搜档网
当前位置:搜档网 › 有机高分子磁性材料研究进展

有机高分子磁性材料研究进展

有机高分子磁性材料研究进展
有机高分子磁性材料研究进展

有机高分子磁性材料研究进展

有机高分子磁性材料作为一种新型的功能材料,在超高频装置、高密度存贮材料、吸波材料和微电子工业等需要轻质磁性材料的领域具有很好的应用前景。室温稳定且具有实用价值的有机高分子磁性材料一直是该领域研究的热点。文中概述了纯有机类,大π键体系类,电荷转移复合物类和含金属原子复合物类等有机高分子磁性材料的最新研究进展,并介绍了各类有机高分子磁性材料的磁性能特点。

1. 纯有机磁性高分子所谓纯有机磁体是指含

C,N,O ,S和H的合成磁性材料[6]。这种磁性来源于s和p 轨道电子自旋的长程有序,是科学上的一个挑战,在理论和实践上都受到关注。1987

年,Ovchinnikovl A A 等[2] 报道了低维纯有机磁体聚1,4-双(2,2,6,6-四甲基-4-羟基-1-氧自由基哌啶)丁二炔(简称聚BIPO) ,聚BIPO 磁体的饱和磁化强度Ms=010224 emuPg ,居里温度Tc超过分解温度(分解温度Td=250℃~310℃)。通过改变聚合条件可在一

定范围内改变磁性,性能可从超顺磁性至铁磁性。此外,该实验首次证明仅含C、H、N、O等s和p轨道的高分子具有磁性。俄罗斯圣彼德堡物理研究所Makarova T[7] 等人在Nature杂志报道了一个在室温下工作的有机铁磁体,这种材料由螺旋碳分子组成,如果这项成果能在更便宜的有机材料中实现的话,将改变磁性记忆材料制造业的历史。由于成本太高,其实用价值有限,但是这一发现进一步激发科学家对有机铁磁体的研究兴趣。 Zaidi N A[8]等用聚苯胺(PANi)和7 ,7 ,8 ,8-四氰基对二次甲基苯醌(TCNQ)

合成了一种新型的PANiCNQ聚合物。对其磁性研究发现,这种聚合物呈亚磁和铁磁性,居里温度可达350K,最大饱和磁场强度达0.1JT-1 kg-1。研究还发现,它的磁性有序随时间增加而增加,需要几个月才能完成。该成果是纯有机磁性聚合物研究从理论性向实用性迈出了巨大的一步,也许在不久的将来,科学家们就能研制出可以大范围应用的纯有机磁性聚合物。

2. 大π键体系的化合物虽然对π共轭的高分子磁性能研究较少,但通过π共轭系统的电子自旋间交换相互作用比小分子级别的有机自由基的空间相互作用强得多。合成π共轭的大分子有望成为一个能在较高温度,甚至在室温下具有良好磁性能的新型有机磁体。 Rajca A[9]合成了低温下具有很大磁矩和磁性有序状态的π共轭大分子,此大分子是由具有高交联密度和不同自旋量子数(S)的自由基模块交替连接,大环的自旋量子数S=2,交联键的自旋量子数S = 1/2。模型之间的铁磁性或反铁磁性交换

耦合都会使这种网络具有很大S值。在高度交联的聚合物中,有效磁矩相关的平均自旋量子数S值约为5000,并且这类聚合物在低于10K时,在很小的外加磁场下就会缓慢地重新排列。但是,这种有机聚合物的磁性只有在温度低于10K的无氧环境中才比较稳定,因而距离实用化还有一定的距离。但该成果有望实现日本理论化学家Mataga N 在1968年提出的有可能研制出有机聚合物磁体且在室温下稳定存在的全部预言。由富勒烯发展起来的有机磁体也颇引人关注。1991年Allemand[10]等发现第一个软铁磁性聚合物( [C60 TADE0.86]),其中TDAE=4-二甲氨基乙烯,居里温度Tc=16.1K,在居里温度以下,磁化强度与温度

关系同传统铁磁体不同。另外最近报道的磁性碳[11] ,发现菱形的C60展示出典型的铁磁性行为,居里温度可达500K。

3. 电荷转移复合物电荷转移复合物是研究得最多的一类有机磁体,是基于电子给体和电子受体之间的电荷相互作用达到长程有序的。电荷转移复合物磁体研究方面Miller JS[12 ] 取得很大成就, 最先合成出[ Fe Ⅲ Cp2*] +[ TCNE ] - ,此化合物具有一维线性结构, 由[ Fe ⅢCp2*] + 和[ TCNE] - 交替组成,该材料是一个变磁体,基态时呈反铁磁性,当磁场超过1500Oe 时,呈现高磁化强度的铁磁状态。另一种有机磁体是用[ TCNQ ] -代替[ TCNE] - ,与[ Fe ⅢCp2*] + 形成一个三维铁磁体。不过,由于其转换温度Tc 只有418 K,远低于室温,所以难以达到应用的要求。尽管如此,它的研制成功仍然引起了人们的关注,揭开了电荷转移复合物磁性材料研究序幕。电荷转移复合物一般是顺磁性的,而且居里温度较低,合成的有机金属磁性化合物大多也只是低温下的铁磁体。这是因为在这些磁性复合物中的自旋与自旋之间的磁性不是足够强,不能克服原子或离子的热运动影响所致。

4. 金属原子配合物金属有机高分子磁体实际上是含有多种顺磁性过渡金属离子的金属有机高分子络合物,具有特殊的配位环境和配位结构的多样性,能够形成二维或三维的有序网状结构,磁性来源于金属离子与有机基团中的不成对电子间的长程有序2自旋作用。

4.1 桥联型金属有机络合物桥联型金属有机络合物磁性高分子是指用有机配体桥联过渡金属以及稀土金属等顺磁性离子,顺磁性金属离子通过“桥”产生磁相互作用,结果获得宏观磁性的一类磁性高分子。由于顺磁性金属离子间的磁相互作用对高分子的磁性起到十分关键的作用,因此,人们对所得产物中金属离子的磁相互作用进行了较多的研究。 Zheng[13] 通过水热法合成了二维(Ⅱ) 粒子的碳酸盐配位聚合

物,[Fe(pyoa)2] ∞ ,pyoa=2-氧化哌啶醋酸

盐,[Fe(pyoa2]∞展示场诱导金属磁性行为,应用领域小于临界场,Fe(Ⅱ)自旋倾斜距受链内铁磁性作用和微弱的链内抗磁性相互作用。尽管桥联型有机金属络合物高分子磁性材料的理论研究较多,发展也较快,但是磁性有机高分子的居里温度太低,没有实用价值,但是为开发出具有实用价值的磁性高分子奠定了理论基础。

4.2 二茂金属有机磁性高分子二茂铁有机金属磁性高分子是第一个常温稳定具有实用价值的高分子磁体,是高分子磁体从理论研究到应用研究的一个转折点。20世纪90年代初,Miller等首次合成了一系列十甲基二茂铁TCNE 类的电荷转移金属有机铁磁体,但不

