搜档网
当前位置:搜档网 › 三极管的导通条件

三极管的导通条件

三极管的导通条件

三极管的导通条件:

三极管的导通条件是:发射结加正向电压,集电结加反向电压。

发射结加正向电压,就是基极和发射极之间所加电压Ube,是按箭头的指向加PN结的电压,即硅管加0.7V;锗管加0.2V。

集电结加反向电压,就是在集电结的PN结上加反压Ube才能把基区的电荷吸引过来、。此电压较高,在手机中一般为1~3.6V。

PNP三极管的导通电压是Ue>Ub>Uc;NPN三极管为Uc>Ub>Ue。

三极管的放大区饱和区截止区如何区分

三极管的放大区饱和区截止区如何区分 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

发射极正偏集电极反偏,三极管处于放大状态;发射极正偏集电极正偏工作在饱和区;发射极反偏集电极反偏工作在截止区;发射极反偏集电极正偏工作在反向放大状态. 按老师的方法是:先假设是在饱和区,在计算C?E两端的电压,以0.3伏作为饱和区放大区的判断标准(小于则为饱和模式,大于则为放大模式);当c?e 间电压为无穷大时即为截止区!! 另一个说明:三极管的三种状态 三极管的三种状态也叫三个工作区域,即:截止区、放大区和饱和区。 (1)、截止区:三极管工作在截止状态,当发射结电压Ube小于0.6—0.7V 的导通电压,发射结没有导通集电结处于反向偏置,没有放大作用。 (2)、放大区:三极管的发射极加正向电压,集电极加反向电压导通后,Ib 控制Ic,Ic与Ib近似于线性关系,在基极加上一个小信号电流,引起集电极大的信号电流输出。 (3)、饱和区:当三极管的集电结电流IC增大到一定程度时,再增大Ib,Ic也不会增大,超出了放大区,进入了饱和区。饱和时,Ic最大,集电极和发射之间的内阻最小,电压Uce只有0.1V~0.3V,Uce

三极管在电路中的使用(超详细 有实例)

一种三极管开关电路设计 三极管除了可以当做交流信号放大器之外,也可以做为开关之用。严格说起来,三极管与一般的机械接点式开关在动作上并不完全相同,但是它却具有一些机械式开关所没有的特点。图1所示,即为三极管电子开关的基本电路图。由图可知,负载电阻被直接跨接于三极管的集电极与电源之间,而位居三极管主电流的回路上。 输入电压Vin则控制三极管开关的开启(open)与闭合(closed)动作,当三极管呈开启状态时,负载电流便被阻断,反之,当三极管呈闭合状态时,电流便可以流通。详细的说,当Vin为低电压时,由于基极没有电流,因此集电极亦无电流,致使连接于集电极端的负载亦没有电流,而相当于开关的开启,此时三极管乃胜作于截止(cut off)区。 同理,当Vin为高电压时,由于有基极电流流动,因此使集电极流过更大的放大电流,因此负载回路便被导通,而相当于开关的闭合,此时三极管乃胜作于饱和区(saturatiON)。 1 三极管开关电路的分析设计 由于对硅三极管而言,其基射极接面之正向偏压值约为0.6伏特,因此欲使三极管截止,Vin必须低于0.6伏特,以使三极管的基极电流为零。通常在设计时,为了可以更确定三极管必处于截止状态起见,往往使Vin值低于0.3伏特。(838电子资源)当然输入电压愈接近零伏特便愈能保证三极管开关必处于截止状态。欲将电流传送到负载上,则三极管的集电极与射极必须短路,就像机械开关的闭合动作一样。欲如此就必须使Vin达到够高的准位,以驱动三极管使其进入饱和工作区工作,三极管呈饱和状态时,集电极电流相当大,几乎使得整个电源电压Vcc均跨在负载电阻上,如此则VcE便接近于0,而使三极管的集电极和射极几乎呈短路。在理想状况下,根据奥姆定律三极管呈饱和时,其集电极电流应该为: 因此,基极电流最少应为:

最新最全pnp三极管

作在放大区时才用直流偏置电路,工作在开关状态时为了能可靠的工作在饱和与截止状态,不需要直流偏置电路. 另外纠正一下,三极管工作在放大区时发射结正偏,集电结反偏, 工作在饱和区时发射结与集电结都正偏, 工作在截止区时发射结反偏即可, 你说的电路中,单片机的IO口上接一个电阻与三极管基极连接,发射 极接地,集电极接负载与正电源相连.这个电阻主要是防止单片机的 输出电压过高而造成三极管基极电流过大而损坏三极管与单片机电 路,当单片机输出低电平时,三极管可靠截止,即工作在载止区,当单片 机输出高电平时,通过基极电阻的限流,三极管的基极电压将达到0.7V以上,它的CE间电压将在0.3V左右,所以两个结都正偏,三极管工作在饱和区. . 补充,你是说单片机的I/O端口接5.1K电阻接PNP三极管基极,发射极接正电源,集电极接一发光二极光并串联一个二极管接地。当单片机输出高电平时,基极电压为高电平,三极管载止,相当于三极管发射结截止,三极管载止,UCE=UCC。当单片机输入低电平时,发射结正偏,三极管导通,此时UCE=0.3V,集电极电位纸比电源电压低0.3V,而基极电位比电源电压低0.7V,所以两个结均正偏,三极管工作在饱和状态。 场效应管和三极管的功能、作用一样,可以用于放大、振荡、开关电路。 N沟道场效应管和NPN三极管类似,工作条件是在 栅极加正向极性控制电压,在漏极加正极性电源电 压,改变栅极电压就可以改变漏极与源极之间的电 流大小。 P沟道场效应管和PNP三极管类似,工作条件是在栅极加负极性控制电压,在漏极加负向极性电源电压,改变栅极电压就可以改变漏极与源极之间的电流大小。 目前应用比较广泛的是N沟道场效应管,就像三极管NPN型应用比较多一样。 1.PNP三极管导通条件是当给它通电时(通电如何通你知道么,就是E加电源电压,如5V,C极过一限流电阻接地),那么如果你给控制端即B极一个低电平,此时就可以导通,导通电压(即CE间电压)至少小于0.2V,如果此时你B极是个高电平,那你再测你的CE间电压,可能就是有比较大的压降,比如5V,那自然就不算通了。简单点理解吧,一个开关闭合以后,它两端触点即使过再大电流压降也会很小,而一个开关,它两端压降自然就为加于它两端的电压,自然就不算通了 2 截止就是BE反偏,即E>B 3 饱和线路就是CE 放大:b极提供信号(输入)c提供能量e输出常用在模电 还有一个重要的特点:Ubc在线性电路中通常为0.7v 这个性质可以稳压稳流等

