语言给相似三角形下定义: 活动二:相似三角形与全等三角形有何内在联系? 活动三:你知道判定三角形全等的方法有哪些?把它写出来。 类似地,判定两个三角形相似,也有简便的方法。 活动四:DE 是△ABC 的中位线,DE 与BC 有什么位置关系?你能写出一个比例式吗? B ’ C ’

活动五 (1)两条直线l 1 , l 2 被三条平行线l 3 , l 4, l 5所截, l 3 , l 4, l 5.在l 1 上截得的两条线段AB, BC 和在l 2 上 截得的两条线段DE, EF,猜想 成立吗? 如何来验证你的猜想? (2)你还能写出其他的比例式吗? (3) 归纳总结: 平行线分线段成比例定理 : 两条直线被一组________所截,所得的________ 线段成比例。 请用几何语言写出定理 (4)平行线分线段成比例定理推论 思考:1、如果把图27.2-1中l 1 , l 2两条直线相交,交点A 刚落到l 3上,如图27.2-2(1),,所得的对应线段的比会相等吗?依据是什么? L 5 L 3 L 4 A D E F H B L 2 EF DE BC AB L 1

(2)、如果把图27.2-1中l 1 , l 2两条直线相交,交点A 刚落到l 4上,如图27.2-2 (2),所得的对应线段的比会相等吗?依据是什么? 活动五: 归纳总结: 平行线分线段成比例定理推论 平行于三角形一边的直线截其他两边(或两边延 长线),所得的_______线段的比_________. 练习: 如图,在△ABC 中,DE ∥BC ,AC=4 ,AB=3,EC=1. 求AD 和BD. 活动六: 1.谈谈本节课你有哪些收获. “三角形相似的预备定理”.这个定理揭示了有三角形一边的平行线,必构成相似三角形,因此在三角形相似的解题中,常作平行线构造三角形与已知三角形相似. 2.相似比是带有顺序性和对应性的:如△ABC ∽△A ′B ′C ′的相似比 k A C CA C B BC B A AB =''=''='',那么△A ′B ′C ′∽△ABC 的相似比就是k 1 CA A C BC C B AB B A =''=''='',它们的关系是互为倒数. 四、达标测评 1.如图,△ABC ∽△AED, 其中DE ∥BC ,找出对应角并写出对应边的比例式. 2.如图,△ABC ∽△AED ,其中∠ADE=∠B ,找出对应角并写出对应边的比例式. 活动七: 活动八: 活动:

141.北师大版九年级数学上册4.6 利用相似三角形测高-导学案

4.6 利用相似三角形测高 学习目标: 1.掌握测量旗杆高度的方法; 2.通过设计测量旗杆高度的方案,学会由实物图形抽象成几何的方法,体会实际问题转化成数学模型的转化思想; 3.培养勇于探索、勇于发现、敢于尝试的科学精神。 重点:会利用相似三角形定义和判定定理计算物体实际高度。 难点 :构造相似三角形的模型 【预习案】 1. 相似三角形的性质:相似三角形的对应角_________,对应边_________; 2.相似三角形的判定:①___________________的两个三角形相似; ②________________且___________的两个三角形相似; ③______________________的两个三角形相似; 【探究案】 知识点1:利用阳光下的影子来测量旗杆的高度 操作方法:一名学生在直立于旗杆影子的顶端处测出该同学的_________和此时旗杆的_______. 点拨:把太阳的光线看成是平行的. ∵太阳的光线是_________的,∴________∥_________,∴∠AEB =∠CBD , ∵人与旗杆是________于地面的,∴∠ABE =∠CDB=_____°, ∴△_______∽△_______ ∴BD BE CD AB = 即CD=BE BD AB ? 因此,只要测量出人的影长BE ,旗杆的影长DB ,再知道人的身高AB ,就可以求出旗杆CD 的高度了. 知识点2:利用标杆测量旗杆的高度 操作方法:选一名学生为观测者,在他和旗杆之间的地面上直立一根高度已知的标杆,观测者前后调整自己的位置,使旗杆顶部、标杆顶部与眼睛恰好在____________时,分别测出他的脚与旗杆底部,以及

人教版九年级下册相似三角形数学教案

相似三角形 教学目标:使学生掌握相似三角形的判定与性质 教学重点:相似三角形的判定与性质 教学过程: 一 知识要点: 1、相似形、成比例线段、黄金分割 相似形:形状相同、大小不一定相同的图形。特例:全等形。 相似形的识别:对应边成比例,对应角相等。 成比例线段(简称比例线段):对于四条线段a 、b 、c 、d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即d c b a (或a :b= c : d ),那么,这四条线段叫做成比例线段,简称比例线段。 黄金分割:将一条线段分割成大小两条线段,若小段与大段的长度之比等于大段与全长之比,则可得出这一比值等于0·618…。这种分割称为黄金分割,点P 叫做线段AB 的黄金分割点,较长线段叫做较短线段与全线段的比例中项。 例1:(1)放大镜下的图形和原来的图形相似吗? (2)哈哈镜中的形象与你本人相似吗? (3)你能举出生活中的一些相似形的例子吗/ 例2:判断下列各组长度的线段是否成比例: (1)2厘米,3厘米,4厘米,1厘米 (2)1·5厘米,2·5厘米,4·5厘米,6·5厘米 (3)1·1厘米,2·2厘米,3·3厘米,4·4厘米 (4)1厘米, 2厘米,2厘米,4厘米。 例3:某人下身长90厘米,上身长70厘米,要使整个人看上去成黄金分割,需穿多高的高跟鞋? 例4:等腰三角形都相似吗? 矩形都相似吗? 正方形都相似吗? 2、相似形三角形的判断: a 两角对应相等 b 两边对应成比例且夹角相等

