搜档网
当前位置:搜档网 › 关于两个双曲迭代函数系的乘积的研究

关于两个双曲迭代函数系的乘积的研究

关于两个双曲迭代函数系的乘积的研究
关于两个双曲迭代函数系的乘积的研究

数学实验迭代(方程求解)

实验六 迭代(方程求解) 一.实验目的:认识迭代数列,考察迭代数列的收敛性.并学会用Mathematica 系统对线性和非线性的方程组进行迭代求解. 二.实验环境:计算机,Mathematica 数学软件,Word 文档,课本。 三.实验的基本理论和方法: 给定迭代函数f(x)以及一个初值0x 利用1(),0,1,n n x f x n +==???迭代得到数列n x ,0,1,n =???.如果数列n x 收敛与某个* x ,则有**()x f x =.即* x 是方程 ()x f x =的解.由此用如下的方法求方程()0g x =的近似解。 将方程()0g x =改写为等价的方程()x f x =,然后选取一初值利用 1(),0,1,n n x f x n +==???做迭代.迭代数列n x 收敛的极限就是()0g x =的解.线 性方程组以及非线性方程组的求解与单变量的方程求解方法类似.实验内容和步骤 四.实验内容与结果 1.线性方程组 ⑴编写给定初值0x 及迭代函数()f x ,迭代n 次产生相应的序列. ⑵给函数()(2/)f x x x =+初值为0进行迭代80次所产生的迭代序列并显示. 输入程序: Iterate f_,x0_,n_Integer :Module t ,i,temp x0, AppendTo t,temp ; For i 1,i n,i ,temp f temp ;AppendTo t,temp ; t f x_: x 2x 2; Iterate f,1.,80 运行结果得:

1.,1.5,1.41667,1.41422,1.41421,1.41421, 1.41421,1.41421,1.41421,1.41421,1.41421, 1.41421,1.41421,1.41421,1.41421,1.41421, 1.41421,1.41421,1.41421,1.41421,1.41421, 1.41421,1.41421,1.41421,1.41421,1.41421,1.41421, 1.41421,1.41421,1.41421,1.41421,1.41421,1.41421, 1.41421,1.41421,1.41421,1.41421,1.41421,1.41421, 1.41421,1.41421,1.41421,1.41421,1.41421,1.41421, 1.41421,1.41421,1.41421,1.41421,1.41421,1.41421, 1.41421,1.41421,1.41421,1.41421,1.41421,1.41421, 1.41421,1.41421,1.41421,1.41421,1.41421,1.41421, 1.41421,1.41421,1.41421,1.41421,1.41421,1.41421, 1.41421,1.41421,1.41421,1.41421,1.41421,1.41421, 1.41421,1.41421,1.41421,1.41421,1.41421,1.41421 输入程序: NTIterate g_,x0_,n_Integer : Module i,var x0,t ,h, h x_Dt g x ,x; For i 1,i n,i ,AppendTo t,var ; If h var0,var N var g var h var ,20, Print"Divided by Zero after",i, "'s iterations."; Break ; t g x_:x^32; NTIterate g,1,40 运行结果得:

函数迭代

专题-----函数迭代 利用了一个函数自身复合多次,这就叫做迭代。一般地,设f :D →D 是一个函数,对任意的x ∈D ,记f (0) (x)=x ,f (1) (x)=f(x)f (2) (x)=f(f(x)),…,f (n+1) (x)=f(f (n)(x)).则称f (n)(x)为f(x)的n 次迭代,并称n 为f (n) (x)的迭代指数。 如果f (n) (x)有反函数,则记为f (-n) (x).于是迭代指数可以取所有整数. 对于一些简单的函数,它的n 次迭代是容易得到的. 若f(x)=x+c ,则f (n) (x)=x+nc. 若f(x)=x 2 ,则f (n) (x)=x 2 n . 若f(x)=ax+b ,则f(n)(x)=a n x+ a a n --11b(a ≠). 函数的迭代的理论与方法在计算数学和微分动力系统等领域中有着很重要的应用。然而,由于它的一些方法和结果是初等的,又较有趣,因而在数学竞赛中屡有出现。 ⑴观查法 例1、设f(x)=3x+2,证明:存在正整数m ,使f (100) (m)能被1988整除。 例2、 设 ).(.1 2)()(2 x f x x x f n 计算-= ⑵不动点求函数迭代: 如果x 0是)(x f 的不动点,则x 0也是)()(x f n 的不动点。这一点用数学归纳法是容易证明的。 例3、若 9319)(2+=x x f 求,)()(x f n 。 ③函数迭代应用: 在国内外数学竞赛中,不断出现一些要用到各种技巧的函数迭代和函数方程问题。主要有三个方面:(1)研究函数的性质;(2)求函数的值;(3)确定函数的解析表达式。下面通过例题来介绍解决这些问题的方法和技巧。 例4、设N 是自然数集合,k ∈N 。如果有一个函数f :N →N 是严格递增的,且对于每个n ∈N ,都有f (f (n ))=k n 。证明:对每个n ∈N ,都有 12+k k n ≤f (n )≤2 1 +k n . 例5、 设函数f (x )对所有x >0有意义,且满足下列条件: (1)对于x >0,有f (x )f [f (x )+x 1 ]=1; (2)f (x )在(0,+∞)上严格递增。 求f (1)的值。 例6 、证明:不存在函数f :R + →R + ,使得对任何正实数x 、y ,都有 (f (x ))2 ≥f (x+y)(f (x )+y). ① 例7、设Q + 是全体正有理数集.试作一个函数f :Q + →Q + ,使得对一切x ,y ∈Q + ,都有 f (xf (y ))= y x f ) (. ①