深入理解三极管

晶体三极管作为一个常用器件,是构成现代电子世界的重要基石。然而,传统的教科书对其工作原理的讲述却存在有很大问题,使初学者对三极管的工作原理无法正常理解,感到别扭与迷茫。 晶体三极管原理问题的关键在于晶体三极管原理问题的关键在于::集电结为什么会反向导通?这与晶体二极管原理中强调的PN 结单向导电特性单向导电特性((反向截止反向截止))严重矛盾严重矛盾。。 三极管原理,传统讲解方法中存在的问题概括起来主要有以下三点: 1 严重割裂晶体二极管与三极管在原理上的自然联系。没有真正说明三极管集电结为何会发生反偏导通并产生Ic ?这看起来与二极管原理强调的PN 结单向导电性相矛盾。 2 不能说明放大状态下集电极电流Ic 为什么只受控于电流Ib 而与电压无关;即:Ic 与Ib 之间为什么存在着一个固定的放大倍数β关系。 3 不能说明饱和状态下,Vc 电位很弱的情况下,为什么集电结仍然会反向导通并且有反向大电流Ic 通过。 很多教科书对于这部分内容,在讲解方法上都存在有很大问题。有一些针对初、中级学者的普及性教科书,干脆采用了回避的方法,只给出结论却不讲原因。既使专业性很强的教科书,采用的讲解方法大多也存在有很值得商榷的问题。这些问题集中表现在讲解方法的切入角度不恰当,致使逻辑混乱,讲解内容前后矛盾,甚至造成讲了还不如不讲的效果,使很多初学者常常产生一头雾水的感觉。 笔者根据多年的总结思考与教学实践,对于这部分内容摸索出了一个适合于自己教学的新讲解方法,并通过具体的教学实践收到了一定效果。虽然新的讲解方法也肯定会有所欠缺,但本人还是怀着与同行共同探讨的愿望不揣冒昧把它写出来,以期能通过同行朋友的批评指正来加以完善。 一、 传统讲法及问题: 传统讲法一般分三步,以NPN 型为例(以下所有讨论皆以NPN 型硅管为例),如示意图A 。“1 发射区向基区注入电子;2 电子在基区的扩散与复合;3 集电区收集由基区扩散过来的电子。”注 1 问题1:这种讲解方法在第3步中,讲解集电极电流Ic 的形成原因时,不是着重地从载流子的性质方面说明集电结的反偏导通,从而产生了Ic ,而是极不恰当地着重地强调了Vc 的高电位作用,同时又强调基区的薄。这种强调很容易使人产生误解——以为只要Vc 足够大基区足够薄,集电结就可以反向导通,PN 结的单向导电性就会失效。这是让初学者很容易产生一系列模糊认识的根源。 这正好与三极管的电流放大原理严重地矛盾这正好与三极管的电流放大原理严重地矛盾。。三极管的电流放大原理恰恰要求在放大状态下Ic 与Vc 在数量上必须无关数量上必须无关,,Ic 只能受只能受控于控于Ib 。

三极管的学习

我想‘三极管是在饱和状态下集电极正偏’,这句话是必要条件,是三极管在饱和导通状态下得出的结果,不能用他在电路里判断。 那怎么判断三极管是宝盒导通的呢?我是这样理解的,如上图,基极电流ib=(5v(引脚高电平时)-vbe)/r22,比如算的电流为3ma,而如果三极管的β值为100,流过此三极管的集电极电流最大为200ma,此时若按照ic=βibe算得,电流为300ma,很显然大于200ma,三极管不在放大状态,此时ic已经不在随ibe线性变化,此时ic电流已饱和,基极基本无电流流过。流过ice电流大,vce间电压拉低,压差大约在0.3v左右。我是这样理解的,不知道是否正确 ----------------------------------------------------------------------- 我一直都是这么理解的。

,你上面的射随用法是不正确的,单片机的IO口带负载不好吧。正确的接法是把负载接到c极和3.3v之间。你想确定是否饱和的话,测出Ic和Vce再对比曲线图不就知道了。 其实经验之谈,给Ib提供10几毫安左右的电流,再结合不是太小的负载,一般都是工作在饱和了。

积分:86 派别: 等级:------ 来自:哈哈同志们都不会猜到我竟然把板子焊错了我把两个电容的正接在了R1和D1接点和R2和D2接点那了就出现了两个灯常亮的效果了现在两个灯闪的效果出来了我把两个电容改成1UF的时候,两个灯闪的比较快了 看你怎么用了,,,,NPN , PNP 都可以驱动,,,如果你用的是NPN,如果你驱动是5V ,,,那么你把负载放在发射极,,那么IB = 多少呢?没有了IB 也就没有了IC ,,怎么去驱动,,,但是把负载放在集电极,,,就可以驱动,,,,,, 至于为什么单片机系统中,,,都喜欢用PNP,,,因为有很多单片机的吸入电流,比输出电流更大,,,故,,