c 三边对应成比例 3、相似形三角形的性质: a 对应角相等 b 对应边成比例 c 对应线段之比等于相似比 d 周长之比等于相似比 e 面积之比等于相似比的平方 4、相似形三角形的应用: 计算那些不能直接测量的物体的高度或宽度以及等份线段 例题 1 ABCD 中,G 是BC 延长线上一点,AG 交BD 于点E ,交DC 于点F ,试找出图中所有的相似三角形 2如图在正方形网格上有6个斜三角形:a:ABC ; b: BCD c: BDE d: BFG e: FGH f: EFK ,试找出与三角形a 相似的三角形 3、在 中,AB=8厘米,BC=16厘米,点P 从点A 开始沿AB 边向点B 以2厘米每秒的速度移动,点Q 从点B 开始沿BC 向点C 以4厘米每秒的速度移动,如果P 、Q 分别从A 、B PBQ ABC 相似? B C G

相似三角形全章学案

27.1 图形的相似(第1课时)总 1 课时 一、教学目标:通过对事物的图形的观察、思考与分析,认识理解相似的图形。 二、重点难点:认识图形的相似、形成图形相似的概念。 三、学情分析:在现实世界中广泛存在着图形相似的现象,探究相似图形一些重要性质的过程,使学生更好的认识、描述形状相同的物体,体会相似图形在刻画现实世界中重要作用;在解决实际问题中,发展学生数学应用意识和合作交流能力。 四、自主探究 问题一: 1、相似图形的定义? 2、请举例说明我们生活中相似图形的实例。 问题二: 1、两个相似图形之间有什么关系? 2、思考 (1)放大镜下的图形和原来的图形相似吗? (2)人站在平面镜前看到的镜像及哈哈镜里看到的镜像,它们相似吗?为什么? 问题三:全等形与相似图形之间有什么关系? 五、尝试应用 1、下图中的哪组图形是相似图形() 2、观察图27-1-6中图形(a)—(g),其中哪些是与图形(1)、(2)、(3)相似的。

3、如图,在4×4的正方形网格上,有一△ABC 。现要求再画一△A’B’C’,使这两个三角形相似(非全等)。 六、补偿提高 1、(教材P37练习第2题变式题)观察下列各个图形,找出其中相似的图形。 2、如图所示,左侧上海名牌大众汽车的标志图案,与右侧A 、B 、C 、D 四个图形中相似的是( ) 3、下列是相似图形的有( ) A. 两个三角形 B. 两个正方形 C. 两个直角三角形 D. 两个矩形 4、如图,作出与方格纸中的图形相似的图形,使点A 与A ′对应,且所画的图形是原图形的2倍。 七、小结与作业 八、教学后记: 九、学生出勤: C B A

九年级数学上册第23章图形的相似23.3相似三角形23.3.1相似三角形教案新版华东师大版

23.3 相似三角形 23.3.1 相似三角形 1.知道相似三角形的概念. 2.能够熟练地找出相似三角形的对应边和对应角. 3.会根据概念判断两个三角形相似,能说出相似三角形的相似比,由相似比求出未知的边长. 4.掌握利用“平行于三角形一边的直线,和其它两边(或两边的延长线)相交所构成的三角形与原三角形相似”来判断两个三角形相似. 重点 掌握相似三角形的定义、表示法,并能根据定义判断两个三角形是否相似. 难点 熟练找出对应元素,在此基础上根据定义求线段长或角的度数. 一、情境引入 复习:什么是相似图形?识别两个多边形是否相似的标准是什么? 二、探究新知 教师展示多媒体,从复习引入,引导学生进行探究. 1.相似三角形的有关概念 由复习中引入,如果两个多边形的对应边成比例,对应角都相等,那么这两个多边形相似. 三角形是最简单的多边形.由此可以说什么样的两个三角形相似? 如果两个三角形的三条边都成比例,三个角对应相等,那么这两个三角形相似,如在△ABC 与△A′B′C′中,∠A =A′,∠B =B′,∠C =C′,AB A′B′=BC B′C′=AC A′C′ ,那么△ABC 与△A′B′C′相似,记作△ABC∽△A′B′C′.“∽”是表示相似的符号,读作“相似于”,这样两个三角形相似就读作“△ABC 相似于△A′B′C′”. 由于∠A =∠A′,∠B =∠B′,∠C=∠C′,所以点A 与点A′是对应顶点,点B 与点B′是对应顶点,点C 与点C′是对应顶点,书写相似时,通常把对应顶点写在对应位置上,以便比较容易找到相似三角形中的对应角、对应边.如果记AB A′B′=BC B′C′=AC A′C′ =k,那么这个比值k 就表示这两个相似三角形的相似比,相似比就是它们的对应边的比,它有顺序关系.如 △ABC∽△A′B′C′,它的相似比为k,即指AB A′B′ =k,那么△A′B′C′与△ABC 的相似比应是A′B′AB ,就不是k 了,应为多少呢?同学们想一想. 如果△ABC∽△A′B′C′,相似比k =1,你会发现什么呢?AB A′B′=BC B′C′=AC A′C′ =1,所以可得AB =A′B′,BC =B′C′,AC =A′C′,因此这两个三角形不仅形状相同,而且大小也相同,这样的三角形称之为全等三角形,全等三角形是相似三角形的特例.试问:①全等