简单复合函数求导

简单复合函数的导数 一、基础知识梳理: (一)常用的求导公式 11.(),'()0;2.(),'();3.()sin ,'()cos ;4.()cos ,'()sin ;5.(),'()ln (0);6.(),'();1 7.()log ,'()(0,1); ln 8.n n x x x x a f x c f x f x x f x nx f x x f x x f x x f x x f x a f x a a a f x e f x e f x x f x a a x a -========-==>====>≠公式若则公式若则公式若则公式若则公式若则公式若则公式若则且公式若1()ln ,'();f x x f x x == 则 (二)复合函数的求导数公式 若u=u(x),v=v(x)在x 处可导,则 2 )()()()(v v u v u v u u c cu v u v u v u v u v u '-'='' =''+'='?'±'='± (三)复合函数求导法则 1、二重复合:若)(u f y =, )(x u φ= 且)(x u φ=在点x 处可导。 则)()('?'='x u f y φ 2、多次复合函数求导法则类推 二、典型例题分析: 例1、求下列函数的导数; 1)、3 (23)y x =- 2)、ln(51)y x =+

练习:求下列函数的导数 1)、2 (23)y x =+ 2)、3 (13)y x =- 例2、求下列函数的导数; 1)、1 31 y x = - 2)、cos(12)y x =- 练习:求导数; 1)、1ln y x = 2)、2x y e = 3)、求曲线sin 2y x =在点P (,0π)处的切线方程。 例题3 已知(5)5,'(5)3,(5)4,'(5)1f f g g ==== ,根据下列条件 求(5)h 及'(5)h 1)、()3()2()h x f x g x =+ 2)、 ()()()1h x f x g x =+ 3)、()2 ()() f x h x g x +=

简单复合函数的导数

简单复合函数的导数 1. 函数f(x)=cos(?2x)的导函数是( ) A.2cos2x B.?2cos2x C.2sin2x D.?2sin2x 2. 已知函数f(x)=e2x+1?3x,则f′(0)=( ) A.0 B.?2 C.2e?3 D.e?3 3. 设函数f(x)=?cos x?x4的导函数为g(x),则|g(x)|的图象大致是( ) A. B. C. D. 4. 设f(x)=sin x cos x,则f(x)在点(π 6,f(π 6 ))处的切线的斜率为( ) A.1 2B.√3 2 C.?1 2 D.?√3 2 5. 函数f(x)=ln x x ,则f′(e)值为( ) A.0 B.1 C.1 e D.1 e2 6. 若函数f(x)=(2x?x2)e x的导数为f′(x),则f′(x)=() A.2(x+1)e x B.(2?x2)e x C.(2+x?x2)e x D.2(x?1)e x 7. 已知函数f(x)=x3?2x2+x?3,则f′(2)=( ) A.?1 B.5 C.4 D.3 8. 已知函数,则的导函数() A. B. C. D. 9. 函数y=x2sin x的导函数为________. 10. 函数f(x)的导数为f′(x),且f(x)=x2+2f′(0)x+tan x,则f′(0)+f(0)=________. 11. 设函数f(x)=x2+1 e x . (1)求f(x)的导数f′(x);

(2)求曲线y=f(x)在点(0,f(0))处的切线方程. 12. 求下列函数的导数: (1)f(x)=x3+6x?2 ; x (2)f(x)=cos x ; e x x. (3)f(x)=(x?1)2log 2 13. 已知函数f(x)=(2x?1)2+5x. (1)求f′(x); (2)求曲线y=f(x)在点(2,19)处的切线方程.14. 分别求下列函数的导数. (1)y=e x ; x (2)y=(2x2?1)(2x+1)+2sin x?cos x.