具有实用价值。为了寻求有实用价值和常温稳定铁磁性高分子,人们对二茂铁型有机铁磁性高分子的合成产生了浓厚的兴趣。1979 年Vernmous 等[14]合

成了四种二茂铁共聚物,它在常温的饱和磁化强度

Ms=4.5emu/g,相当于2.5%的铁引起的磁性值,其它许多二茂铁型聚合物的磁体也有报道,但因其常温饱和磁化强度较低,基本上没有实用价值。1993年,日本

发表了制造有实用价值的常温稳定二茂铁型有机磁性

高分子的专利[15] ,其结构为聚二茂铁烯烃-二氯二氰基苯醌(DDQ)的电荷转移复合物,常温下

Ms=0.01emu/g~0.9emu/g,但离商品化尚有一定距离。另外,日本的Ota 等以二茂铁甲醛为原料合成了常温铁磁性的三芳基甲烷二茂铁磁性高分子,但对其磁性能和产生的机理的描述不清楚。

4.3 Schiff碱型金属有机络合物磁性高分子由于Schiff碱的特殊结构使其极易与顺磁性的过渡金属形成配合物,较早引起人们关注的是PPH·FeSO4 型高分子铁磁体。它的性能优良,人们已经得到了常温下铁磁性很强的磁体,有的甚至可以和磁铁相匹敌。孙维林[15,16]等制备了一系列含双噻唑的聚Schiff 碱,并与过渡金属离子和稀土金属离子配合,得到金属配合物并研究了它们的磁性能。这类聚合物的配位化合物磁性范围广,磁性能从反铁磁、顺磁、铁磁不等,耐热性好,具有一定的应用前景。 Yue[17]等人合成了三种开链二嗪Schiff 碱基配位体叠氮键桥Mn的复合物: [MnL1 (N3 )2·CH3OH]n(1)(L1=1-(2-吡啶基)-1-氨基-4-(6-溴-2-吡啶)-2,3-二氮-1,3-丁二烯),[MnL2(N3)2]n(2a)and[Mn2(L2)2(N3)4]n

(2b)(L2=1-(2-吡啶基)-1-氨基-4-苯基-2,3-二氮-1,3-丁二烯),研究发现结构1和结构2a具有一维配位聚合物结构,结构2b 具有一维结构。对它们的磁性研究后发现,复合物中头-尾和尾-尾相连的叠氮键桥的相互交替使得聚合物具有铁磁和反磁相互作用。

4.4 金属自由基聚合物磁体金属自由基聚合物磁体是指配体与金属离子配合形成低温时具有铁磁性或亚铁磁性的金属2自由基交替链聚合物。自从第一个单链磁体[Co(hfac)2·AnNN]被Gatteschi等发现以

来,一些含有更小配体的3d和4f离子和其它体系的衍生物被广泛地研究以期得到新颖的单链磁体。Ishii N [18] 报道了[Co(hfac)2·BPNN](BPNN=p-丁氧苯-NN),居里温度估计为 45K。在6K时的矫顽力为52kOe ,比[MnTPP] [ TCNE ]·2(CH2Cl2 )的矫顽力27.8 kOe (2K)还要大得多。甚至比已经市场化的永磁SmCo5 (44 kOe ,室温)和Nd2 Fe14B (19 kOe,室温)还要大,预计这应该是硬磁体中矫顽力最大的。

光敏高分子材料的研究进展

光敏高分子材料的研究进展 骆海强,重庆大学化学化工学院应用化学2班 摘要:由于当今材料科学技术的快速更迭,高分子材料逐渐成为材料科学领域中极具发展潜力的一类材料。在可利用能源不断缩减的今天,光敏高分子材料的研究力度大大提升,逐渐成为现代生活中不可或缺的部分。本文分别对光敏高分子材料的四大类——感光性高分子材料、光能转化高分子材料、光功能高分子材料及高分子非线性光学材料本身的特性及应用进行了综述性概括,以便快捷了解光敏高分子材料的特点。 0前言 随着材料科学技术相关研究人员在该领域的不断探索,高分子材料无论是在科研领域还是社会生活中,都扮演着极为重要的角色。在光电材料研究风气盛行的当下,太阳能电池、太阳能汽车等光能利用、转化设备普及的大环境下,光敏高分子材料的研究力度渐渐增加,也得到了许多理想的科研成果, 1光敏高分子材料概述 在光照下能表现出特别性能的高分子聚合物即为光敏高分子材料,是材料科学里一类主要的功能高分子材料,所触及范畴也较为普遍,如光致抗蚀剂、光导电高分子、高分子光敏剂等功能材料。 光敏高分子材料根据其自身在光照条件下所产生的反应类型及其展现出的特征性能,可以分成如下四类:感光性高分子材料、光能转化高分子材料、光功能高分子材料及高分子非线性光学材料。 现基于以上分类,对各种材料进行阐述。 2 感光性高分子材料 在光照下可以进行光化学反应的高分子材料常被称为感光性高分子材料。

根据其用途可分为光敏涂料和光刻胶。 2.1光敏涂料 2.1.1光敏涂料的作用机理 光敏涂料具有光敏固化功能,可以利用光交联反应或光聚合反应,使其中的低聚物聚合成膜或网状。经过恰当波长照射后,光敏涂料会快速固化,获得膜状物。因为固化过程较为稳定不易挥发溶剂,从而降低了排放,提高了材料利用,保障了安全性。而且由于是在覆盖之后才发生的交联,使图层交联度更好,机械强度也更稳固。 2.1.2光敏涂料的中常见低聚物的类型 以铁酸锌环氧酯错误!未找到引用源。错误!未找到引用源。涂料为一类的环氧树脂型低聚物,在紫外光的处理下,给电冰箱表面上漆,能够是冰箱表面具有很好的柔顺性且不宜脱落。以含氟丙烯酸酯预聚物错误!未找到引用源。为一类的不饱和聚酯型低聚物,与光引发剂等结合后形成的混合型涂料,其硬度、耐挂擦力、附着力等性能大大提高。此外还有聚氨酯型低聚物错误!未找到引用源。及聚醚型低聚物。 2.2光刻胶(光致抗蚀剂) 2.2.1光刻胶的作用机理 生产集成电路的现有工艺中,通常会用这类感光性树脂覆盖在氧化层从而避免其被活性物质腐蚀。将设计好的图案曝光、显影,改变了其溶解性,其中树脂发生化学反应后去除了易溶解的物质,氧化层表面留下不溶部分,从而避免氧化层被活性物质腐蚀。 2.2.2光刻胶的分类 正性光刻胶和负性光刻胶错误!未找到引用源。是根据曝光前后涂膜的溶解性来分类的。其中正性光刻胶受光后会降解,被显影液所消融;而与之相反,在光照后,负性光刻胶获得的图形恰好与掩膜板图形互补,即曝光处会发生交链反应形成不溶物残余在表面形成图像,而非曝光处则如正性光刻胶同样被消融,。 根据光刻胶所吸收的光的紫外波长,还可将其分为深紫外(i-线,g-线)光刻胶,远紫外(193 nm)光刻胶和极紫外(13. 5nm)光刻胶错误!未找到引用源。。Lawrie等错误!未找到引用源。经过多次实践合成了一种感光灵敏度为4~6 mJ/cm2、分辨率为22.5 nm的