相似三角形的判定(1)导学案

27.2.1相似三角形的判定(一) 课 型:新 授 主 备:张香玲 审 核:张 峰 时 间:2013.2 班 级: 姓 名: 【教学目标】 (1)会用符号“∽”表示相似三角形如△ABC ∽ △C B A '''; (2)知道当△ABC 与△C B A '''的相似比为k 时,△C B A '''与△ABC 的相似比为1/k . (3)理解掌握平行线分线段成比例定理 【教学重点】 理解掌握平行线分线段成比例定理及应用. 【教学难点】 掌握平行线分线段成比例定理应用. 一.学前测评: 1、相似多边形的主要特征是什么? 2、相似三角形有什么性质? 二 .合作探究: 1)在相似多边形中,最简单的就是相似三角形. 在△ABC 与△A ′B ′C ′中, 如果∠A=∠A′, ∠B =∠B ′, ∠C =∠C ′, 且 k A C CA C B BC B A AB =' '=''=''. 我们就说△ABC 与△A ′B ′C ′相似,记作△ABC∽△A ′B ′C ′,k 就是它们的相似比. 反之如果△ABC∽△A ′B ′C ′, 则有∠A=_____, ∠B=_____, ∠C=____, 且 A C CA C B BC B A AB ' '= ''=''. 2)问题:如果k=1,这两个三角形有怎样的关系? 『温馨提示』:(1)在相似多边形中,最简单的就是相似三角形。 (2)用符号“∽”表示相似三角形如△ABC ∽ △C B A '''; (3)当△ABC 与△C B A '''的相似比为k 时,△C B A '''与△ABC 的相似比为1/k . (1) 如图27.2-1),任意画两条直线l 1 , l 2,再画三条与l 1 , l 2 相交的平行线l 3 , l 4, l 5. 分别量度l 3 , l 4, l 5.在l 1 上截得的两条线段AB, BC 和在l 2 上截得的两条线段DE, EF 的长度, AB ︰BC 与DE ︰EF 相等吗?任意平移l 5 , 再量度AB, BC, DE, EF 的长度, AB ︰BC 与DE ︰EF 相等吗? (2) 问题,AB ︰AC=DE ︰( ),BC ︰AC=( )︰DF .强调“对应线段的比是否相等” (3) 归纳总结: 平行线分线段成比例定理___ _____。 『温馨提示』:平行线分线段成比例定理中相比线段同线; 3) 活动2平行线分线段成比例定理推论 思考:1、如果把图27.2-1中l 1 , l 2两条直线相交,交点A 刚落到l 3上,如图27.2-2(1),,所得的对应线段的比会相等吗?依据是什么? 2、如果把图27.2-1中l 1 , l 2两条直线相交,交点A 刚落到l 4上,如图27.2-2(2),所得的对应线段的比会相等吗?依据是什么? 3、 归纳总结: 平行线分线段成比例定理推论 _______ 小结巩固: (1) 谈谈本节课你有哪些收获.“三角形相似的预备定理”.这个定理揭示了有三角形一

