搜档网
当前位置:搜档网 › 断裂力学的研究意义

断裂力学的研究意义

断裂力学的研究意义
断裂力学的研究意义

1绪论

1.1断裂力学的研究意义

断裂是一种失效模式。在各种工程领域中,经常发生起源于断裂或者终结于裂纹扩展的灾难性破坏事故,如地震引起的地质构造开裂和结构工程垮塌、碰撞引起的交通运载工具损坏、压力管道的裂纹失稳扩展和机械构件的断裂等,这些事故对人民的生命和财产造成了重大损失。由于起裂的原因难以量化确定,因此,起裂后的裂纹能否继续扩展或者发生止裂的断裂力学研究具有十分重要的理论意义和应用前景。

当代断裂力学的繁荣和它在未来的生命力正是缘于它已深深地根植于现代高科技领域和工程应用之中。例如,大型计算机的硬件条件使我们有可能对复杂的断裂过程进行数值模拟,现代物理学提供的新的实验手段,如高倍电子显微镜、表面分析、高速摄影等观测和测量技术使我们能够更深入地研究宏观、细观乃至微观的断裂过程。正是这种对于断裂基本规律的深入认识,有助于发挥断裂力学在工程应用中的理论指导作用。例如,材料增韧和新材料的研制、生物和仿生材料的开发、建筑和核反应堆等结构的抗震设计和建造、微电子元器件的研究和制备、地质力学与地震预报、油气开采和储运、航空航天的新飞行器设计等。断裂力学与现代科学和高技术成果的有机结合,使其呈现出崭新的面貌。

现实中的裂纹一般都是三维的,并且具有复杂的形状和任意扩展的路径。长期以来,在三维结构中裂纹沿曲线或曲折路径扩展是一个棘手的力学难题,传统断裂力学中对裂纹是平直的假设不再成立,因此理论的研究手段显得束手无策,对它的研究更多地是从实验方面展开,唯象的经验性的结果占据多数,而且是以平面裂纹为主。近几十年来,计算机技术的发展为数值模拟奠定了基础,有限元等计算力学方法的提出和发展也为用数值方法解决这一难题提供了条件,应用计算力学的方法对裂纹在三维实体和曲面中任意扩展进行模拟分析已成为这个领域的研究热点。目前常用的断裂力学计算方法有传统有限元+自适应网格(Miehe和Gürses,2007)、节点力释放方法(Zhuang和O’Donoghue,2000)、单元间内聚力模型(Xu和Needleman,1994)及嵌入不连续模型(Belytschko等,1988)等。在处理复杂形状裂纹时这些方法都有着一定的局限性,比如裂纹扩展路径必须预先给定、裂纹只能沿单元边界扩展、计算成本偏高等。为了更好地解决这些问题,扩展有限单元法应运而生,成为解决复杂断裂问题的最有效方法之一。

1.2扩展有限元介绍

科学家在20世纪对人类最伟大的贡献之一是发明了计算机,这一发明极大地推动了相关科学学科研究和产业的发展。以力学学科的计算力学为例,随之诞生和发展的有限元、有限体积和有限差分等方法,使传统的繁杂的力学问题得以进行数值模拟和计算分析,更关键的是解决了大量的工程和科学仿真问题。在现代信息技术和各种计算科学高度发展的今天,基于仿真的工程与科学

(simulation-based engineering and science)已经成为科学家探索科学奥秘

的得力助手,成为工程师们实施工程创新或产品开发,并确保其可靠性的有效工具。而有限元及其计算程序正是我们实现工程与科学仿真的工具之一。

自20世纪50年代中期第一篇有关有限元的文章问世以来,发表了大量的有限元文章和出版了许多专著,其中一些成功的实验报道和专题文章,对有限元的发展做出了重要贡献。直到60年代,有限元软件的开发和迅速应用,对工程分析造成了巨大冲击,顺应了蓬勃兴起的有限元数值计算环境,满足了基于仿真的工程与科学的大量需求。如果把有限元比作一棵大树,正是它的几个重要分支的兴起与发展,如杂交元、边界元、无网格、扩展有限元等,才使得有限元这棵参天大树扶摇直上,枝繁叶茂。

传统的有限元方法是将一个物理实体模型离散成为一组有限个、且按一定方式相互连接在一起的单元组合体,但是在剖分单元网格的时候必须考虑物体内部的缺陷,如界面、裂纹、孔洞和夹杂等,使单元边界与几何界面一致,这就难免形成局部网格加密,而其余区域稀疏的非均匀网格分布。在网格中单元的最小尺寸决定了显式计算时间增量的临界步长,这无疑增加了计算成本;再是裂纹扩展路径必须预先给定,裂纹只能沿单元边界扩展,难以形成任意裂纹路径。针对有限单元法处理裂纹等非连续界面问题存在的弊端,1999年,美国西北大学的Belytschko和Moёs提出了一种新的计算方法——扩展有限单元法(Belytschko 和Black,1999; Moёs等,1999),在传统有限单元法的基础上进行了重要的改进。近十年来扩展有限单元法不断完善并发展,逐渐成为了一种处理非连续场、局部变形和断裂等复杂力学问题的功能强大、极具应用前景的新方法,在土木工程、航天航空、材料科学等诸多领域得到了广泛应用。

扩展有限元的核心思想是用扩充的带有不连续性质的形函数基来代表计算域内的间断,因此在计算过程中,不连续场的描述完全独立于网格边界,这使其在处理断裂问题上具有得天独厚的优势。图1-1所示为三维断裂的扩展有限元模拟结果(Areias 和 Belytschko,2005)。从图中可以看到裂纹面和裂纹前沿完全独立于网格。利用扩展有限元,还可以方便地模拟裂纹沿任意路径扩展,图1-2所示为应用扩展有限元模拟裂纹分叉扩展(Belytschko等,2003)。

图1-1三维断裂XFEM模拟:位移扩大200倍

(Areias和Belytschko,2005)

图1-2扩展有限元模拟分叉裂纹(Belytschko等,2003)

扩展有限元不仅可以模拟裂纹,还可以用来模拟含孔洞和夹杂的非均质材料(Belytschko等,2003; Sukumar等,2001)。

图1-3碳纳米管复合材料模拟

(Belytschko等,2003)

在裂纹两侧间断的是位移,而在夹杂和两相材料边缘两侧间断的是应变——位移的空间导数。这两种情况分别被定义为强间断(位移场不连续)和弱间断(位移场导数不连续),在扩展有限元计算时只要采用不同形式的扩充形函数即可对它们进行精确捕捉。图1-3是应用扩展有限元研究碳纳米管复合材料胞元的有效模量的算例(Belytschko等,2003),由于网格边界不必与材料界面重合,模拟中完全使用六面体结构单元对代表体积单元(RVE)进行网格划分,极大地提高了建模效率。