三极管当开关使用

三极管开关电路设计 一、概述 三极管除了可以当做交流信号放大器之外,也可以做为开关之用。图1所示,即为三极管电子开关的基本电路图。 图1基本的三极管开关 由图1可知,负载电阻被直接跨接于三极管的集电极与电源之间,而位居三极管主电流的回路上,输入电压V in则控制三极管开关的开启(open)与闭合(closed)动作,当三极管呈开启状态时,负载电流便被阻断,反之,当三极管呈闭合状态时,电流便可以流通。详细的说,当V in为低电压时,由于基极没有电流,因此集电极亦无电流,致使连接于集电极端的负载亦没有电流,而相当于开关的开启,此时三极管工作于截止(cutoff)区;当V in为高电压时,由于有基极电流流动,因此使集电极流过更大的放大电流,因此负载回路便被导通,而相当于开关的闭合,此时三极管工作于饱和区(saturation)。 二、三极管开关电路的分析设计 由于对硅三极管而言,其基射极接面之正向偏压值约为0.6V,因此欲使三极管截止,V in必须低于0.6V,以使三极管的基极电流为零。通常在设计时,为了可以更确定三极管必处于截止状态起见,往往使V in值低于0.3V。当然输入电压愈接近0V便愈能保证三极管开关必处于截止状态。欲将电流传送到负载上,则三极管的集电极与射极必须短路,就像机械开关的闭合动作一样。欲如此就必须使V in达到够高的准位,以驱动三极管使其进入饱和工

作区工作,三极管呈饱和状态时,集电极电流相当大,几乎使得整个电源电压Vcc 均跨在负载电阻上,如此则V CE 便接近于0,而使三极管的集电极和射极几乎呈短路。在理想状况下,根据欧姆定律,三极管呈饱和时,其集电极电流应该为: LD R CC V )(C I =饱和因此,基极电流最少应为: LD R *CC V )(C I )(B I β=β=饱和饱和………………………………………………(式1)上式表出了I C 和I B 之间的基本关系,式中的β值代表三极管的直流电流增益,对某些三极管而言,其交流β值和直流β值有着很大的差异。欲使开关闭合,则其Vin 值必须够高,以送出超过或等于(式1)式所要求的最低基极电流值。由于基极回路只是一个电阻和基射极接面的串联电路,故Vin 可由下式来求解:V 6.0B R *)(B I in V +=饱和V 6.0LD R *B R *CC V in V +β=……………………………………………………(式2)一旦基极电压超过或等于(式2)式所求得的数值,三极管便导通,使全部的供应电压均跨在负载电阻上,而完成了开关的闭合动作。 为了方便讨论,本文所介绍的三极管开关均采用NPN 三极管,当然PNP 三极管亦可以被当作开关来使用,只是比较不常见罢了。 例题1 试解释出在图2的开关电路中,欲使开关闭合(三极管饱和)所须的输入电压为何,并解释出此时之负载电流与基极电流值。 图2用三极管作为灯泡开关

三极管制作流水灯控制方法

通俗易懂的三极管工作原理 理解三极管的工作原理首先从以下两个方面来认识: 其一、制造工艺上的两个特点:(1)基区的宽度做的非常薄;(2)发射区掺杂浓度高。 其二、三极管工作必要条件是(a)在B极和E极之间施加正向电压(此电压的大小不能超过1V);(b)在C极和E极之间施加反向电压;(c) 如要取得输出必须加负载电阻。 当三极管满足必要的工作条件后,其工作原理如下: (1)基极有电流流动时。由于B极和E极之间有正向电压,所以电子从发射极向基极移动,又因为C极和E极间施加了反向电压,因此,从发射极向基极移动的电子,在高电压的作用下,通过基极进入集电极。于是,在基极所加的正电压的作用下,发射极的大量电子被输送到集电极,产生很大的集电极电流。 (2)基极无电流流动时。在B极和E极之间不能施加电压的状态时,由于C极和E极间施加了反向电压, 所以集电极的电子受电源正电压吸引而在C极和E极之间产生空间电荷区,阻碍了从发射极向集电极的电子流动,因而就没有集电极电流产生。综上所述,在晶体三极管中很小的基极电流可以导致很大的集电极电流,这就是三极管的电流放大作用。此外,三极管还能通过基极电流来控制集电极电流的导通和截止,这就是三极管的开关作用(开关特性)。参见晶体三极管特性曲线5.2图所示:晶体三极管共发射极放大原理如下图所示:A、vt是一个npn型三极管 画外音:我们可以用水龙头与闸门放水的关系,来想象或者说是理解三极管的放大原理。其示意图如下图2-20 所示

图2-20 三极管放大原理参考示意图 ①如图 2.20 (a)所示:当发射结无电压或施加电压在门限电压以下,相当于闸门关紧时,水未从水龙头底部通过水嘴流出来。此时,ec 之间电阻值无穷大,ec 之间的电流处于截止状态,或者说是开关的OFF 状态。