北师大版九年级数学上册《相似三角形的性质》教案

《相似三角形的性质》教案 教学目标 知识与技能 1、理解掌握相似三角形周长比、面积比与相似比之间的关系;掌握定理的证明方法. 2、灵活运用相似三角形的判定和性质,解决相关问题. 过程与方法: 1、对性质定理的探究经历观察——猜想——论证——归纳的过程,培养学生主动探究、合作交流的习惯和严谨治学的态度. 2、通过实际情境的创设和解决,使学生逐步掌握把实际问题转化为数学问题,复杂问题转化为简单问题的思想方法. 3、通过例题的拓展延伸,体会类比的数学思想,培养学生大胆猜想、勇于探索、勤于思考的数学品质,提高分析问题和解决问题的能力. 情感与态度: 在学习和探讨的过程中,体验特殊到一般的认知规律;通过学生之间的交流合作,软件应用的验证,让学生体验成功的喜悦,树立学习的自信心;通过对生活问题的解决,体会数学知识在实际中的广泛应用. 教学重点 相似三角形性质定理的探索、理解及应用. 教学难点 综合应用相似三角形的性质与判定,探索三角形中面积与线段之间的关系. 教学方法与手段 探究式教学、小组合作学习、多媒体教学. 教学过程 一、创设情境,引入新课 1、如果两个三角形相似,那么它们的对应边、对应角各有什么特性? 研究三角形的问题,除了探索边和角之外,我们还经常计算它们的 周长和面积,那么相似三角形的周长和面积有什么特性呢? 2、问题情境: 某施工队在道路拓宽施工时遇到这样一个问题,马路旁原有一个面积为100平方米、周长为80米的三角形绿化地.由于马路的拓宽,绿地被削去了一个角,变成了一个梯形,原绿化地一边AB的长由原来的30米缩短成18米.现在的问题是:

被削去的部分面积有多少?周长是多少?你能解决这个问题吗? 二、实践交流,探索新知 1、做一做: 学生:将课前准备好的正方形网格中两个三角形的各边进行测量和计算. 2、想一想:你发现上面两个相似三角形的周长比和相似比有什么关系? 3、验一验:是不是任何两个相似三角形都有此关系呢?你能加以验证吗? 4、在学生思考、讨论的基础上,鼓励并引导学生分析、讨论证法,写出规范的证明过程. 三、归纳小结: 相似三角形性质定理:相似三角形的周长比等于相似比,面积比等于相似比的平方. 四、基础训练,加深理解 练一练:已知两个三角形相似,请完成下列表格: 比或周长比则要开平方. 五、综合应用,解决问题 已知:如图,DE ∥BC ,AB =30m ,BD =18m ,△ABC 的周长为80m ,面积为100m 2,求△ ADE 的周长和面积? 解析:∵DE ∥BC ∴△ADE ∽△ABC D

最新北师大版九年级数学上册《探索三角形相似的条件》教案(优质课一等奖教学设计)

《两个相似三角形的判定》教案 教学目标 1、经历三角形相似的判定方法“两边对应成比例,且夹角相等的两个三角形相似”和“三边对应成比例的两个三角形线相似”的探索过程. 2、掌握“两边对应成比例,且夹角相等的两个三角形相似”和“三边对应成比例的两个三角形线相似”的两个三角形相似的判定方法. 3、能运用上述两个判定方法判定两个三角形相似. 重点与难点 1、本节教学的重点是相似三角形的判定方法“两边对应成比例,且夹角相等的两个三角形相似”和“三边对应成比例的两个三角形线相似”及其应用. 2、例题的解答首先要选择用什么判定方法,然后利用方格进行计算,根据计算结果来判断两个三角形的三边是否对应成比例,需要学生有一定的分析、判断和计算能力,是本节教学的难点.

知识要点 三角形相似的条件: 1、有两个角对应相等的两个三角形相似. 2、两边对应成比例,且夹角相等的两个三角形相似. 3、三边对应成比例的两个三角形线相似. 重要方法 1、利用两对对应角相等证相似,关键是找出两对对应角. 2、三边对应成比例的两个三角形相似中,三边对应是有序的即:大对大,小对小,中对中. 3、两边对应成比例且夹角相等的两个三角形相似,一定要弄清边与角的位置关系.即边是指夹角的两边,角是成比例的两边的夹角. 4、在相似三角形条件(3)中,如果对应相等的角不是两条对应边的夹角,那么这两个三角形不一定相似,如在图4-3-14△ABC中,AB=AC,∠A=120°,在△A′B′C′中,A′B′=A′C′,∠A′=30°,可以说AB∶A′B′=AC∶A′C′,∠B=∠A′,

但两个三角形不相似. C 教学过程 一、复习 1、我们已经学习了几种判定三角形相似的方法? (1)平行于三角形一边直线定理 ∵DE ∥BC ,∴△ADE ∽△ABC (2)判定定理1: ∵∠A =∠A ′,∠B =∠B ′,∴ △ABC ∽△A ′B ′C ′ A B C A ′ B ′ C ′ 4-3-14