有机高分子材料介绍

第四章有机高分子材料 第一节概述 有机高分子材料包括两种: 天然高分子材料:木材、棉花、皮革等; 有机聚合物合成材料:塑料、合成纤维、合成橡胶、涂料及粘合剂等。 有机高分子材料的特点:质地轻、原料丰富、加工方便、性能良好、用途广泛,因而发展速度很快。且随着合成、加工技术的发展,耐高温、高强度、高模量和具有特定性能和功能的高分子材料也应运而生。 有机聚合物(有机玻璃、橡胶等等)具有与金属相反的物理性能: 大部分是电和热的绝缘体 不透明 硬度低 大部分不能禁受200℃以上的温度 有机聚合物材料的加工工艺 有机聚合物材料的加工工艺路线 有机物原料或型材 成形加工 切削加工 零件 热处理、焊接等 热压、注塑、挤压、喷射、真空成形等 高分子材料的基本概念 高分子材料是由可称为单体的原料小分子通过聚合反应而合成的。绝大部分原料单体为有机化合物。在有机化合物中,除碳原子外,其他主要元素为氢、氧、氮等。在碳原子与碳原子之间、碳原子与其它元素的原子之间能形成稳定的共价键。由于碳原子是4价,所以可以形成为数众多、结构不同的有机化合物,已知的有机化合物的总数已接近千万,而且新的有机化合物还不断合成出来。 高分子的链结构 高分子的聚合度及其计算 立构规整性 碳链高分子与杂链高分子 共聚物 高分子的相对分子质量与机械强度 1、高分子的链结构 一个大分子往往由许多相同的、简单的结构单元通过共价键重复连接而成,因此高分子又称为聚合物(polymer)。 也就是说高分子化合物是由许多结构单元相同的小分子化合物通过化学键连接而成的。 高分子的一个重要特点: 当一个化合物的相对分子质量足够大,以至多一个链节或少一个链节不会影响其基本性能。 方括号内是聚氯乙烯结构单元,并简称结构单元。 许多重复单元连接成线型大分子,类似一条链子,因此有时又将重复单元称为链节。 由形成结构单元的小分子组成的化合物,称为单体,是合成高分子的原料。 式中括号表示重复连接,通常用n代表重复单元数,由又称聚合度。聚合度是衡量高分子大小的指标。 2、高分子的聚合度及其计算 由聚氯乙烯的结构式很容易看出,高分子的相对分子质量是重复单元的相对分子质量(M0)与聚合度( )(或重复单元数n)的乘积,即 根据化合物的相对分子质量大小来划分高分子和小分子:相对分子质量小于1000的,一般为小分子化合物;而相对分子质量大于10000的,称为高分子或高聚物;处于中间范围的可能为高分子(低聚物),也可能为小分子。 3、立构规整性

磁性塑料的综述

1磁性塑料的介绍~~~~~~~ 磁性塑料是高分子磁性材料中的一种。高分子磁性材料是一种具有记录声、光、电等信息并能重新释放的功能高分子材料,是现代科学技术的重要基础材料之一。 有机高分子磁性材料作为一种新型功能材料,在超高频装置、高密度存储材料、吸波材料和微电子等需要轻质磁性材料的领域具有很好的应用前景。 磁性高分子材料的出现大大改善了烧结磁体的这些缺点,它具有重量轻、有柔性、加工温度不高、结构便于分子设计、透明、绝缘、可与生物体系和高分子共容、成本低等优点,但是磁性高分子材料的磁性能较低,如何提高其磁性能成为磁性高分子材料研究的主要热点。磁性高分子材料广泛应用于冰箱、冷藏柜、冷藏车的门封磁条,标识教材,广告宣传,电子工业以及生物医学等领域,是一种重要的功能材料 特点:有机磁性材料的优点:a、结构种类的多样性;b、可用化学方法合成;c、可得 到磁性能与机械、光、电等方面的综合性能;d、磁损耗小、质轻、柔韧性好、加工性能优越;用于超高频装置、高密度存储材料、吸波材料、微电子工业和宇航等需要轻质磁性材料的领域 2磁性塑料的分类及举例 高分子磁性材料分为结构型和复合型两种:结构型磁性材料是指高分子材料本身具有强性;复合型磁性材料是指以塑料或橡胶为黏结剂与磁粉混合黏结加工而制成的磁性体。 结构型磁性材料:结构型高分子磁性材料的种类主要有:高自旋多重度高分子磁性材料;自由基的高分子磁性材料;热解聚丙烯腈磁性材料;含富勒烯的高分子磁性材料;含金属的高分子磁性材料;多功能化高分子磁性材料等. 复合型磁性材料:复合型磁性塑料是指在塑料中添加磁粉和其他助剂,塑料起黏结剂作用。磁性塑料根据磁性填料的不同可以分为铁氧体类、稀土类和纳米晶磁类。根据不同方向磁性能的差异,又可以分为各向同性和各向异性磁性塑料。 3磁性材料的应用 3.1磁性橡胶 磁性橡胶铁氧体填充橡胶永磁体曾大量用于制造冷藏车、电冰箱、电冰柜门的垫圈。北京化工研究院曾研制出专用于风扇电机的磁性橡胶,应用于计算机散热风扇。日本铁道综合技术研究所开发出利用磁性橡胶的磁性复合型减振材料。德国大陆轮胎公司将磁粉混入轮胎侧胶料形成磁性胶条,再通过轮胎胎侧扭力测量装置采用传感器从旋转轮胎胎侧的磁性胶条上采集信号,以获取大量有关汽车和路面之间力的有用数据,有利于驾驶员在不同路况下对车的控制。 3.2磁性塑料 磁性塑料又称塑料磁铁,兼有磁性材料和塑料的特性。根据填充磁粉类型可分为铁氧体类磁性塑料和稀土类磁性塑料。由于磁性塑料机械加工性能好、易成型,且尺寸精度高、韧性好、重量轻、价格便宜、易批量生产,因此对电磁设备的小型化、轻量化、精密化和高性能化有重大意义。它可以记录声、光、电信息,因而广泛用于电子电气、仪器仪表、通讯、日用品等诸多领域,如制造彩色显像管会聚组件、微电机磁钢、汽车仪器仪表、分电器垫片和气动元件磁环等。 3.3医学、诊断学领域的应用 磁性高分子微球能够迅速响应外加磁场的变化,并可通过共聚赋予其表面多种功能基团(如