扩展有限元的另一个优点是可以充分利用已知解析解答构造形函数基,在较粗网格上即能得到较精确解答。在使用传统有限元方法模拟奇异场时必须局部加密网格,如裂纹尖端或位错核附近的应力场,而在扩展有限元中则可以通过把已知的裂纹或位错的位移场渐进解引入扩充形函数中,使用较粗网格即可得到满意解答。图1-4所示为一边含有裂纹的有限大板,改变裂纹长度可以得到一组应力强度因子。XFEM模拟中无须对裂纹尖端进行网格细化,使用41×41四边形网格即可得到与解析解吻合较好的结果。

图1-4有限大板内静止裂纹尖端应力强度因子

值得指出的是,边界元法(boundary element method)及无网格法(element free method)也在处理裂纹等不连续问题中有着重要的应用(Blandford等,1981;Belytschko等,1994),但是由于这些方法一些固有的缺陷限制了它们的推广,如:边界元法不便于处理非线性、多介质等复杂问题;无网格法缺少坚实的理论基础和严格的数学证明,存在一些未确定的参数如插值域大小、背景积分域大小等;没有成熟的商业软件包。而扩展有限元在标准有限元框架内研究问题,保留了传统有限元的所有优点,目前一些商业有限元软件如ABAQUS、LS-DYNA

等已经初步具备了XFEM的断裂分析模块。

综上所述,XFEM的优越性可以归结为以下几点:

(1)允许裂纹在单元内部和穿过单元,可以在规则网格上计算复杂形状裂纹,模拟裂纹扩展时,不需要对网格进行重新剖分,节省了计算成本;

(2)在裂纹面和裂纹尖端采用增强函数构造非连续性,对裂纹面和裂纹尖端附近的单元节点增加附加自由度,通过满足适当性质的形函数来捕捉裂纹尖端奇异场,可以在粗网格上获得精确解答;

(3)与连续剖分的有限元比较,在不同的剖分单元之间不需要那么多的映射;(4)与边界元相比,它适用于各种材料性质和多介质问题,更适用于几何和接触非线性问题;

(5)可以用于大型有限元并行计算技术,其程序可以写入商用有限元软件。这些优势是其能够得到成功推广和应用的重要原因。

1.3扩展有限元研究现状和发展

扩展有限元自1999年诞生,已经历经十多年的成长和发展。我们把其发展大体归结为以下两个方面:一是其自身相关理论的完善,如混合单元(blending element)的处理、不连续场的分区域积分、显式积分稳定性、扩充形函数基的拓展等,后面章节将陆续分别予以详细介绍;二是单元类型的发展,从二维单元逐步发展到三维实体单元和壳体单元,这部分至今仍是XFEM研究的重点方向之一。

1.3.1扩展有限元理论的发展

Belyschko和Black(1999)首次提出用独立于网格剖分的有限元思想来解决裂纹扩展问题,在传统有限单元法的基础上对裂纹尖端或裂纹面附近的单元节点采用裂纹近场位移解进行增强,解释裂纹的出现。随后,Moёs等(1999)引入阶跃函数和裂尖函数两种扩充形函数(enrichment shape function)分别对裂纹面和裂尖进行描述,并把该方法称为“扩展有限单元法”(XFEM)。通过在裂纹尖端所在单元加入多个扩充形函数,Daux等(2000)又实现了裂纹分叉的XFEM模拟。然后Belytschko等(2003)在扩展有限元中引入了一种新的开裂判据——双曲性缺失判据:用介质中双曲性质的缺失情况来判断裂纹的扩展路径和速度。

当对裂尖或裂纹面所在单元进行XFEM增强后,其相邻单元一部分节点同时具有扩展有限元自由度和标准有限元自由度,一部分节点则只具有标准有限元自由度,这种单元被称为混合单元(blending element)。混合单元的出现会影响计算的收敛性。Chessa等(2003)通过扩展应变法改善混合单元的性能,Legay等(2005)发现混合单元的收敛性能随着单元阶次的增加而提高,即在高阶单元中无须对混合单元进行特殊处理。早期的扩展有限元只对最靠近裂尖的单元节点进行强化,Ventura等(2005)研究了裂纹尖端强化区域的大小对收敛速度的影响,发现扩大强化区域或固定强化区域而细化网格都能提高收敛效率。

扩展有限单元法对整体位移求解是精确的,但是对于裂纹尖端的应力强度因子的计算则需要通过一个后处理程序用主域形式的等值线积分或者最小二乘法实现。Liu等(2004)为了不通过后处理程序直接获得精度较高的裂纹尖端应力强度因子,不仅使用裂纹近场解的一阶项还使用高阶项对裂纹尖端节点进行增强(在扩展有限单元法只使用一阶项)。其采用减缩积分方法的数值模拟结果表明,该方法不需要后处理程序就可以直接提高应力强度因子的精度。

Song等(2006)通过重新安排XFEM基函数和节点自由度,实现了用叠加单元和虚拟节点来描述含裂纹单元。该方法不引入多余自由度,便于在已有的有限元程序中实现扩展有限元功能;另一方面,该方法采用一点减缩积分,在精度允许的范围内避免了分区域积分的使用。但该方法只适用于对裂纹进行阶跃函数增强的情况。

Menouillard等(2006)对扩展有限元的显式积分稳定性进行了系统研究,给出了显式分析中质量阵的对角化方法。Fries和Belytschko(2006)把扩展有限元与无网格方法结合起来,这样可以避免增加额外的未知量。Ribeaucourt(2007)在其工作中引入了裂纹面之间的接触。金峰等提出了基于扩展有限元法的粘聚裂纹模型(方修君,2007),并将其应用于模拟重力坝地震开裂过程(方修君,2008)。裂纹尖端特别是动态裂纹的模拟方面的精度很难达到,Menouillard引入 Zhuang 和Cheng(2011)应用XFEM开展了双材料亚界面裂纹扩展路径的研究。Liu等(2011)把谱单元和扩展有限元相结合,有效地改善了动态裂纹扩展模拟中的数值扰动问题。

除了在断裂力学方面外,扩展有限元与其他力学领域相结合后也结出了丰硕的果实。Chessa和Belytschko把在空间上扩充形函数的思想推广到了时间尺度上(Chessa和Belytschko,2004; Belytschko和Chessa,2006),这种方法被称为时空扩展有限元(STX-FEM)。在处理时间间断问题时,时空扩展有限元表现出得天独厚的优势。Réthoré和Gravouil(2005)采用了一种类似的时空扩展有限元格式,取得了显著成效。Sukumar等(2001)通过构造新的扩充形函数基用XFEM 成功模拟了含孔洞和夹杂的非均质材料,在复合材料数值模拟领域具有重要意义。基于Volterra位错模型,Gracie等(2008)应用扩展有限单元法在细观尺度上模拟了二维和三维固体材料中的位错,首次实现了位错的有限元模拟。此外,扩展有限元在剪切带演化(Samaniego和Belytschko,2005)、多相流(Chessa和Belytschko,2003)、纳米界面力学(Farsad等,2010)、多尺度模拟(Belytschko 和Gracie,2009)等研究领域也方兴未艾,展示了其广阔的应用前景和蓬勃的生命力。