【最新】九年级数学相似三角形教案北师大版

第26课 相似三角形 〖知识点〗 相似三角形、相似三角形的判定、直角三角形相似的判定 〖大纲要求〗 1. 了解相似三角形的概念,掌握相似三角形的判定及直角三角形相似的判定; 2. 会用相似三角形证明角相等或线段成比例,或进行角的度数和线段长度的计算等 〖考查重点与常见题型〗 1. 论证三角形相似,线段的倍分以及等积式,等比式,常以论证题型 或计算题型出现; 3. 寻找构成三角形相似的条件,在中考题中常以 选择题或填空题形式出现,如:下 列所述的四组图形中,是相似三角形的个数是( ) ① 有一个角是45°的两个等腰三角形;②两个全等三角形;③有一个角是100°的两个等腰三角形;④两个等边三角形。 (A )1个 (B )2个 (C )3个 (D )4个 〖预习练习〗 1. 点P 为△ABC 的AB 边上一点(AB >AC ),下列条件中不一定能保证△ACP ∽△ABC 的是( ) (A )∠ACP =∠B (B )∠APC =∠ACB (C )AC AB =AP AC (D )PC BC =AC AB 2.下列各组的两个图形,一定相似的是( ) (A ) 两条对角线分别对应成比例的两个平行四边形 (B ) 等腰梯形的中位线把它分成的两个等腰梯形 (C ) 有一个角对应相等的两个菱形 (D ) 对应边成比例的两个多边形 3. 如图,在△ABC 中,∠BAC =90°,AD ⊥BC ,垂足 为D ,DE ⊥BC ,垂足为E ,则图中与△ADE 相似的三角 A 形个数为( ) (A )1 (B )2 (C )3 (D )4 E 4. M 在AB 上,且MB =4,AB =12,AC =16, 在AC 上有一定N ,使△AMN 与原三角形相似,则AN 的长为 5. 如图,△ABC 中,DE ∥AC ,BD =10,DA =15, A BE =12,则EC = ,DE:AC = , D S △BDE :S 梯形ADEC = B E C 考点训练 1.以下条件为依据,能判定△ABC 和△A 1B 2C 3相似的一组是( ) (A) ∠A =45°,AB =12cm,AC =15cm, ∠A ′=45°,A ′B ′=16cm,A ′C ′=25cm (B) AB =12cm,BC =15cm,AC =24cm, A ′B ′=20cm,B ′C ′=25cm,A ′C ′=32cm (C)AB =2cm,BC =15cm, ∠B =36°, A ′B ′=4cm,B ′C ′=5cm, ∠A ′=36° (D) ∠A =68°,∠B =40°∠A ′=68°,∠B ′=40° 2.如图,△ABC 中DE,DF,EG 分别平行于BC,AC,AB, 图中与△ADG 相似的三角形共有( )个 A G D C F E B

相似三角形复习课学案

相似形复习课学案 总编号:NO. 22 命题人:陈光双 审核人:初二数学组 学习目标:1.熟练掌握相似三角形的基础知识 2.灵活应用相似三角形的知识解决数学问题 重点、难点:相似三角形知识的应用 课前复习: 比例的性质 比例的基本性质 和比性质 等比性质 定义 相似三角形对应中线,对应高,对应角平分线的比等于 相似三角形 性质 相似三角形周长的比等于 相似三角形面积的比等于 1. ,两三角形相似 2. ,两三角形相似 判定 3. ,两三角形相似 直角三角形的判定方法是 课中探究: 一.基础巩固(易错点): 1. △ ABC 中,D 、E 分别是AB 、AC 上的点,且∠AED= ∠ B , 那么△ AED ∽ △ ABC ,从而 AD ( ) =DE BC 2.如图,DE ∥BC, AD:DB=2:3, 则S △ AED:S △ ABC =___. D A C B A B C D E A B C D E 第1题 第2题 第5题

3. 已知三角形甲各边的比为3:4:6, 和它相似的三角形乙的最大边为10cm , 则三角形乙的最短边为______cm. 4.等腰三角形ABC 的腰长为18cm ,底边长为6cm,在腰AC 上取点D, 使△ABC ∽ △BDC, 则DC=______. 5. 如图,D 是△ABC 一边BC 上一点,连接AD,使 △ABC ∽ △DBA 的条件是( ). A.AC:BC=AD:BD B. AC:BC=AB:AD C. AB 2=CD·BC D.AB 2=BD·BC 二·基础巩固(易漏点) 6·D 、E 分别为△ABC 的AB 、AC 上 的点,且DE ∥BC ,∠DCB= ∠ A ,把每两个相似的三角形称为一组,那 么图中共有相似三角形_______组。 7·已知菱形ABCD 的边长为8,点E 在直线AD 上,DE 等于4,连接BE 与对角线AC 相交于点N ,则 NC:AN= 三.跟踪检测: 第6题 8.如图,△ADE ∽ △ACB, 则DE:BC=_____ 第8题 9.·如图若∠1=∠2=∠3,则图中相似的三角形有( ) A 、1对 B 、2对 C 、3对 D 、4对 第9题 10、如图:DE ∥BC, AD:DB=3:4, △ADE 与 △ ABC 的周长比为 , △ABC 与四边形DBCE 的面积的比为 A B E D C A C B D E 2 733 图6 A