磁性材料基本特性的研究

实验报告 姓名:什么情况班级:F10 学号:51 实验成绩: 同组姓名:实验日期:2011- 指导老师:助教批阅日期: 磁性材料基本特性的研究 【实验目的】 1.了解磁性材料的磁滞回线和磁化曲线概念,加深对铁磁材料的主要物理量矫顽磁力、剩磁和磁导率的理解; 2.利用示波器观察并测量磁化曲线与磁滞回线; 3.测定所给定的铁磁材料的居里温度. 【实验原理】 1.磁化性质 一切可被磁化的物质叫作磁介质。磁介质的磁化规律可用磁感应强度B、磁化强度M、磁场强度H来描述,它们满足一定的关系 μr的不同一般可分为三类,顺磁质、抗磁质、铁磁质。 对非铁磁性的各向同性的磁介质,H和B之间满足线性关系,B =μH,而铁磁性介质的m 、B 与H 之间有着复杂的非线性关系。一般情况下,铁磁质内部存在自发的磁化强度,当温度越低自发磁化强度越大。如图一所示。 图一B~ H曲线图二μ~ T曲线 它反映了铁磁质的共同磁化特点:在刚开始时随着H的增加,B缓慢的增加,此时μ较小;而后便随H的增加B急剧增大,μ也迅速增加;最后随H增加,B趋向于饱和,而此时的μ值在到达最大值后又急剧减小。图一表明了磁导率μ是磁场H的函数。B-H曲线表示铁磁材料从没有磁性开始磁化,B随H的增加而增加,称为磁化曲线。从图二中可看到,磁导率μ还是温度的函数,当温度升高到某个值时,铁磁质由铁磁状态转变成顺磁状态,在曲线上变化率最大的点所对应的温度就是居里温度T C。 2.磁滞性质 铁磁材料除了具有高的磁导率外,另一重要的特性是磁滞现象.当铁磁材料磁化时,磁

感应强度B不仅与当时的磁场强度H有关,而且与 磁化的历史有关,如图3所示.曲线OA表示铁磁材 料从没有磁性开始磁化,B随H的增加而增加,称 为磁化曲线.当H值到达某一个值H S时,B值几乎 不再增加,磁化趋于饱和.如使得H减少,B将不 再沿着原路返回,而是沿另一条曲线AC'A'下降,当 H从-H S增加时,B将沿着A'CA曲线到达A形成一 闭合曲线.其中当H = 0时,|B| = Br,Br称为剩余 磁感应强度.要使得Br为零,就必须加一反向磁场, 当反向磁场强度增加到H = -H C时,磁感应强度B为零,达到退磁,HC称为矫顽力.各种铁磁材料有不同的磁滞回线,主要区别在于矫顽力的大小,矫顽力大的称为硬磁材料,矫顽力小的称为软磁材料. 3.用交流电桥测量居里温度 铁磁材料的居里温度可用任何一种交流电桥测量。本实验采用如图所示的RL交流电桥, 图三RL交流电桥 在电桥中输入电源由信号发生器提供,在实验中应适当选择不同的输出频率ω为信号发生器的角频率。选择合适的电子元件相匹配,在未放入铁氧体时,可直接使电桥平衡,但当其中一个电感放入铁氧体后,电感大小发生了变化,引起电桥不平衡。但随着温度的上升到某一个值时,铁氧体的铁磁性转变为顺磁性,CD两点间的电位差发生突变并趋于零,电桥又趋向于平衡,这个突变的点对应的温度就是居里温度。实验中可通过桥路电压与温度的关系曲线,求其曲线突变处的温度,并分析研究在升温与降温时的速率对实验结果的影响。4.用示波器测量动态磁化曲线和磁滞回线

纳米磁性材料的制备和研究进展综述教案资料

纳米磁性材料的制备和研究进展综述 一.前言 纳米材料又称纳米结构材料 ,是指在三维空间中至少有一维处于纳米尺度范围内的材料 (1-100 nm) ,或由它们作为基本单元构成的材料 ,是尺寸介于原子、分子与宏观物体之间的介观体系。磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。因此 ,纳米磁性材料的特殊磁性可以说是属于纳米磁性。 司马迁《史记》记载黄帝作战所用的指南针是人类首次对磁性材料的应用。而今纳米磁性材料广泛应用于生物学,磁流体力学,原子核磁学,机体物理学,磁化学,

天文学,磁波电子学等方面。随着雷达、微波通信、电子对抗和环保等军用、民用科学技术的,微波吸收材料的应用日趋广泛 ,磁性纳米吸波材料的研究受到人们的关注。纳米磁性材料也对人们的生产与生活带来诸多的利益。 本次综述,主要针对磁性纳米材料的制备方法和研究进展两个问题进行阐述。首先,介绍磁性纳米材料的发展历史,可以追溯到黄帝时期。其次,介绍磁性纳米材料的分类。------再次,重点介绍磁性纳米材料是怎么制备的。其制备方法一般分为三大类:1.由上到下,即由大到小,将块材破碎成纳米粒子,或将大面积刻蚀成纳米图形等。2.由下到上,即由小到大,将原子,分子按需要生长成纳米颗粒,纳米丝,纳米膜或纳米粒子复合物 3. 气相法、液相法、固相法等。第四、介绍磁性纳米材来噢的现状和发展前景。最后,将全文主题扼要总结,并且找出研究的优缺点和差距,提出自己的见解。 二、主题 1、纳米磁性材料的发展史 磁性材料是应用广泛、品类繁多、与时俱进的一类功能材料,磁性是物质的基本属性之一。人们对物质磁性的认识源远流长,早在公元前四世纪,人们就发现了天然的磁石(磁铁矿Fe3O4),,据传说,那是黄帝大战蚩尤于涿鹿,迷雾漫天,伸手不见五指,黄帝利用磁石指南的特性,制备了能指示方向的原始型的指南器,遂大获全胜.古代取其名为慈石,所谓“慈石吸铁,母子相恋”十分形象地表征磁性物体间的互作用。人们对物质磁性的研究具有悠久的历史,是在十七世纪末期和十八世纪前半叶开始发展起来的。1788年,库仑(Coulomb)把他的二点电荷之间的相互作用力规律推广到二磁极之间的相互作用上。1820年,丹麦物理学家奥斯特(Oersted)发现了电流的磁效应;同年法国物理学家安培(Ampere)提出了分子电流假说,认为物质磁性起源于分子电流。