三极管主要参数

特征频率f T :当f= f T时,三极管完全失去电流放大功能.如果工作频率大于f T,电路将不正常工作. 工作电压/电流 用这个参数可以指定该管的电压电流使用范围. h FE 电流放大倍数. V CEO 集电极发射极反向击穿电压,表示临界饱和时的饱和电压. P CM 最大允许耗散功率. 封装形式 指定该管的外观形状,如果其它参数都正确,封装不同将导致组件无法在电路板上实现. 晶体三极管主要用于放大电路中起放大作用,在常见电路中有三种接法。为了便于比较,将晶体管三种接法电路所具有的特点列于下表,供大家参考。 名称共发射极电路共集电极电路(射极输出器)共基极电路 输入阻抗中(几百欧~几千欧)大(几十千欧以上)小(几欧~几十欧) 输出阻抗中(几千欧~几十千欧)小(几欧~几十欧)大(几十千欧~几百千欧) 电压放大倍数大小(小于1并接近于1)大 电流放大倍数大(几十)大(几十)小(小于1并接近于1) 功率放大倍数大(约30~40分贝)小(约10分贝)中(约15~20分贝) 频率特性高频差好好 应用多级放大器中间级低频放大输入级、输出级或作阻抗匹配用高频或宽频带电路及恒流源电路 三极管的三种工作状态 三极管的三种工作状态(放大、截止、饱和); 放大电路的静态、动态;直流通路、交流通路; 截止状态:当加在三极管发射结的电压小于PN结的导通电压,基极电流为零,集电极电流和发射极电流都为零,三极管这时失去了电流放大作用,集电极和发射极之间相当于开关的断开状态,我们称三极管处于截止状态。一般将IB≤0的区域称为截止区, 在图中为IB=0的一条曲线的以下部分。此时IC也近似为零。由于各极电流都基本上等于零, 因而此时三极管没有放大作用。 其实IB=0时, IC并不等于零, 而是等于穿透电流ICEO。 一般硅三极管的穿透电流小于1μA, 在特性曲线上无法表示出来。锗三极管的穿透电流约几十至几百微安。 当发射结反向偏置时, 发射区不再向基区注入电子, 则三极管处于截止状态。所以, 在截止区, 三极管的两个结均处于反向偏置状态。对NPN三极管, UBE<0, UBC<0。 放大状态:当加在三极管发射结的电压大于PN结的导通电压,并处于某一恰当的值时,三极管的发射结正向偏置,集电结反向偏置,这时基极电流对集电极电流起着控制作用,使三极管具有电流放大作用,其电流放大倍数β=ΔIc/ΔIb,这时三极管处放大状态。此时发射结正向运用, 集电结反向运用。在曲线上是比较平坦的部分, 表示当IB一定时, IC的值基本上不随UCE而变化。在这个区域内,当基极电流发生微小的变化量ΔIB时, 相应的集电极电流将产生较大的变化量ΔIC, 此时二者的关系为 ΔIC=βΔIB 该式体现了三极管的电流放大作用。 对于NPN三极管, 工作在放大区时UBE≥0.7V, 而UBC<0。 饱和导通状态:当加在三极管发射结的电压大于PN结的导通电压,并当基极电流增大到一定程度时,集电极电流不再随着基极电流的增大而增大,而是处于某一定值附近不怎么变化,这时三极管失去电流放大作用,集电极与发射极之间的电压很小,集电极和发射极之间相当于开关的导通状态。三极管的这种状态我们称之为饱和导通状态。曲线靠近纵轴附近, 各条输出特性曲线的上升部分属于饱和区。在这个区域, 不同IB值的各条特性曲线几乎重叠在一起, 即当UCE较小时, 管子的集电极电流IC基本上不随基极电流IB而变化, 这种现象称为饱和。此时三极管失去了放大作用, IC=βIB或ΔIC=βΔIB关系不成立。

三极管基本知识全归纳

1、三极管的正偏与反偏:给PN结加的电压和PN结的允许电流方向一致的叫正偏,否则就是反偏。即当P区(阳极)电位高于N区电位时就是正偏,反之就是反偏。例如NPN型三极管,位于放大区时,Uc>Ub集电极反偏,Ub>Ue 发射极正偏。总之,当p型半导体一边接正极、n型半导体一边接负极时,则为正偏,反之为反偏。 NPN和PNP主要是电流方向和电压正负不同。 NPN是用B—E的电流(IB)控制C—E的电流(IC),E极电位最低,且正常放大时通常C极电位最高,即VC>VB>VE。

PNP是用E—B的电流(IB)控制E—C的电流(IC),E极电位最高,且正常放大时通常C极电位最低,即VC发射极电压Ue,集电结反偏就是集电极电压Uc>基极电压Ub。放大条件:NPN管:Uc>Ub>Ue;PNP管:Ue>Ub>Uc。 (2)饱和区:发射结正偏、集电结正偏--BE、CE两PN结均正偏。即饱和导通条件:NPN管:Ub>Ue,Ub>Uc,PNP型管:Ue>Ub,Uc>Ub。饱合状态的特征是:三极管的电流Ib、Ic 都很大,但管压降Uce 却很小,Uce≈0。这时三极管的c、e 极相当于短路,可看成是一个开关的闭合。饱和压降,一般在估算小功率管时,对硅管可取0.3V,对锗管取0.1V。此时的,iC几乎仅决定于Ib,而与Uce无关,表现出Ib对Ic的控制作用。 (3)截止区:发射结反偏,集电结反偏。由于两个PN 结都反偏,使三极管的电流很小,Ib≈0,Ic≈0,而管压降Uce 却很大。这时的三极管c、e 极相当于开路。可以看成是一个开关的断开。 3、三极管三种工作区的电压测量 如何判断电路中的一个NPN硅晶体管处于饱和,放大,截止状态?用电压表测基极与射极间的电压Ube。 饱和状态eb有正偏压约0.65V左右,ce电压接近0V. 放大状态eb有正偏压约0.6V,ce电压大于0.6V小于电源电压. 截止状态eb电压低于0.6V,ce电压等于或接近电源.

三极管的使用方法

1.三极管工作状态的判断方法: 分析电路时,判断三极管的功能,如果能够知道该三极管三个管脚的电压和该三极管起得作用(放大还是开关),。对于NPN而言,如果Uc>Ub>Ue,该管处于放大状态,放大一定的电流,一般是在模拟电路中起了作用(此时Uce之间的电压是不确定的);如果Ub>Ue, Ub>Uc,该管处于饱和状态,c-e之间导通,其管压降为0.3-0.7V,与截止区相对立,此时该 二极管起到了开关的作用, 如图所示: 般应用在数字电路中。 3.72 12 * 饱和 3. 3 放大区截■ 止 3 区 3 区 对于PNP而言,当Ue>Ub>Uc即集电极反偏、发射极正偏,处于放大状态;当Ue>Ub 且 Uc>Ub(这时候,Uc^ Ue),即集电极和发射极都正偏,处于饱和状态。 2.三极管的使用方法: 我们经常在单片机系统中连接三极管起到开关的作用,经典电路如下图所示: 如果在单片机系统中出现三极管时,那么该三极管大多数甚至几乎全部情况下都会处于 开-关状态。因为单片机输出的都是数字量,要么是0,要么是1,不可能出现别的情况。因 此对应的三极管也要么开通,要么关断。 在上面电路中,如果按照开始时说的三极管状态的判别方法,是不行的。因为c点得工 作电压是不确定的(实际上在真正的电路中c点电压是确定的,但是从电路图中我们看不出 来)。真正的判断方法如下:当I/0引脚为高电平时,b点基极的电流是一定的,那么c点电 流也是一定的,而且是处在了三极管的饱和区,因此b点的电压为0.7v,三极管导通,贝U c 点的电压与e点压相同(比e点略大,约为0.5v,即为Uce),即OUT (输出端处于低电平)端为低电平状态。当I/0引脚为低电平时,NPN三极管断开,c-e之间不导通,那么此时 c 点(OUT)电位为高电平即VCC电压。这从而达到了用单片机引脚来控制Vcc的效果。 综上所述:当I/O为高电平,b-e之间有电压,三极管导通,c-e管压降小,OUT为低电平(Q 0.5);当I/O为低电平时,b-e之间没电压,三极管关断,c-e管压降非常大,OUT为高电平=Vcc; 上面就是NPN的使用方法。我们可以这么理解:在使用NPN时,要尽可能将e端接地,当b 端比e端至少高0.7v时,管子导通;否则管子断开。 同理,我们可以得出PNP三极管的使用电路和方法:

三极管的使用方法

1. 三极管工作状态的判断方法: 分析电路时,判断三极管的功能,如果能够知道该三极管三个管脚的电压和该三极管起得作用(放大还是开关),。对于NPN 而言,如果Uc>Ub>Ue ,该管处于放大状态,放大一定的电流,一般是在模拟电路中起了作用(此时Uce 之间的电压是不确定的);如果Ub>Ue ,Ub>Uc ,该管处于饱和状态,c-e 之间导通,其管压降为0.3-0.7V ,与截止区相对立,此时该三极管起到了开关的作用,一般应用在数字电路中。 如图所示: 对于PNP 而言,当Ue>Ub>Uc,即集电极反偏、发射极正偏,处于放大状态;当Ue>Ub 且Uc>Ub(这时候,Uc ≈Ue),即集电极和发射极都正偏,处于饱和状态。 2.三极管的使用方法: 我们经常在单片机系统中连接三极管起到开关的作用,经典电路如下图所示: ( 如果在单片机系统中出现三极管时,那么该三极管大多数甚至几乎全部情况下都会处于开-关状态。因为单片机输出的都是数字量,要么是0,要么是1,不可能出现别的情况。因此对应的三极管也要么开通,要么关断。 在上面电路中,如果按照开始时说的三极管状态的判别方法,是不行的。因为c 点得工作电压是不确定的(实际上在真正的电路中c 点电压是确定的,但是从电路图中我们看不出来)。真正的判断方法如下:当I/0引脚为高电平时,b 点基极的电流是一定的,那么c 点电流也是一定的,而且是处在了三极管的饱和区,因此b 点的电压为0.7v ,三极管导通,则c 点的电压与e 点压相同(比e 点略大,约为0.5v,即为Uce ),即OUT (输出端处于低电平)端为低电平状态。当I/0引脚为低电平时,NPN 三极管断开,c-e 之间不导通,那么此时c 点(OUT )电位为高电平即VCC 电压。这从而达到了用单片机引脚来控制Vcc 的效果。 综上所述:当I/O 为高电平,b-e 之间有电压,三极管导通,c-e 管压降小,OUT 为低电平(≈0.5);当I/O 为低电平时,b-e 之间没电压,三极管关断,c-e 管压降非常大,OUT 为高电平=Vcc ; 上面就是NPN 的使用方法。我们可以这么理解:在使用NPN 时,要尽可能将e 端接地,当b 端比e 端至少高0.7v 时,管子导通;否则管子断开。 同理,我们可以得出PNP 三极管的使用电路和方法: 放大区 12 3 截止区 3.3 3 饱和区

通俗易懂的三极管工作原理

三极管工作原理 1、晶体三极管简介。晶体三极管是p型和n型半导体的有机结合,两个pn结之间的相互影响,使pn结的功能发生了质的飞跃,具有电流放大作用。晶体三极管按结构粗分有npn型和pnp型两种类型。如图2-17所示。(用Q、VT、PQ表示)三极管之所以具有电流放大作用,首先,制造工艺上的两个特点:(1)基区的宽度做的非常薄;(2)发射区掺杂浓度高,即发射区与集电区相比具有杂质浓度高出数百倍。 2、晶体三极管的工作原理。 其次,三极管工作必要条件是(a)在B极和E极之间施加正向电压(此电压的大小不能超过1V);(b)在C极和E极之间施加反向电压(此电压应比eb间电压较高);(c)若要取得输出必须施加负载。 图2-17 三极管的构造示意图 最后,当三极管满足必要的工作条件后,其工作原理如下: (1) 基极有电流流动时。由于B极和E极之间有正向电压,所以电子从发射极向基极移动,又因为C极和E极间施加了反向电压,因此,从发射极向基极移动的电子,在高电压的作用下,通过基极进入集电极。于是,在基极所加的正电压的作用下,发射极的大量电子被输送到集电极,产生很大的集电极电流。 (2)基极无电流流动时。在B极和E极之间不能施加电压的状态时,由于C极和E极间施加了反向电压,所以集电极的电子受电源正电压吸引而在C极和E极之间产生空间电荷区,阻碍了从发射极向集电极的电子流动,因

而就没有集电极电流产生。 综上所述,在晶体三极管中很小的基极电流可以导致很大的集电极电流,这就是三极管的电流放大作用。此外,三极管还能通过基极电流来控制集电极电流的导通和截止,这就是三极管的开关作用(开关特性)。 参见晶体三极管特性曲线2-18图所示: 图2-18 晶体三极管特性曲线 3、晶体三极管共发射极放大原理如下图所示: A、vt是一个npn型三极管,起放大作用。 B、ecc 集电极回路电源(集电结反偏)为输出信号提供能量。 C、rc 是集电极直流负载电阻,可以把电流的变化量转化成电压的变化量反映在输出端。 D、基极电源ebb和基极电阻rb,一方面为发射结提供正向偏置电压,同时也决定了基极电流ib. 图2-19 共射极基本放大电路 E、cl、c2作用是隔直流通交流偶合电容。 F、rl是交流负载等效电阻。 交流通路:ui正端-cl-vtb-vtc-c2-rl-ui负端。 (1)在日常使用中采用两组电源不便,可用一组供电。