初中数学九年级下册《相似三角形》复习导学案

相似三角形复习学案 葛家中学 崔名宇 复习目标: 相似是解决数学中图形问题的重要的工具,也是初中数学的重点内容,因此也是中考的重要考查内容。 1.会运用三角形相似的性质与判定进行有关的计算和推理。 2.能运用三角形相似的知识解决相关的实际问题。 3.能探索解决一些与三角形相似有关的综合性题型。 一.知识要点: 1、比例、第四比例项、比例中项、比例线段; 2、比例性质: (1)基本性质: bc ad d c b a =?= ac b c b b a =?=2 (2)合比定理:d d c b b a d c b a ±=±?= (3)等比定理:)0.(≠+++=++++++? ==n d b b a n d b m c a n m d c b a 3、相似三角形定义:________________________________. 4、判定方法: ______________________________________________________________________ 5、相似三角形性质: (1)对应角相等,对应边成比例; (2)对应线段之比等于 ;(对应线段包括哪几种主要线段?) (3)周长之比等于 ; (4)面积之比等于 . 6、相似三角形中的基本图形. (1)平行型:(A 型,X 型) (2)交错型: (3)旋转型: (4)母子三角形: 二、练习: (一)、自我训练 训练1:判断 A B C D E A B C D E A B C D A B C D E D A B C

1.两个等边三角形一定相似。( ) 2.两个相似三角形的面积之比为1∶4,则它们的周长之比为1∶2。( ) 3.两个等腰三角形一定相似。( ) 4.若一个三角形的两个角分别是40°、70°,而另一个三角形的两个角分别是70°、70°,则这两个三角形不相似。( ) 训练2:填空 1.如果3=a ,12=c ,则a 与c 的比例中项是 . 2.已知, 542c b a ==,则=-+-+b c a b c a 22 . 3.如图,在△ABC 中,DE ∥BC ,AD=3,BD=2,EC=1,则AC= . 4.下列四个三角形,与左图中的三角形相似的是 . 5.如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中ABC △相 似的是 . 6.在同一时刻,身高1.6米的小强在阳光下的影长为0.8米,一棵大树的影长为4.8米,则树的高度为 . 7.如图是小明设计用手电来测量某古城墙高度的示意图,点P 处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好射到古城墙CD 的顶端C 处,已知AB ⊥BD ,CD ⊥BD ,且测得AB=1.2米,BP=1.8米,PD=12米, 那么该古城墙的高度是 . (二)、大展身手: 1. 已知2 1=b a ,则b a a +的值为__________ 2.如图,平行四边形ABCD 中,AE ∶EB=1∶2,若S △AEF =6,则S △CDF = . A . B . C . D . A B C A . B . C . D . A E D C B F

相似三角形及其应用学案

§4.6相似三角形及其应用 学习目标: 1.了解相似三角形的概念,掌握判定三角形相似的方法;会用相似三角形性质证明角相等或线段成比例,或进行角的度数和线段长度的计算等. 2.了解图形的位似及性质,能够利用作位似图形等方法将一个图形放大或缩小. 3.在利用图形的相似解决一些实际问题的过程中,进一步学习分析问题和解决问题的能力. 一、课前预习 (一)知识梳理 1.相等,成比例的两个三角形相似,相似比是1的两个三角形 是三角形。 2.相似三角形的判定:①对应相等的两个三角形相似.②两边对应成,且相等的两个三角形相似.③三边的两个三角形相似. ④如果一个直角三角形的和一条边与另一个直角三角形的斜边和一条直 角边对应成比例,那么这两个直角三角形相似.⑤平行于三角形一边的直线,截其它两边所得三角形与原三角形 . 3.相似三角形的性质 ①相似三角形的相等,成比例.②相似三角形对应的比,对应的比和对应的比都等于相似比.③相似三角形周长的比等于.面积的比等于. 4. 位似图形的定义:如果两个图形不仅是相似图形.而且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做图形,这个点叫做,这时的相似比又叫做位似比. (二)基础训练 1.如图是小明做的一个风筝的支架,AB=40cm,BP=60cm, △ABC∽△APQ的相似比是() A.3:2 B.2:3 C.2:5 D.3:5 2.位似图形上任意一对对应点到位似中心的距离之比等于________.

3.如图,D、E两点分别在△CAB上,且 DE与BC不平行, 请填上一个你认为适合的条件_________,使得△ADE∽△ABC. 4.下列说法中正确的是() A.两个直角三角形一定相似; B.两个等腰三角形一定相似 C.两个等腰直角三角形一定相似; D.两个等腰梯形一定相似 5.厨房角柜的台面是三角形,如图,如果把各边中点的连线所围成的三角形铺成黑色大理石.(图中阴影部分)其余部分铺成白色大理石,那么黑色大理石的面积与白色大理石面积的比是() A.1 4 B . 4 1 C. 1 3 D. 3 4 6. 在△ABC和△DEF中,AB=2DE,AC=2DF,∠A=∠D,如果△ABC的周长是16, 面积是12,那么△DEF的周长、面积依次为( ) A.8,3 B.8,6 C.4,3 D.4,6 7.如图,点P是Rt△ABC的斜边 BC上异于 B、C的一点, 过P点作直线截△ABC,使截得的三角形与△ABC相似, 满足这样条件的直线共有()条. A.1 B.2 C.3 D.4 二、例题精讲 例1如图,⊙O中的弦AB截另一弦CD成CE、DE两部分,已知AB=7,CE=2,DE=6,求AE长 A E D C B