高一数学竞赛讲座2函数方程与函数迭代

函数方程与函数迭代 函数方程问题一直是各国重大竞赛中的热点问题,以IMO 为例,在已进行的四十七届竞赛的试题中,有30多道是函数方程的试题,几乎是每届一题.在我国冬令营与国家集训队的测试题中,函数方程问题也是屡见不鲜的.究其原因,它往往是给出较弱的条件,却要从中得出甚强的结论(一般是要直接求出表达式). 【基础知识】 表示某一类(或某一个)函数所具有的一定性质的关系式叫做函数方程(其中()f x 为未知函数).如果一个函数对其定义域内变量的一切值均满足所给的方程,则称()f x 为这个函数方程的解.寻求函数方程的解或证明函数方程无解的过程,就是解函数方程. 我们粗略地归纳其典型的解题方法,主要可以分成以下几类: 1.换元法: 2.解方程(组)法 3.待定系数法 4.代值减元法 当所给的函数方程中变量不止一个时,和普通方程一样,求解时首先要设法减少变量个数,代值减元就是一种减少变量的方法,它通过适当地对自变量赋于特殊值,从而简化方程,逐步靠近未知结果,最终解决问题. 5.柯西法 先求出对于自变量取所有正整数的值时函数方程的解具有的形式,然后依次证明对自变量取整数值,有理数值以及取实数值时函数方程的解仍具有这种形式,从而得到方程的解.这里我们给出一个定理: 柯西函数方程的解定理:若()f x 是单调(或连续)函数,且满足()()()f x y f x f y +=+ (,),x y R ∈则()(1).f x xf =(我们将此定理的证明放于例题中进行讲解.) 6.递归法 借助数列对函数方程加以研究的方法.设()f n 是定义在R +上的函数,如果存在递推关系S 和初始条件1(1),f a =当知道(1),(2),,()f f f n 的值后,由S 可以惟一确定(1)f n +的值,我们称()f n 为递归函数.递推法主要解决递归函数问题. 7.不动点法 一般地,设函数()f x 的定义域为D ,若存在0x D ∈,使00()f x x =成立,则称0x 为()f x 的不动点,或称00(,)x x 为函数()y f x =图象的不动点. 对于一些简单的函数,利用不动点,把函数变形后再迭代,最后利用数学归纳法证明,往往会使算法简单些. 【典例精析】 【例1】已知11()(),x x f x f x x --+=求().f x 〖分析〗令 1,x t x -=则1,1x t =-再令1 ,1y t =-则1,y t y -=因此可以将所得三个等式看成是关于11 (),(),()1x f x f f x x --的三个方程,便可解得().f x 解:设1,x t x -=则1,1x t =-代入原式,得11()(),11f f t t t +=--即11 ()()1,11f f x x x +=+-- ○ 1 设1,1t x = -则代入原式,得111()()1.1t t f f t t t --+=+-即1121()(),1x x f f x x x --+=- ○2 将○1○2与原方程联立,解得321 ().2(1) x x f x x x --+= - 〖说明〗如何换元才能将已知的函数方程转化为可以求解的方程组,是一个具有技巧性的问题,它需要分

三角函数公式与双曲函数

公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三:任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六:π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα

诱导公式记忆口诀奇变偶不变,符号看象限。“奇、偶”指的是整数n的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n·(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。一全正;二正弦;三两切;四余弦这十二字口诀的意思就是说:第一象限内任何一个角的四种三角函数值都是“+”;第二象限内只有正弦是“+”,其余全部是“-”;第三象限内只有正切和余切是“+”,其余全部是“-”;第四象限内只有余弦是“+”,其余全部是“-”。 编辑本段其他三角函数知识 同角三角函数的基本关系式 倒数关系 tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 商的关系 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系 sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α) 同角三角函数关系六角形记忆法 构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。 倒数关系 对角线上两个函数互为倒数; 商数关系 六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。(主要是两条虚线两端的三角函数值的乘积)。由此,可得商数关系式。 平方关系 在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。 两角和差公式