三极管的基础知识

三极管 半导体电子器件,有两个PN结组成,可以对电流起放大作用,有3个引脚,分别为集电极(c),基极(b),发射极(e).有PNP和NPN型两种,以材料分有硅材料和锗材料两种。 编辑本段概念 半导体三极管也称双极型晶体管,晶体三极管,简称三极管,是一种电流控制电流的半导体器件. 作用:把微弱信号放大成辐值较大的电信号, 也用作无触点开关. 编辑本段三极管的分类: a.按材质分: 硅管、锗管 b.按结构分: NPN 、PNP c.按功能分: 开关管、功率管、达林顿管、光敏管等. 编辑本段三极管的主要参数 a. 特征频率fT:当f= fT时,三极管完全失去电流放大功能.如果工作频率大于fT,电路将不正常工作. b. 工作电压/电流:用这个参数可以指定该管的电压电流使用范围. c. hFE:电流放大倍数. d. VCEO:集电极发射极反向击穿电压,表示临界饱和时的饱和电压. e. PCM:最大允许耗散功率. f. 封装形式:指定该管的外观形状,如果其它参数都正确,封装不同将导致组件无法在. 编辑本段判断基极和三极管的类型 先假设三极管的某极为“基极”,将黑表笔接在假设基极上,再将红表笔依次接到其余两个电极上,若两 次测得的电阻都大(约几K到几十K),或者都小(几百至几K),对换表笔重复上述测量,若测得两个阻值相反(都很小或都很大),则可确定假设的基极是正确的,否则另假设一极为“基极”,重复上述测试,以确定基极. 当基极确定后,将黑表笔接基极,红表笔笔接基它两极若测得电阻值都很少,则该三极管为NPN,反之 为PNP. 判断集电极C和发射极E,以NPN为例: 把黑表笔接至假充的集电极C,红表笔接到假设的发射极E,并用手捏住B和C极,读出表头所示C,E 电阻值,然后将红,黑表笔反接重测.若第一次电阻比第二次小,说明原假设成立. 体三极管的结构和类型 晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把正块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种, 从三个区引出相应的电极,分别为基极b发射极e和集电极c。 发射区和基区之间的PN结叫发射结,集电区和基区之间的PN结叫集电极。基区很薄,而发射区较厚,杂质浓度大,PNP型三极管发射区"发射"的是空穴,其移动方向与电流方向一致,故发射极箭头向里;NPN型三极管发射区"发射"的是自由电子,其移动方向与电流方向相反,故发射极箭头向外。发射极箭头向外。发射极箭头指向也是PN结在正向电压下的导通方向。硅晶体三极管和锗晶体三极管都有PNP型和NPN型两种类型。 三极管的封装形式和管脚识别 常用三极管的封装形式有金属封装和塑料封装两大类,引脚的排列方式具有一定的规律, 底视图位置放置,使三个引脚构成等腰三角形的顶点上,从左向右依次为e b c;对于中小功率塑料三极管按图使其平面朝向自己,三个引脚朝下放置,则从左到右依次为e b c。

分析稳压三极管的工作原理

相信谈到稳压三极管,很多从业不久或刚刚入门的设计者都会觉得比较陌生。因为在电路设计中,最常见的稳压器件为二极管,而非三极管,但实际上三极管也是拥有稳压作用的,在本文将为大家介绍关于稳压三极管电路的工作分析,通过浅显易懂的方式来帮助大家理解。 图1是一个固定稳压电路。电阻作用1是向三极管提供偏置电流,使三极管导通。2是向稳压管提供工作电流,稳压管接在基极上。所以基极的电压被稳压管稳定了。又因为三极管基极与射极之间是一个二极管,而二极管导通时两端电压是稳定的0.7V(以硅管算)。所以此电路输出电压等于稳压管稳定值减0.7V。电容的作用与稳压无关,但是在这类稳压电路中往往“顺便”用它。其作用是与三极管构成“电子滤波”电路,利用三极管的放大作用,在输出端得到扩大了hFE(三极管放大倍数)倍的滤波效果,这是接在输出端的滤波电容无法相比的。右图的电容也是此作用。 图2是一个输出可调的串联调整稳压电路。三极管V1叫调整管,起到调整输出电压作用。V2叫比较放大管。起到把取样信号与基准电压进行比较并放大后控制调整管的作用。电阻1作用是向三极管V1提供偏置电流,使三极管导通。电阻1另一个作用是向V2提供工电源。电阻2向稳压管提供工作电流。电阻3.4及W构成取样电路。稳压管给V2提供基准电压。 此电路工作原理如下:设因负载变化或输入电压波动或其它原因使输出电压升高---------经取样电路取样,V2基极电压也升高---------V2基极电流加大------V2集电极电流加大--------V2集电极电压即V1基极电压下降----------V1射极即输出电压下降------结果就是输出电压实际并没有

三极管原理全总结

z 口 p i - _ PNP 型? 1、三极管的正偏与反偏:给 PN 结加的电压和PN 结的允许电流方向一致的 叫正 偏,否则就是反偏。即当P 区邙阳极)电位高于N 区电位时就是正偏,反之 就是反偏。例如NPN 型三极管,位于放大区时,Uc>Ub 集电极反偏,Ub>Ue 发射 极正偏。总之,当p 型半导体一边接正极、n 型半导体一边接负极时,则为正偏, 反之为反偏。 NPN 是用B — E 的电流(IB )控制C — E 的电流(IC ), E 极电位最低,且正 常放大时通常C 极电位最高,即VC>VB>VE NPK 型仪 B ? NPN 和PNP 主要是电流方向和电压正负不同