功能高分子材料研究进展

功能高分子材料研究进展 摘要 功能高分子材料是高分子学科中的一个重要分支,它是研究各种功能性高分子材料的分子设计和合成、结构和性能关系以及作为新材料的应用技术,它的重要性在于所包含的每一类高分子都具有特殊的功能。它主要包括化学功能高分子材料、光功能高分子材料、电、磁功能高分子材料、声功能高分子材料、高分子液晶、医用高分子材料几部分,这一领域的研究主要包括研究分子结构、组成与形成各种特殊功能的关系,也就是从宏观乃至深入到微观,以及从半定量深入到定量,从化学组成和结构原理来阐述特殊功能的规律性,从而探索和合成出新的功能性材料。本文主要论述了在工程上应用较广和具有重要应用价值的一些功能高分子材料,如吸附分离功能高分子、反应型功能高分子、光功能高分子、电功能高分子、医用功能高分子、液晶高分子、高分子功能膜材料等。 关键词:高分子材料;功能高分子;功能材料; Abstract Functional polymer materials is an important branch of polymer science, it is the study of various functional polymer molecular design and synthesis of relationship between structure and properties and application technology as a new material. its importance is that contains every kind of polymer has special function it light functional polymer materials mainly include chemical functional polymer materials electric magnetic functional polymer materials acoustic functional polymer materials, polymer liquid crystal sections medical polymer materials, the research of this field mainly includes the study of the function of the molecular structure and formation of various sorts of special relationship, which is from the macro and go deep into the micro, and from the quantitative and semi-quantitative into from the chemical composition and structure principle to explain the special function of regularity, to explore and this paper mainly discusses the synthesis of new functional materials. Keywords:high polymer materials; functional polymer; functional Materials;

磁性高分子材料的制备及应用

磁性高分子材料的制备及应用 摘要 磁性高分子材料分为复合型和结构型两类,分别阐述了复合型和结构型磁性高分子材料的研究和应用现状,强调了磁性高分子材料的发展意义,本文旨在探讨有关高分子磁性材料制备、性质及应用的最新研究成果。并对其理论和应用领域的开拓前景进行了展望。 关键字磁性高分子功能材料制备方法应用 前言 磁性材料是古老而用途十分广泛的功能材料,最早人们使用的磁性材料大多由天然磁石制成的,后来开始利用磁铁矿烧结成磁性材料,其中以含铁族和稀土元素为主,由于其资源丰富、价格低廉、磁性能好等原因,目前仍在工业电器以及电动设备中得到广泛应用,但是因其密度大、脆硬、变形大、难以制成精密制品等缺点,所以对高分子磁性材料的研究成为一个重要方向。近来对结构型磁性高分子材料的研究取得了进展,合成了许多有机磁性高分子材料磁性聚合物微球自70年代中后期以来便受到了国内外学者的普遍关注,有关磁性聚合物微球的制备和应用的研究论文逐年增加,国外学者针对磁性聚合物微球的制备及在生物医药工程靶向药物临床医学等领域的应用也申请了不少的专利,有些已经商品化。 磁性高分子材料的分类 磁性高分子材料通常可分为复合型和结构型两种。复合型磁性高分子材料是已实现商品化生产的重要磁性高分子材料,能够作为功能材料应用的主要有磁性橡胶、磁性塑料、磁性高分子微球磁性聚合物薄膜等。复合型磁性高分子材料中的磁性无机物主要是铁氧体类磁粉和稀土类磁粉。稀土磁粉出现后,树脂粘结磁体飞速发展。作粘结剂的高分子主要是橡胶、热固性树脂和热塑性树脂。橡胶类粘结剂主要用于柔性复合磁体的制造,但与塑料相比,一般成型加工困难。热固性粘结剂一般用环氧树脂、酚醛树脂。磁性高分子微球所采用的高分子材料主要是蛋白质、生物多糖、脂类等生物高分子和人工合成的接有各式各样功能基团的合成高分子。目前国内外研究较多的是以核径迹蚀刻膜为基板的纳米磁性材料,它实际上是采用模板法,以聚碳酸酷核径迹蚀刻膜为基体,在其中电沉积磁性粒子,利用其规整膜孔来控制得到的有序纳米磁性材料。 磁性高分子材料的研究现状 1复合型磁性高分子材料 复合型磁性高分子材料主要是指在塑料或橡胶中添加磁粉和其他助剂,均匀混合后加工而成的一种复合型材料。复合型磁性高分子材料根据磁性填料的不同可以分为:铁氧体类、稀土类和纳米晶磁粒类。根据不同方向上的磁性能的差异,又可以分为各向同性和各向异性磁性高分子材料。能够作为功能材料应用的主要有磁性橡胶、磁性塑料、磁性高分子微球、

磁性材料研究进展

磁性材料 引言 磁性材料作为重要的基础功能材料,已广泛用于信息、能源、交通运输、工业、农业及人们日常生活的各个领域,对社会进步和经济发展起着至关重要的推动作用。人们习惯按矫顽力的高低,对磁性材料进行分类:矫顽力大于1000A/m则称为硬磁材料,当硬磁材料受到外磁场磁化后,去掉外磁场仍能保留较高的剩磁,因此又称之为永磁材料或恒磁材料;矫顽力小于lOOA/m则称为软磁材料;矫顽力100A/m

有机高分子材料

聚焦新型有机高分子材料 在近几年的高考中,有机高分子的命题大都以合成纤维、橡胶和塑料为背景,并和生产实际相结合。主要形式包括:一是由一种或几种单体加聚成高分子化合物或由加聚产物反推其单体;二是由一种或几种单体缩聚成高分子化合物或已知高分子的链节求其组成的单体。由于大多数合成材料的废弃物会给环境造成污染,因此“白色污染”与治理等都是高考命题的热点。 一、塑料 1.塑料的成分 塑料的主要成分是合成树脂,它的组成中还要根据需要加入某些具有特定用途的添加剂,如能提高塑料的增塑剂、防止老化的防老化剂等。 二、纤维 1.用木材、草类的纤维经化学加工制成的黏胶纤维又叫人造纤维。利用石油、天然气、煤和农副产品作原料制成单体,再经聚合制成的是合成纤维。二者均称化学纤维。

三、橡胶 1.根据来源不同,橡胶可分为天然橡胶和合成橡胶。 2.合成橡胶的原料:以石油、天然气为原料,以二烯烃和烯烃为单体聚合而成的高分子。 应用举例: 【例题1】某高分子化合物的部分结构如下: ,下列说法不正确的是 A.聚合物的结构单元为 B.聚合物的分子式为(C2H2Cl2)n

C.聚合物的单体为CHCl=CHCl D.若n表示结构单元重复的次数,其相对分子质量为97n 解析:因为高分子主链上均为碳原子,又由于单体是重复的结构单元,且碳碳单键, 单键可以旋转,所以链节是 ,单体是CHCl=CHCl。 答案:A 点拨:有机高分子几个概念比较 【例题2】卤代烃分子里的卤原子易与活泼金属阳离子结合,发生下列反应(X代表卤原子): R-X + 2Na + X-R' R-R' + 2NaX R-X + NaCN R-CN + NaX 根据下列各物质的转化关系:

有机高分子磁性材料研究综述

有机磁性材料研究综述 摘要:有机磁性材料是最近二十多年发展起来的新型的功能材料,因为其结构的多样性,可用化学方法合成,相比传统磁性材料具有比重低、可塑性强等等优点,因此在新型功能材料方面有着广阔的应用前景。本文综述了高分子有机磁性化合物的发展和研究近况,及其有机高分子磁性材料的分类及其应用前景。 关键词:有机磁性材料结构型复合型 Review on the research of organic magnetic material Abstract: organic magnetic material is a new functional material in recent twenty years, because of the diversity of its structure, synthetized by chemical method , compared with the traditional magnetic materials with a low specific gravity, high plasticity, and so on, so it has a broad application prospect in the new functional materials.This paper reviews the development and research status of high polymer organic magnetic materials’compounds, classification and its application prospect. Key word: organic magnetic material intrinsic complex

磁性材料的研究现状与应用

磁性材料的研究现状与应用 磁性材料是功能材料的重要分支,利用磁性材料制成的磁性元器件具有转换、传递、处理信息、存储能量、节约能源等功能,广泛地应用于能源、电信、自动控制、通讯、家用电器、生物、医疗卫生、轻工、选矿、物理探矿、军工等领域,尤其在信息技术领域已成为不可缺少的组成部分。 磁性材料大体上分为两类:其一为铁磁有序的金属磁性材料;其二绝大多数为亚铁磁有序、具有半导体导电性质的非金属磁性材料。磁性材料的发展过程大致可分为三个阶段:50年代以前主要研究金属磁性材料;50到80年代为铁氧体的黄金时代,除电力工业外,各领域中铁氧体占绝对优势;90年代以来,纳米磁性材料崛起。磁性材料由3d过渡族金属与合金的研究扩展到3d-(4f,4d,5d,5f)合金与化合物的研究与应用。同时,磁性功能材料也得到了显著的进展。 一、磁性的描述 磁及磁现象的根源是电流,或者说磁及磁现象的微观机制是电荷的运动形成原子磁矩造成的,而且,所有的物质都是磁性体,只是由于构成物质的原子结构不同,而显示出的磁学性能不同。有铁磁性、亚铁磁性、反铁磁性、顺磁性、抗磁性以及无磁性等。描述材料的磁性的物理量有磁化强度M、磁化率χ、磁感应强度B、磁导率μ。 根据物质磁化率的符号和大小,可以把物质的磁性大致分为五类:抗磁体、顺磁体、铁磁体、亚铁磁体和反铁磁体。影响材料性质的有磁化强度随温度的变化。即在不同温度下,磁化强度不同的性质。铁磁材料的自发磁化在居里温度Tc处发生相变,Tc以下为铁磁性,而Tc以上铁磁性消失。同样亚铁磁性材料也具有类似的特性。另外一个必须注意的因素便是磁各向异性,即磁学特性随材料的晶体学方向不同而不同的性质,典型特征便是在不同方向施加磁场会测得不同的磁滞回线。 磁性材料的基本特征可以分为两大类: (1)完全由物质本身(成分组分比)决定的特性。主要有饱和磁化强度Ms和磁感应强度Bs; (2)由物质决定,但随其晶体组织结构变化的特性。主要有磁导率、矫顽力Hc和矩形比Br/Bs,以及磁各向异性。 由此,利用和开发磁性材料就需要有分析技术和加工工艺两个方面的进展。从历史上而言,按材料加工技术进展区分,大体可有以下几个阶段: (1)熔炼铸造技术,获得铁及其合金等软磁和永磁材料。 (2)粉末冶金,开发绝缘性磁性材料、陶瓷材料和稀土永磁材料。 (3)真空镀膜,开发了镀膜磁性材料及非晶磁性材料,制成磁纪录介质及微磁学器件。 (4)单原子层控制技术,制备了定向晶体学取向型、巨磁电阻多层膜、人工超晶格等有特殊用途的磁性材料。 而磁性材料的开发和利用,也就是采取以上这几种技术工艺方法来加强所需要的性能,抑制不利于所需性能的因素。 二、软磁材料和永磁材料 软磁材料,也是高磁导率材料,是应用中占比例最大的传统磁性材料,多用于磁芯。是指由较低的外部磁场强度就可获得很大的磁化强度及高密度磁通量的材料,对这种材料的基本要求是: (1)初始磁导率μi和最大磁导率μm要高,以提高功能效率; (2)剩余磁通密度Br要低,饱和磁感应强度Ms要高,以节省资源并迅速响应外磁场; (3)矫顽力Hc要小,以提高高频性能; (4)铁损要低以提高功能效率;

生物功能材料的研究进展

生物功能材料的研究进展 随着人民生活水平的提高,人们对于医疗保健方面的要求也越来越强,使得对于生物医用材料的要求也越苛刻。本文详细阐述了生物医用功能高分子材料近年来的应用研究及发展状况,综述了国内外生物医用高分子材料的分类、特性及研究成果,展望了未来的生物医用高分子材料的发展趋势。 生物功能材料和加工技术的发展, 使得人工合成材料在医学上的应用, 变得越来越广泛。数十年的医学发展和临床应用, 证明医用高分子材料在人体内外, 获得了成功的应用, 而医学的进步, 又给高分子材料提出了大量新的课题, 使其向“精细化”, “功能化”的方向发展, 赋予了高分子材料以新的生命力。 生物医用高分子材料分合成和天然两大类,下面我们就分别对这两种材料进行详细的论述。 ﹙1﹚天然生物材料 天然生物材料是指从自然界现有的动、植物体中提取的天然活性高分子,如从各种甲壳类、昆虫类动物体中提取的甲壳质壳聚糖纤维,从海藻植物中提取的海藻酸盐,从桑蚕体内分泌的蚕丝经再生制得的丝素纤维与丝素膜,以及由牛屈肌腱重新组构而成的骨胶原纤维等。这些纤维由于他们来自生物体内且都具有很高的生物功能和很好的生物适应性,在保护伤口、加速创面愈方面具有强大的优势,已引起国内外医务界广泛的关注。自然界广泛存在的天然生物材料仍有着人工材料无可比拟的优越性能。例如:迄今为止再高明的材料学家也做不出具有高强度和高韧性的动物牙釉质,海洋生物能长出色彩斑斓、坚阊义不被海水腐蚀的贝壳等等。甲壳素又称几丁质(chitin),广泛存在于虾、蟹等甲壳动物及昆虫、藻类和细菌中,是世界上仅次于纤维素的第二大类天然高分子化合物。它是一种惰性多糖,用浓碱脱去乙酰基可转变成聚壳糖(chintosan)。甲壳素、聚壳糖及其衍生物具有良好的生物相容性和生物降解性。降解产物带有一定正电荷,能从血液中分离出血小板因子,增加血清中H-6水平,促进血小板聚集或凝血素系统,作为止血剂有促进伤口愈合,抑制伤口愈合中纤维增生,并促进组织生长的功能,对烧、烫伤有独特疗效。比如家蚕丝脱胶后可得到纯丝素蛋白成分,丝素蛋白是一种优质的生物医学材料,具有无毒、无刺激性、良好的血液相容性和组织相容性。根据研究报道,由于天然高分子医用材料的独特临床效果,它的应用前景相当广阔。﹙2﹚合成生物材料 由于天然材料的有限,人们需要大量的生物材料来维持他们的健康。合成高分子材料因与人体器官组织的天然高分子有着极其相似的化学结构和物理性能,因而可以植入人体,部分或全部取代有关器官。因此,在现代医学领域得到了最为广泛的应用,成为现代医学的重要支柱材料。与天然生物材料相比,合成高分子材料具有优异的生物相容性,不会因与体液接触而产生排斥和致癌作用,在人体环境中的老化不明显。通过选用不同成分聚合物和添加剂,改变表面活性状态等方法可进一步改善其抗血栓性和耐久性,从而获得高度可靠和适当有机物功能响应的生物合成高分子材料。目前,使用于人体植入产品的高分子合成材料包括聚酰胺、环氧树脂、聚乙烯、聚乙烯醇、聚乳酸、聚甲醛、聚甲基丙烯酸甲酯、聚四氟乙烯、聚醋酸乙烯酯、硅橡胶和硅凝胶等。应用场合涉及组织粘合、手术缝线、眼科材料(人工玻璃体、人工角膜和人工晶状体等)、软组织植入物(人工心脏、人工肾、人工肝等)和人工管形器(人工器官、食道)等。 合成医用高分子材料发展的第一阶段始于1937年,其特点是所用高分子材料都是已有的现成材料,如用丙烯酸甲酯制造义齿的牙床。第二阶段始于1953年,其标志是医用级有机硅