数学选择性必修二 第五章 5.2.3 简单复合函数的导数

5.2.3简单复合函数的导数 学习目标 1.进一步运用导数公式和导数运算法则求函数的导数.2.了解复合函数的概念,掌握复合函数的求导法则. 知识点复合函数的导数 1.复合函数的概念 一般地,对于两个函数y=f(u)和u=g(x),如果通过中间变量u,y可以表示成x的函数,那么称这个函数为函数y=f(u)和u=g(x)的复合函数,记作y=f(g(x)). 思考函数y=log2(x+1)是由哪些函数复合而成的? 答案函数y=log2(x+1)是由y=log2u及u=x+1两个函数复合而成的. 2.复合函数的求导法则 一般地,对于由函数y=f(u)和u=g(x)复合而成的函数y=f(g(x)),它的导数与函数y=f(u),u=g(x)的导数间的关系为y′x=y′u·u′x,即y对x的导数等于y对u的导数与u对x的导数的乘积. 1.y=cos 3x由函数y=cos u,u=3x复合而成.(√) 2.函数f(x)=sin(2x)的导数为f′(x)=cos 2x.(×) 3.函数f(x)=e2x-1的导数为f′(x)=2e2x-1.(√) 一、求复合函数的导数 例1求下列函数的导数: (1)y=1 (1-3x)4 ; (2)y=cos(x2); (3)y=log2(2x+1); (4)y=e3x+2. 解(1)令u=1-3x,则y=1 u4=u -4, 所以y′u=-4u-5,u′x=-3. 所以y′x=y′u·u′x=12u-5= 12 (1-3x)5 .

(2)令u =x 2,则y =cos u , 所以y ′x =y ′u ·u ′x =-sin u ·2x =-2x sin(x 2). (3)设y =log 2u ,u =2x +1, 则y x ′=y u ′u x ′=2u ln 2=2 (2x +1)ln 2. (4)设y =e u ,u =3x +2, 则y x ′=(e u )′·(3x +2)′ =3e u =3e 3x + 2. 反思感悟 (1)求复合函数的导数的步骤 (2)求复合函数的导数的注意点:①分解的函数通常为基本初等函数;②求导时分清是对哪个变量求导;③计算结果尽量简洁. 跟踪训练1 求下列函数的导数: (1)y = 1 1-2x ; (2)y =5log 2(1-x ); (3)y =sin ????2x +π3. 解 (1)() 12 =12,y x -- 设y =12 u -,u =1-2x , 则y ′x =()1212u 'x '?? - ???- ()32212u -?? -? ??? =- ()32 =12x .- - (2)函数y =5log 2(1-x )可看作函数y =5log 2u 和u =1-x 的复合函数, 所以y ′x =y ′u ·u ′x =5(log 2u )′·(1-x )′ = -5u ln 2=5 (x -1)ln 2 .

双曲函数与三角函数

双曲函数 王希 对之前在双曲函数的来历是什么,与三角函数有什么关系? - 数学问题的回答不太满意,故在此重新撰文。尽我所能全面具体详细地介绍双曲函数相关的方方面面,希望它能成为最好的讲解双曲函数的文章。 除了第七部分,高中生都应该可以看懂,因此我不希望大家回复「不明觉厉」,而是看懂它并回复「受益匪浅」。 我希望想了解双曲函数的知友看了我的文章都能有所收获。 一、发展历史 双曲函数的起源是悬链线,首先提出悬链线形状问题的人是达芬奇。他绘制《抱银貂的女人》时曾仔细思索女人脖子上的黑色项链的形状,遗憾的是他没有得到答案就去世了。 时隔170年之久,著名的雅各布·伯努利在一篇论文中又提出了这个问题,并且试图去证明这是一条抛物线。事实上,在他之前的伽利略和吉拉尔都猜测链条的曲线是抛物线。 一年之后,雅各布的证明毫无进展(废话,证明错的东西怎么会有进展)。而他的弟弟约翰·伯努利却解出了正确答案,同一时期的莱布尼茨也正确的给出了悬链线的方程。他们的方法都是利用微积分,根据物理规律给出悬链线的二次微分方程然后再求解。 18世纪,约翰·兰伯特开始研究这个函数,首次将双曲函数引入三角学;19世纪中后期,奥古斯都·德·摩根将圆三角学扩展到了双曲线,威廉·克利福德则使用双曲角参数化单位双曲线。至此,双曲函数在数学上已经占有了举足轻重的地位。 19世纪有一门学科开始了全面发展——复变函数。伴随着欧拉公式的诞生,双曲函数与三角函数这两类看起来截然不同的函数获得了前所未有的统一。 二、函数定义 在讲双曲函数的定义之前,我们先看一看三角函数的定义。如图所示:

在实域内,三角函数的值是通过单位圆和角终边上三角函数线的长度定义的。当然这个「长度」是有正负的。 同理,双曲函数的值也是通过双曲线和角终边上的双曲函数线的长度定义的。如图: 具体的定义为 , , 。 三、函数性质 和对应的三角函数性质十分类似,但又有一定的区别。