1.3.2三维扩展有限元的发展

扩展有限元早期的研究主要集中在解决二维断裂问题,随其应用的迅速推广,平面单元已经不能满足科学研究和工程应用需求,一些复杂断裂问题如地震引起的道路开裂和房屋桥梁垮塌,碰撞引起的车辆、飞机和船舶损坏,压力管道的裂纹失稳扩展和机械构件的断裂等迫切需要三维扩展有限元的出现。

Sukumar等人(2000)首次将扩展有限元拓展到三维,当研究平面Ⅰ型裂纹问题时,在垂直裂纹尖端的平面内建立极坐标系表示裂尖扩充形函数,其函数形式与二维问题相同。三维动态断裂模拟中的难点是如何保持裂纹面和裂纹扩展方向的连续性和光滑性。Areias和Belytschko(2005)通过调整裂纹面法线使该条件得到近似满足。Duan等(2009)通过引入单元水平集描述裂纹面,采用最小二乘法进一步改进了裂纹面方向和由开裂准则预测的扩展方向的连续性。三维裂纹分叉、应力强度因子求解及裂纹扩展准则等仍是该研究方向的热点问题。

Areias和Belytschko (2005)首次将扩展有限元引入壳单元,他们的工作基于4节点Belytschko-Lin-Tsay壳单元。通过引入扩展有限元,垂直于壳中面的穿透裂纹可以在壳单元内任意扩展。由于强制引入了纤维不可伸长条件,因此壳体变形时不考虑厚度的变化。为了便于编制程序,Areias和Belytschko (2006)还使用另一种方法——成对单元叠加来处理Kirchhoff-Love四边形壳单元上的裂纹。所谓成对单元叠加方法是指在同一个位置铺设两层单元,壳的位移场由这两层单元的节点自由度组合而成。在这些工作中,有如下三点假设:①壳上没有裂纹的区域满足一般本构方程,有裂纹的区域满足内聚力法则,两区域互相独立;

②连续体应力仅与变形梯度的有界项有关;③假设变形场与协调变形梯度的无界项无关。在模拟中判断裂纹扩展用到的准则是内聚力模型,应力强度因子的计算借用了平面薄膜应力强度因子Km和平板弯曲应力强度因子Kb分开计算的概念。借助这些方法,薄壳中任意形状裂纹扩展得以实现。此后Song和Belytschko(2009)利用这种方法对管道开裂进行了模拟,结果如图1-5所示。

图1-5管道开裂的XFEM模拟结果(Song和Belytschko,2009)

最近,Zhuang和Cheng(2011)基于连续体的壳单元(continuum-based shell,CB壳)建立了新的壳体扩展有限元格式,其优势是:①在壳体变形时,允许厚度发生变化,以改进现有的TB壳扩展有限元不考虑壳厚度的变化因而只适用于薄壳的局限;②统一了含裂纹壳体扩展有限元的理论模型,以改进在裂纹尖端附近采用Mindlin-Reissner理论、在远离裂纹尖端采用Kirchhoff-Love理论的复杂计算模型;③新的壳体扩展有限元格式对裂纹面的构造进行创新,允许裂纹面不垂直于壳中面,这样可以模拟更复杂的断裂模式;④在新的壳体扩展有限元格式中包含三维应力强度因子的计算及其裂纹扩展准则。由此基于三维断裂的概念建立了一套全新的壳体扩展有限元格式,并且自主完成了程序编制,目前约有一万条程序。该方法将在第6章进行详细介绍。

1.4本书章节安排

本书第2章和第3章为断裂力学简述,分别介绍静态线弹性和动态断裂力学的基本内容,如裂纹扩展准则和计算应力强度因子的相互作用积分方法等,以及应用传统有限元模拟扩展裂纹的节点力释放技术。这两章为后续章节准备了所需要的断裂力学基础知识,熟悉断裂力学的读者可以跳过这两章。第4章和第5章为扩展有限元的基本内容。第4章介绍扩展有限元的理论基础、水平集方法扩充形函数的数学描述、弱形式及有限元离散格式等。第5章以二维扩展有限元计算格式为依据,通过自编程序将其应用于各类简单平面间断问题,以讨论扩展有限元的控制方程、应用技巧和计算精度,并验证公式和程序。第6章至第9章为若干应用举例,介绍本书作者的科研成果。第6章描述了基于连续体的壳单元的扩展有限元格式,以模拟曲面壳体上任意形状裂纹扩展,以及三维扩展有限元程序中所用到的数值方法、扩展准则和应力强度因子的计算方法、动态问题的隐式和显式积分算法,及其在三维曲面壳体上任意扩展裂纹的算例等。第7章对平面复杂形状裂纹扩展问题进行深入研究,作为案例,重点研究了在非均匀的材料(如双材料)中裂纹扩展的机理,描述了二维扩展有限元程序在双材料亚界面裂纹扩展问题中的实际应用,模拟了双材料亚界面裂纹扩展的实验,讨论了双材料试件的材料非均匀性、载荷非对称性和初始裂纹位置与长度对亚界面裂纹Ⅰ型扩展平衡态的影响。第8章为扩展有限元在非均质材料及复合材料模拟中的应用,研究了聚合物基复合材料的力学性能,以及超声波在三维颗粒/短纤维夹杂复合材料中的传播,并与实验及理论结果进行比较,验证了该方法在复合材料模拟中的有效性。第9章描述了XFEM在二维两相流模拟中的应用,展示了XFEM计算多场多相问题的应用前景。第10章结合作者课题组的科研工作介绍了扩展有限元在微纳米力学、多尺度计算等新领域的应用。

1.5练习

1-1说明发展XFEM的科学意义及其基本思想。

1-2针对计算裂纹扩展和非连续界面问题,比较XFEM与传统有限元、边界元、无网格等方法的优势和不足。

1-3举例说明XFEM的潜在应用。

2线弹性断裂力学基础

2.1引言

在固体中发生的断裂几乎都是源于在材料中形成位移的间断面。一般将裂纹问题划分为三种基本类型:类型Ⅰ为张开型(opening mode),其裂纹表面位移彼此相反,方向均垂直于裂纹的扩展方向,这是工程上常见的裂纹形式,如图2-1(a)所示;类型Ⅱ为滑开型 (sliding mode),裂纹上下表面位移也彼此相反,一个沿着裂纹扩展方向,另一个背离扩展方向,如图2-1(b)所示;类型Ⅲ为撕开型(anti-plane shear mode),裂纹上下表面产生方向相反的离面位移,如图2-1(c)所示。