国内磁性材料业状况和前景

国内磁性材料业状况和前景 1中国磁体产业的发展历程 目前,全球的经济已进入了一个信息时代,作为一种功能材料,磁性 材料所占的地位越来越重要。当前主要的商品磁体共有4类:20世纪 30年代开发的铝-镍-钴永磁(AlNiCo);50年代初期开发的铁氧体磁体;60年代末开发的钐-钴磁体(Sm-Co),包括第一代稀土永磁-SmCo5和第二代稀土永磁-Sm2Co17;80年代初开发的稀土永磁钕铁硼(Nd-Fe-B)。而稀土永磁,特别是钕铁硼是磁性材料里最重要的一部分,在永磁材料中发展最快,平均以每年10%的速度增长。中国磁体 产业在中国的出现远较西方发达国家晚,起始期是1969年到1987年 之间。因为当时的稀土永磁钐钴磁体的高成本、国内市场的需求量少,所以到八十年代初还没有形成自己的磁体工业。1987~1996的十年是 中国磁体产业开始发展的第一阶段,其特点是起点低:因为投资小, 设备简陋,生产设备基本完全是国产的,经营理念落后,仍局限于小 生产的模式。 1997~2002的五年是中国磁体产业发展的第二阶段,其特点是起点远高于前一阶段:投资强度大,引进一部分国外的先进技术设备,能够 按先进的工艺路线组织生产,产品质量一般属中低档。2003年起,中 国磁体产业的发展将进入第三阶段。企业建立的特点将是“三高”, 即高起点、高投入、高回报:1)产品瞄准特定用途所需的高档磁体; 投资规模巨大,引进整条先进生产线;2)按现代化管理的理念,组织 集约式分段联营的大生产:磁体生产分为两段—母合金/粉料的生产和 磁体制备,投资显著降低,效益则大为提升;3)按资本运作的规律运营,从而保证磁体产业较高的回报率。特别是有可能从国外引进最先 进的或采用国产先进生产线,生产高档的磁体产品。 进入21世纪,发达国家的磁体生产因为成本过高,已难以为继,世 界磁性材料行业纷纷向中国或第三世界地区转移,中国作为首选的国家。世界一些著名的磁性材料制造企业看好中国,如日本的TDK、FDK、

合成材料新型有机高分子材料

合成材料新型有机高分子材料 第八章合成材料 第二、三节合成材料、新型有机高分子材料(命题人:邱常清)姓名________ 班级________ 学号________ 一、选择题 1、现代以石油化工为基础的三大合成材料是() ①合成氨,②塑料,③医药,④合成橡胶,⑤合成尿素,⑥合成纤维,⑦合成洗涤 剂 A.②④⑦ B.②④⑥ C.①③⑤ D.④⑤⑥ 2、科技文献中经常显现的下列词汇,其中与相关物质的颜色并无联系的是() A.赤色海潮B.绿色食品C.白色污染D.棕色烟气 3、下列塑料可作耐高温材料的是() A.聚氯乙烯B.聚四氟乙烯C.聚苯乙烯D.有机玻璃 4、下列物质中,在氧气中完全燃烧,只生成水和二氧化碳的是() C.蛋白质D.硫化橡胶 5、室内空气污染的要紧来源之一是现代人的生活中使用的化工产品,如泡沫绝缘材料的办公用品、化纤地毯及书报、油漆等不同程度开释出的气体。该气体可能是()A.甲醛B.甲烷C.CO D.CO2 6、下列材料中属于合成高分子材料的是()A.羊毛B.棉花C.粘合剂D.蚕丝 7、下列化合物不属于天然有机高分子化合物的是() A.淀粉B.油脂C.纤维素D.蛋白质

8、下列物质属于塑料的是() A.有机玻璃B.锦纶C.电木D.白明胶 9、丁列物质属于人造纤维的是() A.木材B.粘胶纤维C.丙纶D.涤纶 10、下列塑料的合成,所发生的化学反应类型与另外三种不同的是() A.聚乙烯塑料B.聚氯乙烯塑料C.酚醛塑料D.聚苯乙烯塑料 二、填空题 11、塑料的要紧成分是__________,热塑性塑料的特点是_______________________; 热固性塑料的特点是________________________。 12、人造纤维的原料是________,合成纤维的原料是________________。 13、合成橡胶是以________为原料,以________为单体聚合而成的。 14、已知涤纶树脂的结构简式为: 则合成涤纶树脂所需的单体是________________。 15、合成相对分子质量在2000~50000范畴内具有确定结构的有机化合物,是一种新研 究领域。1993年报道:合成了两种烃A和B,其分子式分不为C1134H1146和 C1398H1278。B的结构跟A相似,但分子中多了一些结构为的结构单元。B分子比A分子多了_______(填写数字)个如此的结构单元。