方程求根的迭代法

§4.1 引 言 绪论中讲到方程求根得二分法,但二分法收敛速度慢,有必要掌握新的方法。 §4.1.1迭代法的思想 迭代法是一种逐次逼近法,使用某个固定公式(迭代公式)反复校正,逐步精确,直到满足精度。 迭代法求根分两步: 1) 猜测初值 2)迭代 如求解初值问题00' )(),,(y x y y x f y ==用梯形公式 111[(,)(,)2 n n n n n n h y y f x y f x y +++≈+ + (1) 看作关于1+n y 的函数方程,按欧拉公式提供猜测值),() 0(1n n n n y x hf y y +=+,代入(1)得 )],(),([2 ) 0(11) 1(1+++++ =n n n n n n y x f y x f h y y 若) 1(1+n y 仍不满足要求,则将它代入(1)式,继续得到校正值) 2(1+n y ,写成迭代公式 )],(),([2 ) (11) 1(1 k n n n n n k n y x f y x f h y y ++++++ = (2) 一般地,为了求一元非线性方程0)(=x f 的根,可以先将其转换为如下的等价形式 ()x x ?= (3) 式(3)中连续函数()x ?称为迭代函数,其右端含未知数,不能直接求解。先用根的某个猜测值0x 代入(3),构造迭代公式:()k k x x ?=+1。如果迭代值k x 有极限,则称迭代收敛,极限值k k x x ∞ →=lim * 就是方程(3)的根。 几何意义P127图4-1 为使迭代法有效,必须保证它的收敛行,()x ?满足什么条件,才能保证收敛?以最简单的线性迭代()d kx x +=?,可以看出收敛的充分必要条件()1' <=k x ?。几何意义P127 图4-2,3,4,5。 §4.1.3 压缩映像原理 设* x 是方程()x x ?=的根,则由微分中值定理 ))(()()(* '*1* k k k x x x x x x -=-=-+ε???,如果存在10<≤L ,使得 ],[b a x ∈有() k k x x L x x L x -≤-?≤+* 1*' ? ,则迭代误差0e L e k k ≤,由于10<≤L , 故0→k e ,即迭代收敛。

函数与数列的迭代

函数与数列的综合解题策略: 1..在数列}{n a 中11=a ,8 1221n n a a +=+,求证:当1>n 时,211<<<+n n a a 2.我们知道当1≥a 时函数ax x x f +-=)2ln()(在开区间内为增函数。当10<-+++1124 1 (ii)若21521222-<<≤+n n a a ,求证:2 151212->>+-n n a a (2)当1-=c 时,已知数列}{n a 的前n 项和为n S ,是否存在整数q p ,使得p n S q n ≤≤ 求

函数方程和函数迭代问题

第四讲函数方程和函数迭代问题 在国内外数学竞赛中函数方程和函数迭代问题备受命题者的青睐形式灵活多变,结构变化无穷,大致可分为如下三类:⑴探求函数的解析式;⑵探求函数的值⑶讨论函数的性质. 一. 探求函数的解析式 1,换元法 换元法的解题基本思想是:将函数方程中自变量适当代换成别的自变量(应注意力求不改变函数的定义域),得到一个或几个新的函数方程,然后将它们与原方程联立,通过消元求得原函数方程的解. 例1 解函数方程 f(x)+f(x x 1-)=1+x (x ≠0,x ≠1) 例2 设f(x)是定义在实数集上的实值函数,且满足af(x-1)+bf(1-x)=cx,其中a,b,c 为实常数,求f(x) 2.赋值法 赋值法基本思想是:对自变量多于一个的函数方程,将其中一个或几个自变量用一些特殊值赋进去代入原方程,从而简化函数方程,以达到求解的目的. 例3 已知定义在R 的函数满足 ⑴ f(x 1+x 2)+f(x 1-x 2)=2f(x 1)cos2x 2+4asin 2x 2 (x 1,x 2∈R,a 为常数) ⑵ f(0)=f( 4 π)=1 ⑶ 当x ∈[0, 4π]时,f(x)≤2 试求⑴函数f(x)的解析式; ⑵常数a 的取值范围. 例4 f(x)是定义于非负实数集上且取非负实数值的函数,求所有满足下列条件的f(x) ⑴ f[xf(y)]f(y)=f(x+y); ⑵ f(2)=0 ⑶ 当0≤x <2 f(x)≠0 3递推法 例5已知f(x)是定义在自然数集上的函数,满足f(1)=2 3,且对任意x,y ∈N,有 f(x+y)=(1+1 +x y )f(x)+(1+1+y x )f(y)+x 2y+xy+xy 2,求f(x) 4. 柯西法 柯西首先讨论了一个很重要的函数方程f(x+y)=f(x)+f(y)的解法,由此解决了一系列其他函数方程.他的方法是,依次求出所有自然数值,整数值,有理数值,直至所有实数值的函数方程的解 例6 设f(x) 是定义在有理数集上的函数,且对任意的有理数x,y 有 f(x+y)=f(x)+f(y), 试求f(x) 5, 待定系数法 这一方法的其本思想是:当f(x)是多顸式时,可设f(x)=a 0x n +a 1x n-1+….+a n (a 0≠0),代入函数方程的两端,然后比较方程两端x 最高次幂的指数和x 同次幂的系数,便可得出关于n 及a 0 a 1…a n .的方程组,解这个方程组便可确定n 及a 0 a 1…a n 的值,从而得到函数方程的解