图2-1断裂模型

(a) 张开型; (b) 滑开型; (c) 撕开型

在断裂的过程中,裂纹尖端处要释放出一定的能量。因此,裂纹尖端附近的应力-应变场必然与此裂纹尖端处的能量释放率有关。若裂纹尖端附近应力-应变场的强度足够大,断裂即可发生; 反之不发生断裂。因此,必须寻求裂纹尖端附近应力-应变场的解答。近代断裂力学是用弹性力学的解析方法得到了一些解答。

在实际工程问题中,一般构件的受载情况是复杂的,萌生裂纹的位置及其扩展方向受到应力分布的影响,裂纹尖端一般处于复合型变形状态。例如压力容器的内壁表面裂纹与轴向成交角,在内压作用下是Ⅰ、Ⅱ复合型,一旦形成穿透裂纹和裂纹扩展,将是Ⅰ、Ⅱ和Ⅲ型的复合型裂纹;又如齿轮外缘常发生的破坏形状类似月偏食的轮廓,这也是Ⅰ、Ⅱ复合型裂纹;再如纤维增强复合材料板为各向异性材料,其裂纹呈锯齿形扩展,也是Ⅰ、Ⅱ复合型裂纹。为了以断裂力学的观点建立裂纹判据,我们关注的是裂纹起裂后是否扩展,及其扩展的速度和方向,或者发生止裂。为了解决这两个问题,必须建立断裂判据。

采用扩展有限元的思想在裂纹尖端构造形函数时,需要借助线弹性断裂力学的解答,所以在2.2节简述了二维线弹性断裂力学,给出了主要应力强度因子的表达式; 2.3节讨论了材料断裂韧度; 2.4节介绍了线弹性材料的断裂判据; 2.5节给出了几种复合型裂纹的计算方法和断裂准则; 2.6节描述了应力强度因子的相互作用积分求解。在本章中忽略了惯性项(动能)对裂纹的影响,为准静态断裂力学。第3章将介绍动态断裂力学内容。

2.2二维线弹性断裂力学简述

Griffith曾提出从能量的角度解释裂纹扩展的机理:材料释放的应变能与形成裂纹所需的表面能相平衡,裂纹才能扩展。一块单位厚度无限大平板,受到垂直于长度为a的中心穿透裂纹的单向均匀拉伸,其应变能为

Vε=-σ22Eπa2(2-1)

其中E为弹性模量,σ为拉伸应力。形成裂纹的表面能为

ES=2γa(2-2)

其中γ为单位面积表面能。裂纹能够扩展意味着当裂纹长度增加da时,应变能释放量对裂纹长度的导数(裂纹驱动力)与裂纹表面能对裂纹长度的导数(阻止裂纹增长的阻力)相等,即

(ES+Vε)a=0(2-3)

由此可得到能够确保裂纹扩展的外载荷值为

σf=2Eγπa(2-4)

对于延性材料,通常使用的是临界应变能释放率GC而非表面能,因此有

σf=EGCπa(2-5)

例如铝合金圆柱形管道的GC=20N/mm,E=76GPa,由于内压力引起的管道环向应力为300MPa,求在此应力的作用下,裂纹的可能扩展长度。

应用式(2-5)求解,得到

a=GCEπσ2f=20×76×103π×3002=5.49(mm)

断裂力学期末考试试题含答案

一、 简答题(80分) 1. 断裂力学中,按裂纹受力情况,裂纹可以分为几种类型?请画出这些类型裂纹的受力示意图。(15分) 2 请分别针对完全脆性材料和有一定塑性的材料,简述裂纹扩展的能量平衡理论?(15分) 3. 请简述应力强度因子的含义,并简述线弹性断裂力学中裂纹尖端应力场的特点?(15) 4. 简述脆性断裂的K 准则及其含义?(15) 5. 请简述疲劳破坏过程的四个阶段?(10) 6. 求出平面应变状态下裂纹尖端塑性区边界曲线方程,并解释为什么裂纹尖端塑性区尺寸在平面应变状态比平面应力状态小?(5分) 7. 对于两种材料,材料1的屈服极限s σ和强度极限b σ都比较高,材料2的s σ和b σ相对较低,那么材料1的断裂韧度是否一定比材料2的高?试简要说明断裂力学与材料力学设计思想的差别? (5分) 二、 推导题(10分) 请叙述最大应力准则的基本思想,并推导出I-II 型混合型裂纹问题中开裂角的表达式? 三、 证明题(10分) 定义J 积分如下, (/)J wdy T u xds Γ =-????,围绕裂纹尖端的回路Γ,始于裂纹下表面,终于裂纹上表面,按逆时针方向转动,其中w 是板的应变能密度,为作用在路程边界上的力,是路程边界上的位移矢量,ds 是路程曲线的弧元素。证明J 积分值与选择的积分路程无关,并说明J 积分的特点。 四、 简答题(80分) 1. 断裂力学中,按裂纹受力情况,裂纹可以分为几种类型?请画出这些类型裂纹的受力示意图。(15分) 答: 按裂纹受力情况把裂纹(或断裂)模式分成三类:张开型(I 型)、滑开型(II 型)和撕开型(III 型),如图所示