PNP是用E—B的电流(IB )控制E—C的电流(IC),E极电位最高,且正常放大时通常C极电位最低,即VCWBvVE 2、三极管的三种工作状态:放大、饱和、截止 (1)放大区:发射结正偏,集电结反偏。对于NPN管来说,发射极正偏即基极电压Ub>g射极电压Ue,集电结反偏就是集电极电压Uc>基极电压Ubb放大条件:NPN管:Uc>Ub>Ue PNP管:Ue>Ub>U c (2)饱和区:发射结正偏、集电结正偏--BE、CE两PN结均正偏。即饱和导通条件:NPN管:Ub>Ue,Ub>U,PNP型管:Ue>Ub,Uc>Ub饱合状态的特征是:三极管的电流Ib、Ic都很大,但管压降Uce却很小,Uce^0。这时三极管的c、e极相当于短路,可看成是一个开关的闭合。饱和压降,一般在估算小功率管时,对硅管可取0.3V,对锗管取0.1V。此时的,iC几乎仅决定于Ib,而与Uce无关,表现出Ib对Ic的控制作用。 (3)截止区:发射结反偏,集电结反偏。由于两个PN结都反偏,使三极管的电流很小,Ib?0, Ic?0,而管压降Uce却很大。这时的三极管c、e极相当于开路。可以看成是一个开关的断开。 3、三极管三种工作区的电压测量 如何判断电路中的一个NPN硅晶体管处于饱和,放大,截止状态?用电压表测基极与射极间的电压Uba 饱和状态eb有正偏压约0.65V左右,ce电压接近0V. 放大状态eb有正偏压约0.6V,ce电压大于0.6V小于电源电压. 截止状态eb电压低于0.6V,ce电压等于或接近电源. 在实际工作中,可用测量BJT各极间电压来判断它的工作状态。NPN型硅管的典型数据是:饱和状态Ube=0.7V,Uce=0.3V;放大区Ube=0.7V;截止区Ube=0V 这是对可靠截止而言,实际上当Ube<0.5V时,即已进入截止状态。对于PNP管, 其电压符号应当相反。 截止区:就是三极管在工作时,集电极电流始终为0。此时,集电极与发射极间电压接近电源电压。对于NPN型硅三极管来说,当Ube在0?0.5V之间时,Ib很小,无论Ib怎样变化,Ic都为0。此时,三极管的内阻(Rce)很大,三极管截止。当在维修过程

三极管的认识及了解

三极管的认识及了解 导体电子器件,有两个PN结组成,可以对电流起放大作用,有3个引脚,分别为集电极(c),基极(b),发射极(e).有PNP和NPN型两种,以材料分有硅材料和锗材料两种。 1.概念: 半导体三极管也称双极型晶体管,晶体三极管,简称三极管,是一种电流控制电流的半导体器件. 作用:把微弱信号放大成辐值较大的电信号, 也用作无触点开关. 2.三极管的分类: a.按材质分: 硅管、锗管 b.按结构分: NPN 、 PNP c.按功能分: 开关管、功率管、达林顿管、光敏管等. 3.三极管的主要参数: a. 特征频率fT:当f= fT时,三极管完全失去电流放大功能.如果工作频率大于fT,电路将不正常工作. b. 工作电压/电流:用这个参数可以指定该管的电压电流使用范围. c. hFE:电流放大倍数. d. VCEO:集电极发射极反向击穿电压,表示临界饱和时的饱和电压. e. PCM:最大允许耗散功率. f. 封装形式:指定该管的外观形状,如果其它参数都正确,封装不同将导致组件无法在.

4.判断基极和三极管的类型: 先假设三极管的某极为“基极”,将黑表笔接在假设基极上,再将红表笔依次接到其余两个电极上,若两次测得的电阻都大(约几K到几十K),或者都小(几百至几K),对换表笔重复上述测量,若测得两个阻值相反(都很小或都很大),则可确定假设的基极是正确的,否则另假设一极为“基极”,重复上述测试,以确定基极. 当基极确定后,将黑表笔接基极,红表笔笔接基它两极若测得电阻值都很少,则该三极管为NPN,反之为PNP. 判断集电极C和发射极E,以NPN为例: 把黑表笔接至假充的集电极C,红表笔接到假设的发射极E,并用手捏住B和C极,读出表头所示C,E电阻值,然后将红,黑表笔反接重测.若第一次电阻比第二次小,说明原假设成立. 体三极管的结构和类型 晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN 结把正块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种, 从三个区引出相应的电极,分别为基极b发射极e和集电极c。 发射区和基区之间的PN结叫发射结,集电区和基区之间的PN结叫集电极。基区很薄,而发射区较厚,杂质浓度大,PNP型三极管发射区"发射"的是空穴,其移动方向与电流方向一致,故发射极箭头向里;NPN型三极管发射区"发射"的是自由电子,其移动方向与电流方向相反,故发射极箭头向外。发射极箭头向外。

电子电路 常识---三极管的放大区、饱和区、截止区如何区分

发射极正偏集电极反偏,三极管处于放大状态;发射极正偏集电极正偏工作在饱和区;发射极反偏集电极反偏工作在截止区;发射极反偏集电极正偏工作在反向放大状态. 按老师的方法是:先假设是在饱和区,在计算C E两端的电压,以0.3伏作为饱和区放大区的判断标准(小于则为饱和模式,大于则为放大模式);当c e 间电压为无穷大时即为截止区!! 另一个说明:三极管的三种状态 三极管的三种状态也叫三个工作区域,即:截止区、放大区和饱和区。 (1)、截止区:三极管工作在截止状态,当发射结电压Ube小于0.6—0.7V 的导通电压,发射结没有导通集电结处于反向偏置,没有放大作用。 (2)、放大区:三极管的发射极加正向电压,集电极加反向电压导通后,Ib 控制Ic,Ic与Ib近似于线性关系,在基极加上一个小信号电流,引起集电极大的信号电流输出。 (3)、饱和区:当三极管的集电结电流IC增大到一定程度时,再增大Ib,Ic 也不会增大,超出了放大区,进入了饱和区。饱和时,Ic最大,集电极和发射之间的内阻最小,电压Uce只有0.1V~0.3V,Uce