高三数学复习教案:简单复合函数的导数

高三数学复习教案:简单复合函数的导数 【高考要求】:简单复合函数的导数(B). 【学习目标】:1.了解复合函数的概念,理解复合函数的求导法则,能求简单的复合函数(仅限于形如f(ax+b))的导数. 2.会用复合函数的导数研究函数图像或曲线的特征. 3.会用复合函数的导数研究函数的单调性、极值、最值. 【知识复习与自学质疑】 1.复合函数的求导法则是什么? 2.(1)若,则 ________.(2)若,则 _____.(3)若,则 ___________.(4)若,则 ___________. 3.函数在区间_____________________________上是增函数, 在区间__________________________上是减函数. 4.函数的单调性是_________________________________________. 5.函数的极大值是___________. 6.函数的值,最小值分别是______,_________. 【例题精讲】 1. 求下列函数的导数(1) ;(2) . 2.已知曲线在点处的切线与曲线在点处的切线相同,求的值. 【矫正反馈】 1.与曲线在点处的切线垂直的一条直线是___________________. 2.函数的极大值点是_______,极小值点是__________.

(不好解)3.设曲线在点处的切线斜率为 ,若 ,则函数的周期是 ____________. 4.已知曲线在点处的切线与曲线在点处的切线互相垂直, 为原点,且 ,则的面积为______________. 5.曲线上的点到直线的最短距离是___________. 【迁移应用】 1.设 , , 若存有 ,使得 ,求的取值范围. 2.已知 , ,若对任意都有 ,试求的取值范围.

高中数学 第一章 导数及其应用 1.2.3 简单复合函数的导数习题 苏教版选修2-2

1.2.3 简单复合函数的导数 明目标、知重点 1.了解复合函数的概念,掌握复合函数的求导法则.2.能够利用复合函数的求导法则,并结合已经学过的公式、法则进行一些复合函数的求导(仅限于形如f(ax+b)的导数). 1.复合函数的概念 一般地,对于两个函数y=f(u)和u=g(x),如果通过变量u,y可以表示成x的函数,那么称这个函数为y=f(u)和u=g(x)的复合函数,记作y=f(g(x)). 2.复合函数的求导法则 复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数之间的关系为y x′=y u′·u x′.即y对x的导数是y对u的导数与u对x的导数的乘积. 探究点一复合函数的定义 思考1 观察函数y=2x cos x及y=ln(x+2)的结构特点,说明它们分别是由哪些基本函数组成的? 答y=2x cos x是由u=2x及v=cos x相乘得到的;而y=ln(x+2)是由u=x+2与y=ln u(x>-2)经过“复合”得到的,即y可以通过中间变量u表示为自变量x的函数,所以y=ln(x+2)称为复合函数. 思考2 对一个复合函数,怎样判断函数的复合关系? 答复合函数是因变量通过中间变量表示为自变量的函数的过程.在分析时可以从外向里出发,先根据最外层的主体函数结构找出y=f(u);再根据内层的主体函数结构找出函数u=g(x),函数y=f(u)和u=g(x)复合而成函数y=f(g(x)). 思考3 在复合函数中,内层函数的值域A与外层函数的定义域B有何关系? 答A?B. 小结要特别注意两个函数的积与复合函数的区别,对于复合函数,要掌握引入中间变量,将其分拆成几个基本初等函数的方法. 例1 指出下列函数是怎样复合而成的: (1)y=(3+5x)2;(2)y=log3(x2-2x+5); (3)y=cos 3x. 解(1)y=(3+5x)2是由函数y=u2,u=3+5x复合而成的; (2)y=log3(x2-2x+5)是由函数y=log3u,u=x2-2x+5复合而成的;