损伤与断裂力学论文

损伤力学研究的是材料内部缺陷的产生和发展引起的宏观力学效应以及缺陷最终导致材料破坏的过程和规律。1958年Kachanov在研究蠕变断裂时引入了损伤力学的概念,提出了“连续性因子”和有效应力。1963年Rabotonov在Kachanov基础上引入了“损伤变量”的概念,奠定了损伤力学的基础。在其后的二三十年中,各国学者对损伤力学的基本概念、研究方法、损伤变量的定义等做了大量的开创性工作,极大推动了损伤力学理论的进展。1976年Dougill将损伤力学从金属材料中引入到岩石材料,之后岩石损伤力学迅速发展,已成为当今岩石研究领域的热门课题之一。 岩石损伤力学的研究关键是定义材料的损伤变量及正确地给出演变规律的本构方程。能否得到合理的损伤演变方程和含损伤的本构方程关键是对损伤变量的定义是否合理,建立一个损伤模型的基本要求是能在实验中直接或间接确定与损伤演变规律有关的材料参数。 对损伤变量的定义,从损伤力学提出就开始进行广泛的研究,可从微观和宏观这两个方面选择。微观方面,可以选择裂纹数目、长度、面积和体积等;宏观方面,可以选择弹性模量、屈服应力、拉伸强度、密度等。 国内学者唐春安从岩体材料内部所含裂纹缺陷分布的随机性出发,利用岩石微元强度服从正态分布或Weibull分布的特征,用发生破坏的微元数在微元总数中所占的比例来定义损伤变量。 谢和平等将分形几何理论应用于岩石损伤研究中,将岩石损伤程度的增加看作是分形维数的增加,从损伤与断裂之间的联系方面定量的描述了损伤,从而创建了分形几何与岩石力学理论体系,提出了分形损伤力学理论。 从微观角度出发对损伤变量进行定义,不仅物理意义明确,而且能够比较真实地反映材料性能逐渐劣化,但是从微观角度定义的损伤变量难以量测。 Lamaitre基于弹性模量变化用无损杨氏模量和损伤杨氏模量定义损伤变量,谢和平和鞠杨等讨论了该损伤变量定义的适用条件,进行了修正。使基于宏观弹性模量定义的损伤变量在实际应用中比较方便,但这种定义方法需要事先知道材料的初始弹性模量,而且在实际的工程中很多材料都有具有初始损伤的。 谢和平、鞠杨等认为单元强度丧失实则为其粘聚力的丧失,即单元在经历一定的能量耗散后,其内部的损伤达到了最大值,与此同时微结构中的粘聚力完全丧失。国内外学者进行了大量通过能量分析的方法来描述岩体的破坏行为的研究。 另外还有学者使用CT技术在岩石损伤检测中的应用,并给出了一种基于

断裂与疲劳(专升本) 地质大学期末开卷考试题库及答案

断裂与疲劳(专升本) 判断题 1. 力的大小可以用一个简单量表示。(3分) 参考答案:错误 2. “K I = K Ic ”表示K I 与 K Ic 是相同的。(3分) 参考答案:错误 (1). 萌生 (2). 参考答案: 扩展 (3). 参考答案: 断裂 (4). 参考答案: 损伤积累 4. ___(5)___ 有两种定义或表达式, 一是回路积分定义,另一种是___(6)___ ,在塑性力学全量理论的描述下这两种定义是___(7)___ ;其___(8)___ 指J 积分的数值与积分回路无关。(8分) (1). 参考答案: J 积分 (2). 参考答案: 形变功率定义 (3). 参考答案: 等效的 (4). 守恒性(1). 机械加工程度变形 (2). 参考答案: 预制裂纹长度 (3). 参考答案: 小范围屈服长度 (4). 读数显微镜(1). 理论断裂强度 (2). 参考答案: 实际断裂强度 (3). 参考答案: 应力集中系数 (4). 参考答案: 裂口断裂理论 问答题 7. 什么是低应力脆断?如何理解低应力脆断事故?(12分) 参考答案:答:在应力水平较低,甚至低于材料的屈服点应力情况下结构发生的突然断裂,称为低 应力脆性断裂,简称低应力脆断。低应力脆断多与结构件中存在宏观缺陷(主要是裂纹)有关, 同时也与材料的韧性有关。由于应力低,容易“失察”,由于脆性断裂,难于控制即“失控”, 低应力脆性断裂事故多为灾难性的。断裂力学是研究低应力 脆断的主要手段,其研究目的也 主要是预防低应力脆断。 8. 请解说应力场强度因子断裂理论?(12分) 参考答案:答:1)下标“I”表示I 型(张开型)裂纹 2)“K”表示应力强度因子,是外加应力和裂纹长度的函数 3)“K I ”表示I 型(张开型)裂纹的应力强度因子 4)“K Ic ”表示I 型(张开型)裂纹的断裂韧度,是材料抵抗断裂的一个性能指标 5)“K I = K Ic ”是断裂判据,表示I 型(张开型)裂纹的应力强度因子增加到一个临界 值即达到材料的断裂韧度时,就发生脆性断裂。 9. 请论述断裂力学的产生、发展、分类及主要理论?(12分) 参考答案: 严格按传统强度理论设计的工程结构却发生了低应力脆性断裂,这是传统强度理论无法自圆其说的。正是对这类问题的思考和探索,尤其1920格里菲斯裂口断裂理论的提出标志固体力学的一个新分支即将出现。 断裂力学诞生的标志是欧文的应力强度断裂理论的提出。这也是断裂力学的第一次飞跃发展,断裂力学的第二次飞跃发展体现在应力强度因子断裂理论应用在疲劳问题的分析。 根据材料断裂的载荷性质,可分为静态断裂力学和动态断裂力学,或称为断裂静力学和断裂动力学,显然断裂静力学是断裂动力学的基础,一般简称为断裂力学。由于研究的尺度、方法和观点不同,断裂力学可分为微观断裂力学和宏观断裂力学。根据所研究的裂纹尖端附近材料塑性区的大小,宏观断裂力学又可分为线弹性断裂力学和弹塑性断裂力学。 10. 材料有哪些性能?什么是材料的力学性能?金属材料有哪些力学性能指标?力学行为的内涵是什么?(12分) 参考答案: 材料的性能包括热学性能、力学性能(弹性模量、拉伸强度、抗冲强度、屈服强度、耐疲劳强度等)、电学性能、磁学性能、光学性能、化学性能。 材料的力学性能是指材料在不同环境(温度、介质、湿度)下,承受各种外加载荷(拉伸、压缩、弯曲、扭转、冲

损伤与断裂课程总结

中国矿业大学 2013 级硕士研究生课程考试试卷 考试科目损伤与断裂力学 考试时间2014. 01 学生姓名梁亚武 学号ZS13030020 所在院系力建学院 任课教师高峰 中国矿业大学研究生院培养管理处印制