相似三角形判定导学案(1)

相似三角形的判定导学案 【课前延伸】 1、全等三角形的性质:全等三角形的对应边、对应角。 全等三角形的判定方法:、、、。(用字母表市即可)2、相似三角形的性质:相似三角形的对应边、对应角。 【学习目标】 1、通过画图、测量,了解两角对应相等两三角形相似三角形的判定方法。 2、会灵活选取条件,证明两三角形相似。 3、会利用三角形相似解决简单的实际问题。 4、进一步培养学生的逻辑推理能力,能简练地写出证明过程。 【课内探究】 实验与探究: 画一个三角形,使三个角分别为60°,45°,75°。 ①同桌分别量出两个三角形三边的长度; ②同桌画的这两个三角形相似吗?换另三个角试试? 小组总结:如果一个三角形的三个角分别与另一个三角形的三个角对应相等,那么这两个三角形_______。 小组讨论:两三角形相似一定要三个角相等吗?将你小组讨论的结果填写在下面:并说明理由。 知识应用一: 例:如图所示,D,E分别是△ABC边AB,AC上的点,DE//BC。 (1)图中有哪些相等的角? (2)找出图中的相似三角形,并说明理由; (3)写出成比例的线段。 知识应用二: 例:在阳光下,为了测量学校水塔的高度,小亮走进水塔的影子里,使自己的影子刚好被水塔的影子遮住,已知小亮的身高BC=1.6米,此时,他的影子的长AC=1米,他距水塔底部E处11.5米,水塔的顶部为点D,你能由此算出水塔的高度DE 吗? 小组总结:通过以上两个例题的解答,你们发现利用相似三角形可以: 练习: 1.有一个锐角对应相等的两个直角三角形是否相似?为什么?画图说明。 2.一个角相等的两个等腰三角形是否相似?为什么?画图说明。 【课堂小结】 小组谈谈本节课的收获和疑惑

华师版九年级数学上册导学案 相似三角形

相关资料 相似三角形 一、学习目标: 1.知道相似三角形的概念;会根据概念判断两个三角形相似。 2.能说出相似三角形的相似比,由相似比求出未知的边长。 二、学习重点: 相似三角形的有关概念及表示方式。 三、自主预习 1.相似多边形的主要特征是什么?相似三角形有什么性质? 2.在相似多边形中,最简单的就是相似三角形:自学课本61页,回答下列问题: 相似用符号 来表示,读作 在ABC ?与A B C '''?中, 如果∠ A=∠ A ′, ∠ B=∠ B ′, ∠ C=∠ C ′, 且k A C CA C B BC B A AB =''=''=''。 我们就说ABC ?与'''A B C ?相似,记作_ _ __,k 就是它们的____。 3.反之如果ABC ?∽ '''A B C ?,则有∠ A=_____, ∠ B=_____, ∠ C=___ _, 且A C CA C B BC B A AB ''=''=''. 温馨提示:要把对应顶点写在对应的位置上。 4.什么叫做相似比?(或相似系数)温馨提示:相似比是有顺序的。 5.当相似比为1时,两三角形有何关系? 四、合作探究 (任务一)探究新知 做一做:如图1,△ABC 中,D 为AB 边上任一点,作DE ∥BC ,交边AC 与E ,用刻度尺和量角器量一量,判断△ADE 与△ABC 是否相似,如果相似演绎推理此过程。 图1

(任务二)例题分析 例题1:如果上图中△ADE ∽△ABC ,DE=2,BC=4,则△ADE 与△ABC 的相似比是多少?△ABC 与△ADE 的相似比是多少?点D 、E 分别是AB 、AC 的中点吗?为什么? 例题2:上图中,若DE ∥BC ,AD=2cm ,BD=3cm ,BC=4cm.求DE 的长。 (任务三)书中思考题如图,DE ∥BC ,△ADE 与△ABC 相似吗? 由此可得出结论: 平行于三角形一边的 ,和其他两边(或两边的延长线)相交所构成的 与原三角形 。 五、巩固反馈(当堂检测) 1.教材课后练习题 2.若△ADE ∽△ABC ,且 AE AC =2,则△ADE 与△ABC 相似比是 ,△ABC 与△ADE 的相似比是 。 3.下列各组三角形一定相似的是( ) A .两个直角三角形 B .两个钝角三角形 C .两个等腰三角形 D .两个等 边三角形 4.△ABC 2,△A ′B ′C ,且△ABC ∽△A B C '''?,求△A B C '''?的另两边长。 5.如图,△ ABC ∽△ AED ,其中∠ ADE=∠ B ,写出对应边的比例式。 6.如图,DE ∥ BC ,(1)如果AD=2,DB=3,求DE:BC 的值;