三角函数与双曲函数基本公式对照表

圆函数(三角函数) 1.基本性质: sin tan cos x x x = ,cos cot sin x x x = 1sec cos x x = ,1 csc sin x x = tan cot 1x x = sin csc 1x x = sec cos 1x x = 22sin cos 1x x += 《 221tan sec x x +=,221cot csc x x += 2.奇偶性: sin()sin x x -=- cos()cos x x -= tan()tan x x -=- 3.两角和差公式 sin()sin cos cos sin x y x y x y ±=± cos()cos cos sin sin x y x y x y ±= [ tan tan tan()1tan tan x y x y x y ±±= 4.二倍角公式 sin 22sin cos x x x = 2222cos 2cos sin 2cos 112sin x x x x x =-=-=-22tan tan 21tan x x x = - 双曲函数 1.基本性质: sh th ch x x x = ,ch cth sh x x x = 1sech ch x x =,1csch sh x x = - th cth 1x x = sh csch 1x x = sech ch 1x x = 22ch sh 1x x -= 221th sech x x -=,221cth csch x x -=- 2.奇偶性: sh()sh x x -=- ch()ch x x -= ~ th()th x x -=- 3.两角和差公式 sh()sh ch ch sh x y x y x y ±=± ch()ch ch sh sh x y x y x y ±=± th th th()1th th x y x y x y ±±= ± 4.二倍角公式 sh 22sh ch x x x = 2222ch 2ch +sh 2ch 112sh x x x x x ==-=+ [

5.简单复合函数的求导法则导学案

主备人: 审核: 包科领导: 年级组长: 使用时间: §5简单复合函数的求导法则 【学习目标】 1、理解复合函数的概念,了解简单复合函数的求导法则; 2、会用简单复合函数的求导法则求一些复合函数的导数。 【重点、难点】 重点:简单复合函数的求导法则; 难点:复合函数的导数。 【使用说明与学法指导】 1、根据学习目标,自学课本内容,限时独立完成导学案; 1、用红笔勾画出疑难点,提交小组讨论; 【自主探究】 1.复合函数 对两个函数)(x f y =和)(x g y =,如果通过变量u ,y 表示成______的函数,我们称这个函数为函数)(x f y =和)(x g y =的复合函数,记作,_________其中为________变量. 2.复合函数的导数 如果函数)(x f 、)(x u 有导数,那么_____='x y 【合作探究】 求下列函数的导数 (1)82)21(x y += (2)33x x y += (3))(cos 2b ax y += (4) )12ln(+-=x y 1、 )ln 1(2x xe y x += (6)x x y -+=11ln 2、曲线x e y x 3cos 2=在)1,0(处的切线与直线l 的距离为5,求直线l 的方程。 3、已知函数2()(2)2x f x ln x a =--,a 为常数。(1)求(3)f '的值;(2)当3x =时,曲线() y f x =在点0(3)y ,处的切线经过点(11)--,,求a 的值。 【巩固提高】 1、求下列函数的导数

(1)y = 2)13(1-x (2)y =21sin2x +sin x (3)y =sin 3(3x +4π) (4)22cos 53sin x x y += 2、已知,)1()(102x x x f ++=求)0()0(f f ' 3、已知曲线23-+=x x y 在点0P 处的切线1l 平行直线014=--y x ,且点0P 在第三象限 (1)求点0P 的坐标 (2)若直线1l l ⊥,且l 也过切点0P ,求直线l 的方程。 【课堂小结】

函数迭代与函数方程初步

本讲主要讲述竞赛数学中六大模块之一的函数方程问题. 在联赛大纲中明确要求函数方程问题在联赛中不作过高要求,也就是说专业级的函数方程问题一般都在冬令营乃至集训队的考试中出现,在联赛中出现的函数方程问题一般难度不高.本讲的目标是能够解决联赛级别的函数方程问题. 函数迭代严格来说其实并不算函数方程的内容,联赛中涉及到的函数迭代问题一般来说也就是寻找迭代规律进而探求一般表达式这种类型,即确定()()((((()))n n f x f f f f x =??????1442443 的具体表达式; 函数方程,是指这样一种特殊的方程,它的解是某一个函数表达式.绝大部分函数方程的求解需要 用到高深的数学工具.能用初等数学方法求解的函数方程数量不多,且其方法往往非常独特巧妙,难以想到.因此函数方程问题成为高难度数学竞赛命题者青睐的对象,在2010年IMO 中第1、3题都是函数方程问题,每年的IMO 中也至少会出现一道函数方程问题. 联赛与高考中的函数方程问题很多并不要求求出函数解析式,而是要求根据给定的函数方程探究该函数的性质:对称性、奇偶性、单调性、周期性并进而证明某个相关命题或确定某个特定的函数值; 根据函数方程求解析式的方法一般有:1、赋值法;2、换元法;3、迭代解方程组法;4、柯西法等等. 本讲我们主要关注前面这些常规的解法,而对于柯西法以及函数方程的较专业的解法本讲只是略讲. 这里仅给出一些利用基本的找规律方法来解决的问题,而桥函数方法、不动点方法这里不涉及.实际上,如果我们令()()()01,,n n a x a f x a f x ===,那么函数迭代问题就变成了递归数列求通项问题,因此我们主要在以后的递归数列一讲讲述此类问题. 知识点睛 经典精讲 8.1函数迭代问题 本讲关键词 第8讲 函数迭代与函 数方程初步