《损伤与断裂力学》课程学习总结 1 前言 据美国和欧共体的权威专业机构统计:世界上由于机件、构件及电子元件的断裂、疲劳、腐蚀、磨损破坏造成的经济损失高达各国国民生产总值的6%到8%。包括压力管道破裂、铁轨断裂、轮毂破裂、飞机、船体破裂等。 长期以来,工程上对结构或构件的计算方法,是以结构力学和材料力学为基础的。它们通常都假定材料是均匀的连续体,没有考虑客观存在的裂纹和缺陷,计算时只要工作应力不超过许用应力,就认为结构是安全的,反之就是不安全的。工作应力根据载荷情况、构件几何尺寸计算出来,许用应力则根据工作条件和材料性质选用。 对于实际结构中可能存在的缺陷和其他考虑不到的因素,都放在安全系数里考虑。安全系数并未考虑到其他失效形式的可能性,例如脆性断裂或快速断裂。人们曾普遍认为,选用较高的安全系数就能避免这种低应力断裂。然而,实践证明并非如此,材料存在缺陷或裂纹的结构或构件,在应力值远低于设计应力的情况下就会发生全面失效。这样的例子很多,因而动摇了上述传统设计思想的安全感,使人们认识到,对含有裂纹的物体必须作进一步的研究。断裂力学就是在这个基础上应运而生的。 断裂力学是研究带裂纹体的强度以及裂纹扩展规律的一门学科。由于研究的主要对象是裂纹,因此,人们也称它为“裂纹力学”。它的主要任务是:研究裂纹尖端附近的应力应变情况,掌握裂纹在载荷作用下的扩展规律;了解带裂纹构件的承载能力,从而提出抵抗断裂的设计方法,以保证构件的安全工作。由于断裂力学能把含裂纹构件的断裂应力和裂纹大小以及材料抵抗裂纹扩展的能力定量地联系在一起,所以,它不仅能圆满地解释常规设计不能解释的“低应力脆断”事故,而且也为避免这类事故的发生找到了办法。同时,它也为发展新材料、创造新工艺指明了方向,为材料的强度设计打开了一个新的领域。 由于研究的观点和出发点不同,断裂力学分为微观断裂力学和宏观断裂力学。微观断裂力学是研究原子位错等晶粒尺度内的断裂过程,根据对这些过程的了解,建立起支配裂纹扩展和断裂的判据。宏观断裂力学是在不涉及材料内部的断裂机

最新无机材料物理性能考试试题及答案

无机材料物理性能考试试题及答案 一、填空(18) 1. 声子的准粒子性表现在声子的动量不确定、系统中声子的数目不守恒。 2. 在外加电场E的作用下,一个具有电偶极矩为p的点电偶极子的位能U=-p·E,该式表明当电偶极矩的取向与外电场同向时,能量为最低而反向时能量为最高。 3. TC为正的温度补偿材料具有敞旷结构,并且内部结构单位能发生较大的转动。 4. 钙钛矿型结构由 5 个简立方格子套购而成,它们分别是1个Ti 、1个Ca 和3个氧简立方格子 5. 弹性系数ks的大小实质上反映了原子间势能曲线极小值尖峭度的大小。 6. 按照格里菲斯微裂纹理论,材料的断裂强度不是取决于裂纹的数量,而是决定于裂纹的大小,即是由最危险的裂纹尺寸或临界裂纹尺寸决定材料的断裂强度。 7. 制备微晶、高密度与高纯度材料的依据是材料脆性断裂的影响因素有晶粒尺寸、气孔率、杂质等。 8. 粒子强化材料的机理在于粒子可以防止基体内的位错运动,或通过粒子的塑性形变而吸收一部分能量,达从而到强化的目的。 9. 复合体中热膨胀滞后现象产生的原因是由于不同相间或晶粒的不同方向上膨胀系数差别很大,产生很大的内应力,使坯体产生微裂纹。 10.裂纹有三种扩展方式:张开型、滑开型、撕开型 11. 格波:晶格中的所有原子以相同频率振动而形成的波,或某一个原子在平衡位置附近的振动是以波的形式在晶体中传播形成的波 二、名词解释(12) 自发极化:极化并非由外电场所引起,而是由极性晶体内部结构特点所引起,使晶体中的每个晶胞内存在固有电偶极矩,这种极化机制为自发极化。 断裂能:是一种织构敏感参数,起着断裂过程的阻力作用,不仅取决于组分、结构,在很大程度上受到微观缺陷、显微结构的影响。包括热力学表面能、塑性形变能、微裂纹形成能、相变弹性能等。 电子的共有化运动:原子组成晶体后,由于电子壳层的交叠,电子不再完全局限在某一个原子上,可以由一个原子的某一电子壳层转移到相邻原子的相似壳层上去,因而电子可以在整个晶体中运动。这种运动称为电子的共有化运动。 平衡载流子和非平衡载流子:在一定温度下,半导体中由于热激发产生的载流子成为平衡载流子。由于施加外界条件(外加电压、光照),人为地增加载流子数目,比热平衡载流子数目多的载流子称为非平衡载流子。 三、简答题(13) 1. 玻璃是无序网络结构,不可能有滑移系统,呈脆性,但在高温时又能变形,为什么? 答:正是因为非长程有序,许多原子并不在势能曲线低谷;在高温下,有一些原子键比较弱,只需较小的应力就能使这些原子间的键断裂;原子跃迁附近的空隙位置,引起原子位移和重排。不需初始的屈服应力就能变形-----粘性流动。因此玻璃在高温时能变形。 2. 有关介质损耗描述的方法有哪些?其本质是否一致? 答:损耗角正切、损耗因子、损耗角正切倒数、损耗功率、等效电导率、复介电常数的复项。多种方法对材料来说都涉及同一现象。即实际电介质的电流位相滞后理想电介质的电流位相。因此它们的本质是一致的。 3. 简述提高陶瓷材料抗热冲击断裂性能的措施。 答:(1) 提高材料的强度 f,减小弹性模量E。(2) 提高材料的热导率c。(3) 减小材料的热膨胀系数a。(4) 减小表面热传递系数h。(5) 减小产品的有效厚度rm。

断裂力学答案

( ( = K I + K I(2) 1.简述断裂力学的发展历程(含3-5 个关键人物和主要贡献)。 答:1)断裂力学的思想是由Griffith 在1920 年提出的。他首先提出将强度与裂纹长度定量 地联系在一起。他对玻璃平板进行了大量的实验研究工作,提出了能量理论思想。(2)断裂 力学作为一门科学,是从1948 年开始的。这一年Irwin 发表了他的第一篇经典文章“Fracture Dynamic(断裂动力学)”,研究了金属的断裂问题。这篇文章标志着断裂力学的诞生。(3) 关于脆性断裂理论的重大突破仍归功于Irwin。他于1957 年提出了应力强度因子的概念,在 此基础上形成了断裂韧性的概念,并建立起测量材料断裂韧性的实验技术。这样,作为断裂 力学的最初分支——线弹性断裂力学就开始建立起来了。(4)1963 年,Wells 提出了裂纹张 开位移(COD)的概念,并用于大范围屈服的情况。研究表明,在小范围屈服情况下COD 法与LEFM 是等效的。(5)1968 年,Rice 等人根据与路径无关的回路积分,提出了J 积分 的概念。J 积分是一个定义明确、理论严密的应力应变参量,它的实验测定也比较简单可靠。 J 积分的提出,标志着弹塑性断裂力学基本框架形成。 2.断裂力学的定义,研究对象和主要任务。 答:1)断裂力学的定义:断裂力学是一门工程学科,它定量地研究承载结构由于所含有的 一条主裂纹发生扩展而产生失效的条件。 (2)研究对象:断裂力学的研究对象是带有裂纹的承载结构。 (3)主要任务:研究裂纹尖端附近应力应变分布,掌握裂纹在载荷作用下的扩展规律;了 解带裂纹构件的承载能力,进而提出抗断设计的方法,保证构件安全工作。 3.什么是平面应力和平面应变状态,二者有什么特点?请举例说明之。 答:(1)平面应力:薄板问题,只有xoy 平面内的三个应力分量σ x、σ y、τ xy; ε z ≠ 0, 属三向应变状态。 (2)平面应变:长坝问题,与oz 轴垂直的各横截面相同,载荷垂直于z 轴且沿z 轴方向无 变化; ε z = 0, σ z ≠ 0,属三向应力状态;材料不易发生塑性变形,更具危险。 4.什么是应力强度因子的叠加原理,并证明之。掌握工程应用的方法。 答:(1)应力强度因子的叠加原理:复杂载荷下的应力强度因子等于各单个载荷的应力强 度因子之和。 (1) 在外载荷T2作用下,裂纹前端应力场为 σ2,则相应的应力强度因子为K I(2) = σ 2 π a 如果外载荷T1和T2联合作用,则裂纹前端应力场为 σ1+ σ2,则相应的应力强度因子为 K I = (σ 1 + σ 2 ) π a = σ 1 π a + σ 2 π a (1) 6.为什么裂纹尖端会发生应力松弛?如何对应力强度因子进行修正? 答:裂纹尖端附近存在着小范围的塑性区(设塑性区是以裂纹尖端为圆心,半径为r0 的圆 π a 形区域),材料屈服后,多出来的应力将要松驰(即传递给r>r0 的区域),使r0 前方局部地 区的应力升高,又导致这些地方发生屈服。即屈服导致应力松弛。 Irwin 提出了有效裂纹尺寸的概念a eff = a + r y对应力强度因子进行修正,在小范围条件下,