三极管的基本知识讲解

三极管的初步认识 三极管是一种很常用的控制和驱动器件,在数字电路和模拟电路中都有大量的应用,常用的三极管根据材料分有硅管和锗管两种,原理相同,压降略有不同,硅管用的较普遍,而锗管应用较少,以下以硅管为例进行讲解。三极管有 2 种类型,分别是 PNP 型和 NPN 型。先来认识一下,如下图所示。三极管一共有 3 个极,横向左侧的引脚叫做基极(base),中间有一个箭头,一头连接基极,另外一头连接的是发射极 e(emitter),剩下的一个引脚就是集电极 c(collector)。 三极管的原理 三极管有截止、放大、饱和三种工作状态。放大状态主要应用于模拟电路中,且用法和计算方法也比较复杂,我们暂时用不到。而数字电路主要使用的是三极管的开关特性,只用到了截止与饱和两种状态,所以我们也只来讲解这两种用法。三极管的类型和用法有个总结:箭头朝内 PNP,箭头朝外NPN,导通电压顺箭头过,电压导通,电流控制。三极管的用法特点,关键点在于 b 极(基极)和 e 级(发射极)之间的电压情况,对于PNP 而言,e 极电压只要高于 b 级以上(硅三极管的PN结道导通电压,如果是锗三极管,这个电压大概为),这个三极管 e 级和 c 级之间就可以顺利导通。也就是说,控制端在 b 和 e 之间,被控制端是 e 和 c 之间。同理,NPN 型三极管的导通电压是 b 极比 e 极高,总之是箭头的始端比末端高就可以导通三极管的 e 极和 c 极。这就是关于“导通电压顺箭头过,电压导通”的解释。 三极管的用法 以上图为例介绍一下三极管的用法。三极管基极通过一个 10K 的电阻接到了单片机的一个 IO口上,假定是,发射极直接接到 5V 的电源上,集电极接了一个 LED 小灯,并且串联了一个 1K 的限流电阻最终接到了电源负极 GND 上。如果由我们的程序给一个高电平 1,那么基极 b 和发射极 e 都是 5V,也就是说 e到 b 不会产生一个的压降,这个时候,发射极和集电极也就不会导通,那么竖着看这个电路在

二极管和三极管的结构与基本性能

第一节 三极管的结构与基本性能 一、理想二极管的正向导通特性 二极管对电流具有单向导通的特性,硅材料二极管的正向导通电流与正向电压之间的关系曲线如图1.1.1所示。 图1.1.1 理想二极管的正向导通特性 (一)导通电压与导通通电流之间的对应关系 二极管在正向电压为0.4V 左右时微弱导通,0.7V 左右时明显导通。导通电压与导通电流之间的变化关系是,导通电压每变化9mV ,导通电流会变化倍。 (二)二极管正向导通电压与导通电流之间的对应关系 )9(002 mV U U n n I I -?= (1.1.1) 或)18(002mV U U n n I I -?= (1.1.2) 或)(log 290 20I I mV U U n n ?+= (1.1.3) U 0为二极管正向导通时的某静态电压,U n 为二极管在U 0的基础上变化后的电压。 I 0为二极管加上正向导通电压U 0时的正向导通电流,I n 为二极管与U n 相对应的正向导通电流。 例如:某二极管的在导通电压U 0=0.700V 时,导通电流为I 0=1mA ,求导通电压分别变化到U n1=0.682V 、U n2=0.691V 、U n3=0.709V 、U n4=0.718V 时的导通电流I n1、I n2、I n3、I n4。 解:根据)9(002mV U U n n I I -?= mA mA I mV V V n 5.021)97.0682.0(1=?=-

mA mA I mV V V n 707.021)97.0691.0(2=?=- mA mA I mV V V n 414.121)97.0709.0(3=?=- mA mA I mV V V n 221)97.0718.0( 4=?=- 由此可见,只要知道二极管的某个导通电压和相对应的导通电流,就可以计算出二极管的正向导通曲线上任何一点的参数。 (三)二极管的正向导通时的动态电阻 1、动态电阻的概念 动态电阻r d 的概念指的是电压的变化量与对相应的电流变化量之比。 I U r d ??= (1.1.4) 二极管正向导通之后,既有导通电压的参数,又有相应的导通电流的参数,但正向导通电阻却不能简单地等于导通电压与导通电流之比。 例如:假设二极管的正向导通电压U 0=0.7V 、静态电流I 0=1mA ,如果认为二极管正向导通电阻就等于导通电压与导通电流之比的话,此时的电阻应当为U 0/I 0=0.7V/1mA=700Ω。照此推论,当导通电压U n =1.4V 时,相应的导通电流应当是I n =2mA 。而实际的结果是,当正向导通电压U n 达到0.718V 时(增加18mV),电流I n 就已经增加到2mA 了。 由此可见,二极管正向导通后有两种电阻: 一是直流电阻,就是正向导通电压与相对应的正向导通电流之比。 二是动态电阻,就是二极管正向导通曲线中某一点的电压微变量与相应的电流微变量之比,即该点斜率的倒数,见图1.1.1中各Q 点的不同斜率。 2、二极管正向导通后的动态电阻的粗略计算 已知Q 0点U 0=0.7V 、I 0=1mA ,Q 4点U 4=0.718V 、I 4=2mA , 则Q 0点的动态电阻:Ω≈--≈??=46.25707.0414.1691.0709.000 0mA mA V V I U r Q Q dQ Q 4点的动态电阻:Ω≈--≈??=73.12414.1828.2709.0727.044 4mA mA V V I U r Q Q dQ 3、二极管正向导通后的动态电阻的微分计算 由于二极管导通电压与电流变化是非线性关系,所以上述计算不够精确,若对)18(002mV U U n n I I -?=进行微分,可以求得n I 的导数: 根据动态电阻的定义,可知二极管动态电阻)(Ωd r 为'n I 的倒数,故有: )18(0' 02182ln mV U U n n mV I I -??= (1.1.5) )18(0'02182ln 11)(mV U U n d n mV I I r -??==Ω

相关主题