关于磁性材料的发展研究综述

关于磁性材料的发展研究综述 关键词:磁性材料、钕铁硼永磁材料、纳米磁性材料、磁电共存、应用及前景 摘要:磁性材料,是古老而用途十分广泛的功能材料,与信息化、自动化、机电一体化、国防、国民经济的方方面面紧密相关。人们对钕铁硼永磁材料的研究和优化,是磁性材料进一步发展,并逐渐深入到纳米磁性材料的研发和研究…… 关于磁性材料的研究发展综述 一、磁性材料简介 实验表明,任何物质在外磁场中都能够或多或少地被磁化,只是磁化的程度不同。根据物质在外磁场中表现出的特性,物质可分为五类:顺磁性物质,抗磁性物质,铁磁性物质,亚磁性物质,反磁性物质。根据分子电流假说,物质在磁场中应该表现出大体相似的特性,但在此告诉我们物质在外磁场中的特性差别很大.这反映了分子电流假说的局限性。实际上,各种物质的微观结构是有差异的,这种物质结构的差异性是物质磁性差异的原因。我们把顺磁性物质和抗磁性物质称为弱磁性物质,把铁磁性物质称为强磁性物质。通常所说的磁性材料是指强磁性物质。磁性材料按磁化后去磁的难易可分为软磁性材料和硬磁性材料。磁化后容易去掉磁性的物质叫软磁性材料,不容易去磁的物质叫硬磁性材料。一般来讲软磁性材料剩磁较小,硬磁性材料剩磁较大。 二、磁性材料分类 磁性是物质的一种基本属性。实验表明,任何物质在外磁场中都能够或多或少地被磁化,只是磁化的程度不同。物质按照其内部结构及其在外磁场中的性状可分为抗磁性、顺磁性、铁磁性、反铁磁性和亚铁磁性物质。铁磁性和亚铁磁性物质为强磁性物质,抗磁性和顺磁性物质为弱磁性物质。磁性材料按性质分为金

属和非金属两类,前者主要有电工钢、镍基合金和稀土合金等,后者主要是铁氧体材料。按使用又分为软磁材料、硬磁材料和功能磁性材料。功能磁性材料主要有磁致伸缩材料、磁记录材料、磁电阻材料、磁泡材料、磁光材料,旋磁材料以及磁性薄膜材料等,反映磁性材料基本磁性能的有磁化曲线、磁滞回线和磁损耗等。 1、软磁材料软磁材料亦称高磁导率材料、磁芯材料,对磁场反应敏感,易于 磁化。大体上可分为四类:①合金薄带或薄片:FeNi(Mo)、FeSi、FeAl等。 ②非晶态合金薄带:Fe基、Co基、FeNi基或FeNiCo基等配以适当的Si、 B、P和其他掺杂元素,又称磁性玻璃。。磁介质(铁粉芯):FeNi(Mo)、FeSiAl、 羰基铁和铁氧体等粉料,经电绝缘介质包覆和粘合后按要求压制成形。④铁氧体:包括尖晶石型──M O·Fe2O3 (M代表NiZn、MnZn、MgZn、Li1/2Fe1/2Zn、CaZn等),磁铅石型──Ba3Me2Fe24O41(Me代表Co、Ni、Mg、Zn、Cu及其复合组分)。 2、硬磁材料硬磁材料,又称永磁材料,不易被磁化,一旦磁化,则磁性不易消 失。目前使用的永磁材料答题分为四类:①阿尔尼科磁铁:其构成元素Al、Ni、Co(其余为Fe),是强磁性相α1在非磁性相α2中以微晶析出而呈现高矫顽力的材料,对其进行适当处理,可增大磁积能。②铁氧体永磁材料:以Fe2O3为主要成分的复合氧化物,并加入钡的碳酸盐。③稀土类钴系磁铁:含有稀土金属的钴系合金,具有非常强的单轴磁性各向异性。④钕铁硼系稀土永磁合金:该合金采用粉末冶金方法制造,是由④Nd2Fe14B、 Nd2Fe7B6和富Nd相(Nd-Fe,Nd-Fe-O)三相构成,其磁积能是目前永磁材料中的最高纪录。 三、磁性材料的应用 由于磁体具有磁性,所以在功能材料中备受重视。磁体能够进行电能转换(变压器)、机械能转换(磁铁、磁致伸缩振子)和信息储存(磁带)等。 磁粉芯是由铁磁性粉粒与绝缘介质混合压制而成的一种软磁材料。由于铁磁

分子磁性材料及其研究进展

第27卷第4期2012年8月 大学化学 UNIVERSITY CHEMISTRY Vol.27No.4 Aug.2012  分子磁性材料及其研究进展* 袁梅 王新益 张闻 高松** (北京大学化学与分子工程学院 北京100871) 摘要 对分子磁性材料的一些基本概念和磁学现象作了简单介绍,主要包括磁耦合二磁有序二磁弛豫和自旋交叉等几个方面三重点综述了单分子磁体二单链磁体二自旋交叉化合物二多功能复合磁体以及磁性分子组装领域的研究进展三 关键词 分子磁性 单分子磁体 单链磁体 自旋交叉 多功能复合磁体 分子磁性材料是一类通过化学方法将自由基或顺磁离子(包括过渡金属离子和稀土金属离子)及抗磁配体以自发组装和控制组装的方式组合而形成的磁性化合物三由于较传统磁体有着密度小二透明度高二溶解性好二易于加工二可控性好等优点,并有望在航天材料二微波材料二信息记录材料二光磁及电磁材料等领域得到应用,所以近年来对分子磁性的研究已经成为化学二物理学以及材料科学等多个领域研究的热点之一[1]三 分子磁性是指由材料中具有未成对电子的顺磁中心在配位化学环境中通过孤立或者协同作用表现出来的行为三通过研究孤立顺磁离子在配体场中的自旋状态,人们可以实现高低自旋态之间的转变,并通过温度二压力二光照等外场实现可控调节[2];通过研究自旋之间的协同行为,人们可以对磁耦合作用二磁有序温度等进行调节,从而得到各种具有不同体相磁性质的材料三除了常见的抗磁二顺磁二铁磁二亚铁磁和反铁磁性外,在分子磁性材料中还发现了很多新颖和复杂的磁现象,如单分子磁体二单链磁体二自旋交叉等磁性双稳态,spin?flop转变,变磁性和弱铁磁性等三化学家希望在分子化合物中实现和观察到这些新的磁现象,给物理学家提供新的研究模型,进而探讨它们的物理机制三本文将对这些分子磁性材料的基本概念和各种磁现象作简单介绍,并对目前的若干研究热点如单分子磁体二单链磁体以及自旋交叉配合物等作重点介绍[3?5]三 1 磁耦合[6?10] 要得到具有协同磁作用的磁性材料,体系中就必须存在磁耦合三在量子理论中,耦合也称为交换(exchange),最重要的几种交换作用包括直接交换二间接交换二各向异性交换以及偶极?偶极交换等三1.1 直接交换 直接交换(direct exchange)作用起源于相邻原子轨道的重叠,仅涉及相邻原子局域的电子自旋,即原子间没有其他原子来隔开传递交换的通路三这种作用主要存在于金属和合金中,而在金属配合物中则可以被忽略三 * **基金资助:国家自然科学基金项目;科技部项目通讯联系人,E?mail:gaosong@https://www.sodocs.net/doc/ad17248402.html,

相关主题