核工业基本知识试题汇总

1.核电站是以核能转变为电能的装置,将核能变为热能的部分称为核岛,将热能变为电 (+)能的部分称为常规岛。 2.重水堆冷却剂和载热剂是去离子水。(—) 3.堆芯中插入或提升控制捧的目的是控制反应堆的反应性。(+) 4.压水堆中稳压器内的水-汽平衡温度的保持是借助于加热和喷淋。(+) 5.由国家核安全局制定颁发的安全法规都是指导性文件。(—) 6.断裂力学可以对含裂纹构件的安全性和寿命作出定量或半定量的评价和计算。(+) 7.焊缝具有冶金和几何双重不连续性,往往是在役检查区域的选择重点。(+) 8.所有核电厂的堆型都必须要有慢化剂降低中子的能量。(-) 9.核电站压水堆型的反应堆压力容器和蒸汽发生器中的所有部件都属于核I级部件。(-) 10.自然界中U-235,U-234,U-238三种同位素具有不同的质子数和相同的中子数。(-) 11.断裂的基本类型有三种,张开型裂纹(I型);滑开型裂纹(II型);撕开型裂纹(III (-)型),在工程构件内部,滑开型裂纹是最危险的,容易引起低应力脆断。 12.制造压力壳的材料,对Co和B含量的严格控制的目的是为了减少放射性,避免吸收中 (-)子和提高抗拉强度。 13.应用无损检测最主要的目的在于安全和预防事故的发生。(+) 14.结构件内部存在有微裂纹,必然会是造成构件低应力脆断。(-) 15.核能是一种可持续发展的能源,通过几十年经验总结证明,核能是安全、经济、干净 (+)的能源。 16.我国当前核电站的主要堆型是轻水压水堆。(+) 17.前苏联于1954年建成的第一座核电站,开辟了人类和平利用原子能的先河。(+) 18.不锈钢通过淬火提高强度和硬度。(-) 19.在役检查的可达性是要求受检部位、人员及设备的工作空间和通道满足HAD103/07的 ( + )有关规定。 20.压水堆核电站的冷却剂和载热剂也是降低裂变的中子能量慢化剂。( + ) 21.核电站的类型是由核反应堆堆型确定的,目前世界上的主要堆型仅有轻水堆、重水堆。(—) 22.从断裂力学的角度考虑,选材时材料强度越高越好。(—) 23.核用金属材料必须对钴、硼等杂质元素含量严加限制。( + ) 24.核工业I、II级无损检测人员资格鉴定考试包括“通用考试”和“核工业专门考试” ( - ) 两部分。 25.核工业无损检测的报考者实际操作考试内容包括正确应用仪器进行检测,给出检测结 ( ) 果并对结果进行解释的能力。但不包括安全防护规则的制定与实施。 26.金属材料的性能分为机械性能、物理性能、化学性能和工艺性能是指材料的强度、硬 ( ) 度、韧性和塑性四方面。 27.现代意义上的无损检测是广泛利用计算机技术检测高精尖设备和装置的无损检测方 ( ) 法。 28.核电是一种干净的能源,其对环境影响小。如一座1000MW单机组的核电站每年约产生 ( ) 30吨高放废燃料和800吨中、低放废物,以及6,000,000吨二氧化碳。 29.核安全2级部件是指具备防止或减轻事故后果之功能的设备。( + ) 30.目前运行的核电站是以裂变和聚变的方式来释放核能的。(—) 31.高强度低合金钢中硫和磷元素能起到细化晶粒的作用。(—)