高中数学第二章函数-函数迭代(竞赛精讲)

§2.3 函数迭代 知识提要 先看一个有趣的问题:李政道博士1979年4月到中国科技大学,给少年班的同学面试这样一道题: 五只猴子,分一堆桃子,怎么也平分不了,于是大家同意先去睡觉,明天再说.夜里一只猴子偷偷起来,把一个桃子吃掉后正好可以分成5份,收藏起自己的一份后又去睡觉了.第二只猴子起来后,像第一只猴子一样,先吃掉一个,剩下的又刚好分成5份,也把自己的一份收藏起来睡觉去了.第三、第四、第五只猴子也都是这样:先吃掉一个,剩下的刚好分成5份.问这堆桃子最少是多少个? 设桃子的总数为x 个.第i 只猴子吃掉一个并拿走一份后,剩下的桃子数目为i x 个,则 14 (1)5 i i x x -= -,1,2,3,4,5i = 且0 x x =.设44 ()(1)(4)455 f x x x =-=+-.于是 14 ()(4)45 x f x x ==+- 224 (())()(4)45x f f x x ==+- 334 ((()))()(4)45x f f f x x ==+- 444 (((())))()(4)45x f f f f x x ==+- 554 ((((()))))()(4)45 x f f f f f x x = =+- 由于剩下的桃子数都是整数,所以,5 5|4x +.因此,最小的x 为:5 543121x =-=. 上面的解法,我们利用了一个函数自身复合多次,这就叫迭代.一般地,设:f D D →是 一个函数,对x D ?∈,记(0)()f x x =,(1)()()f x f x =,(2) ()(())f x f f x =,…,(1)()()(())n n f x f f x +=,n N *∈, 则称函数()()n f x 为()f x 的n 次迭代,并称n 为() ()n f x 的迭代指数.反函数记为() ()n f x -. 一些简单函数的n 次迭代如下:

双曲函数及其几何意义

Hyperbolic functions(双曲函数)and their geometric meaning In mathematics, hyperbolic functions are analogs of the ordinary trigonometric, or circular, functions. The basic hyperbolic functions are the hyperbolic sine "sinh" (/?s?nt?/ or /??a?n/), and the hyperbolic cosine "cosh" (/?k??/), from which are derived the hyperbolic tangent "tanh" (/?t?nt?/ or /?θ?n/), hyperbolic cosecant "csch" or "cosech" (/?ko???k/ or /?ko?s?t?/), hyperbolic secant "sech" (/???k/ or /?s?t?/), and hyperbolic cotangent "coth" (/?ko?θ/ or /?k?θ/),[1] corresponding to the derived trigonometric functions. The inverse hyperbolic functions are the area hyperbolic sine "arsinh" (also called "asinh" or sometimes "arcsinh")[2] and so on. Just as the points (cos t, sin t) form a circle with a unit radius, the points (cosh t, sinh t) form the right half of the equilateral hyperbola. The hyperbolic functions take a real argument called a hyperbolic angle. The size of a hyperbolic angle is the area of its hyperbolic sector. The hyperbolic functions may be defined in terms of the legs of a right triangle covering this sector. Hyperbolic functions occur in the solutions of some important linear differential equations, for example the equation defining a catenary, of some cubic equations, and of Laplace's equation in Cartesian coordinates. The latter is important in many areas of physics, including electromagnetic theory, heat transfer, fluid dynamics, and special relativity. In complex analysis, the hyperbolic functions arise as the imaginary parts of sine and cosine. When considered defined by a complex variable, the hyperbolic functions are rational functions of exponentials, and are hence meromorphic. Hyperbolic functions were introduced in the 1760s independently by Vincenzo Riccati and Johann Heinrich Lambert.[3] Riccati used Sc. and Cc. ([co]sinus circulare) to refer to circular functions and Sh. and Ch. ([co]sinus hyperbolico) to refer to hyperbolic functions. Lambert adopted the names but altered the abbreviations to what they are today.[4] The abbreviations sh and ch are still used in some other languages, like European French and Russian.

相关主题