人教版数学九年级下册教案:相似三角形

相似三角形 教学目标:使学生掌握相似三角形的判定与性质 教学重点:相似三角形的判定与性质 教学过程: 一 知识要点: 1、相似形、成比例线段、黄金分割 相似形:形状相同、大小不一定相同的图形。特例:全等形。 相似形的识别:对应边成比例,对应角相等。 成比例线段(简称比例线段):对于四条线段a 、b 、c 、d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即(或a :b=c :d ),那么,这四条线段叫做成比例线段,简称比例线段。 黄金分割:将一条线段分割成大小两条线段,若小段与大段的长度之比等于大段与全长之比,则可得出这一比值等于0·618…。这种分割称为黄金分割,点P 叫做线段AB 的黄金分割点,较长线段叫做较短线段与全线段的比例中项。 例1:(1)放大镜下的图形和原来的图形相似吗? (2)哈哈镜中的形象与你本人相似吗? (3)你能举出生活中的一些相似形的例子吗/ 例2:判断下列各组长度的线段是否成比例: (1)2厘米,3厘米,4厘米,1厘米 (2)1·5厘米,2·5厘米,4·5厘米,6·5厘米 (3)1·1厘米,2·2厘米,3·3厘米,4·4厘米 (4)1厘米, 2厘米,2厘米,4厘米。 例3:某人下身长90厘米,上身长70厘米,要使整个人看上去成黄金分割,需穿多高的高跟鞋? 例4:等腰三角形都相似吗? 矩形都相似吗? 正方形都相似吗? 2、相似形三角形的判断: a 两角对应相等 b 两边对应成比例且夹角相等 c 三边对应成比例 3、相似形三角形的性质: a 对应角相等 b 对应边成比例 d c b a

c 对应线段之比等于相似比 d 周长之比等于相似比 e 面积之比等于相似比的平方 4、相似形三角形的应用: 计算那些不能直接测量的物体的高度或宽度以及等份线段 例题 1:如图所示, ABCD 中,G 是BC 延长线上一点,AG 交BD 于点E ,交DC 于点F ,试找出图中所有的相似三角形 2如图在正方形网格上有6个斜三角形:a :ABC ; b: BCD c: BDE d: BFG e: FGH f: EFK ,试找出与三角形a 相似的三角形 3、在 中,AB=8厘米,BC=16厘米,点P 从点A 开始沿AB 边向点B 以2厘米每秒的速度移动,点Q 从点B 开始沿BC 向点C 以4厘米每秒的速度移动,如果P 、Q 分别从A 、B 同时出发,经几秒钟 PBQ 与 ABC 相似? 4、某房地产公司要在一块矩形ABCD 土地上规划建设一个矩形GHCK 小区公园(如图),为了使文物保护区 AEF 不被破坏,矩形公园的顶点G 不能在文物保护区内。已知AB=200米,AD=160米,AF=40米,AE=60米。 (1)当矩形小区公园的顶点G 恰是EF 的中点时,求公园的面积; (2)当G 是EF 上什么位置时,公园面积最大? A N E B C K D F M G H B C G D F E A

2019版九年级数学下册6.7用相似三角形解决问题1学案新版苏科版

2019版九年级数学下册6.7用相似三角形解决问题1学案新版苏科版 课题 6.7相似三角形解决问题 (1) 课型 新授 时间 教学目标 1、了解平行投影的意义.知道在平行光线的照射下,同一时刻不同物体的物高与影长成比例. 2、通过测量活动,综合运用判定三角形相似的条件和三角形相似的性质解决问题,增强应用数学的意识,加深对判定三角形相似的条件和性质的理解. 重 点 “在平行光线的照射下,同一时刻不同物体的物高与影长成比例”的应用。 难 点 增强应用数学的意识,加深对判定三角形相似的条件和性质的理解.。 学习过程 旁注与纠错 一、课前预习与导学 得分 1、如图所示的测量旗杆的方法,已知AB 是标杆,BC 表示AB 在太阳光下的影子,?叙述错误的是 ( ) A.可以利用在同一时刻,不同物体与其影长的比相等来计算旗杆的高 B.可以利用△ABC ∽△EDB,来计算旗杆的高 C.只需测量出标杆和旗杆的影长就可计算出旗杆的高 D.需要测量出AB 、BC 和DB 的长,才能计算出旗杆的高 2、下图中的三幅图是在我国北方某 地某天上午不同时刻的同一位置拍摄的. (1)在三个不同的时刻,同一棵树的影子长度不同,请将它们按拍摄的先后顺序进行排列,并说明你的理由. (2)在同一时刻,大树和小树的影子与它们的高度之间有什么关系?与同伴 进行交流. 3、如图,一人拿着一支刻有厘米分度的小尺,站在距电线杆约有20m 的B 处,把手臂向前伸直,小尺竖直,看到尺上约10个分度恰好遮住电线杆,已知手臂E ′D?长约50cm,求电线杆EF 的高.提示:可以根据△ACD ∽△AEF, 第1题:C 第2题:(1)顺 序 为 (3)(2)(1).因为在早晨,太阳位于正东方向,此时树的影子较长,影子位于树的正西方向,在上 午,随着太阳位置的变化,树影的长度逐渐变短,树影也由正西方向 E D C B A E 'F E D C B A

相关主题