断裂力学答案

( ( = K I + K I(2) 1.简述断裂力学的发展历程(含 3-5 个关键人物和主要贡献)。 答: 1)断裂力学的思想是由 Griffith 在 1920 年提出的。他首先提出将强度与裂纹长度定量 地联系在一起。他对玻璃平板进行了大量的实验研究工作,提出了能量理论思想。(2)断裂 力学作为一门科学,是从 1948 年开始的。这一年 Irwin 发表了他的第一篇经典文章“Fracture Dynamic (断裂动力学)”,研究了金属的断裂问题。这篇文章标志着断裂力学的诞生。(3) 关于脆性断裂理论的重大突破仍归功于 Irwin 。他于 1957 年提出了应力强度因子的概念,在 此基础上形成了断裂韧性的概念,并建立起测量材料断裂韧性的实验技术。这样,作为断裂 力学的最初分支——线弹性断裂力学就开始建立起来了。(4)1963 年,Wells 提出了裂纹张 开位移(COD )的概念,并用于大范围屈服的情况。研究表明,在小范围屈服情况下 COD 法与 LEFM 是等效的。(5)1968 年,Rice 等人根据与路径无关的回路积分,提出了 J 积分 的概念。J 积分是一个定义明确、理论严密的应力应变参量,它的实验测定也比较简单可靠。 J 积分的提出,标志着弹塑性断裂力学基本框架形成。 2.断裂力学的定义,研究对象和主要任务。 答: 1)断裂力学的定义:断裂力学是一门工程学科,它定量地研究承载结构由于所含有的 一条主裂纹发生扩展而产生失效的条件。 (2)研究对象:断裂力学的研究对象是带有裂纹的承载结构。 (3)主要任务:研究裂纹尖端附近应力应变分布,掌握裂纹在载荷作用下的扩展规律;了 解带裂纹构件的承载能力,进而提出抗断设计的方法,保证构件安全工作。 3.什么是平面应力和平面应变状态,二者有什么特点?请举例说明之。 答:(1)平面应力:薄板问题,只有 xoy 平面内的三个应力分量σ x 、σ y 、τ xy ; ε z ≠ 0 , 属三向应变状态。 (2)平面应变:长坝问题,与 oz 轴垂直的各横截面相同,载荷垂直于 z 轴且沿 z 轴方向无 变化; ε z = 0 , σ z ≠ 0 ,属三向应力状态;材料不易发生塑性变形,更具危险。 4.什么是应力强度因子的叠加原理,并证明之。掌握工程应用的方法。 答:(1)应力强度因子的叠加原理:复杂载荷下的应力强度因子等于各单个载荷的应力强 度因子之和。 (1) 在外载荷 T 2 作用下,裂纹前端应力场为 σ2,则相应的应力强度因子为 K I(2) = σ 2 π a 如果外载荷 T 1 和 T 2 联合作用,则裂纹前端应力场为 σ1+ σ2 ,则相应的应力强度因子为 K I = (σ 1 + σ 2 ) π a = σ 1 π a + σ 2 π a (1) 6.为什么裂纹尖端会发生应力松弛?如何对应力强度因子进行修正? 答:裂纹尖端附近存在着小范围的塑性区(设塑性区是以裂纹尖端为圆心,半径为 r0 的圆 π a 形区域),材料屈服后,多出来的应力将要松驰(即传递给 r>r0 的区域),使 r0 前方局部地 区的应力升高,又导致这些地方发生屈服。即屈服导致应力松弛。 Irwin 提出了有效裂纹尺寸的概念 a eff = a + r y 对应力强度因子进行修正,在小范围条件下,

损伤与断裂力学读书报告

中国矿业大学 2012 级硕士研究生课程考试试卷 考试科目损伤与断裂力学 考试时间2012. 12 学生姓名张亚楠 学号ZS12030092 所在院系力建学院 任课教师高峰 中国矿业大学研究生院培养管理处印制

《损伤与断裂力学》读书报告 一.断裂力学 1.基本概念及研究内容 断裂力学是为解决机械结构断裂问题而发展起来的力学分支,它将力学、物理学、材料学以及数学、工程科学紧密结合,是一门涉及多学科专业的力学专业课程。 随时间和裂纹长度的增长,构件强度从设计的最高强度逐渐地减少。假设在储备强度A点时,只有服役期间偶而出现一次的最大载荷才能使构件发生断裂;在储备强度B点时,只要正常载荷就会发生断裂。因此,从A点到B点这段期间就是危险期,在危险期中随时可能发生断裂。如果安排探伤检查的话,检查周期就不能超过危险期。如下图所示: 问题是储备强度究竟是个什么样的参量?它与表征裂端区应力变场强度的参量有何关系?如何计算它?如何测量它?它随时间变化的规律如何?受到什么因素的影响?这一系列问题如能找到答案的话,则提出的以上五个工程问题就有可能得到解决。断裂力学这门学科就是来解决这些问题的。 1.1影响断裂力学的两大因素 a.荷载大小b.裂纹长度 考虑含有一条宏观裂纹的构件,随着服役时间后使用次数的增加,裂纹总是愈来愈长。在工作载荷较高时,比较短的裂纹就有可能发生断裂;在工作载荷较低时,比较长的裂纹才会带来危险。这表明表征裂端区应力变场强度的参量与载荷大小和裂纹长短有关,甚至可能与构件的几何形状有关。

1.2脆性断裂与韧性断裂 韧度(toughness ):是指材料在断裂前的弹塑性变形中吸收能量的能力。它是个能量的概念。 脆性(brittle )和韧性(ductile ):一般是相对于韧度低或韧度高而言的,而韧度的高低通常用冲击实验测量。 高韧度材料比较不容易断裂,在断裂前往往有大量的塑性变形。如低强度钢,在断裂前必定伸长并颈缩,是塑性大、韧度高的金属。金、银比低强度钢更容易产生塑性变形,但是因为强度太低,因此吸收能量的能力还是不高的。玻璃和粉笔则是低韧度、低塑性材料,断裂前几乎没有变形。 脆性断裂:如下图所示的一个带环形尖锐切口的低碳钢圆棒,受到轴向拉伸载荷的作用,在拉断时,没有明显的颈缩塑性变形,断裂面比较平坦,而且基本与轴向垂直,这是典型的脆性断裂。粉笔、玻璃以及环氧树脂、超高强度合金等的断裂都属于脆性断裂这一类。 韧性断裂:若断裂前的切口根部发生了塑性变形,剩余截面的面积缩小(既发生颈缩),段口可能呈锯齿状,这种断裂一般是韧性断裂。前边提到的低强度钢的断裂就属于韧性断裂。 像金、银的圆棒试样,破坏前可颈缩至一条线那样细,这种破坏是大塑性破坏,不能称为韧性断裂。 2.能量守恒与断裂判据 2.1传统强度理论 在现代断裂力学建立以前,机械零构件是根据传统的强度理论进行设计的,不论在机械零构件的哪一部分,设计应力的水平一般都不大于材料的屈服应力,即 n ys σσ≤

(完整版)断裂力学试题

2007断裂力学考试试题 B 卷答案 一、简答题(本大题共5小题,每小题6分,总计30分) 1、(1)数学分析法:复变函数法、积分变换;(2)近似计算法:边界配置法、有限元法;(3)实验标定法:柔度标定法;(4)实验应力分析法:光弹性法. 2、假定:(1)裂纹初始扩展沿着周向正应力θσ为最大的方向;(2)当这个方向上的周向正应力的最大值max ()θσ达到临界时,裂纹开始扩展. 3、应变能密度:r S W = ,其中S 为应变能密度因子,表示裂纹尖端附近应力场密度切的强弱程度。 4、当应力强度因子幅值小于某值时,裂纹不扩展,该值称为门槛值。 5、表观启裂韧度,条件启裂韧度,启裂韧度。 二、推导题(本大题10分) D-B 模型为弹性化模型,带状塑性区为广大弹性区所包围,满足积分守恒的诸条件。 积分路径:塑性区边界。 AB 上:平行于1x ,有s T dx ds dx σ===212,,0 BD 上:平行于1x ,有s T dx ds dx σ-===212,,0 5分 δ σσσσΓ s D A s D B s B A s BD A B i i v v v v dx x u T dx x u T ds x u T Wdx J =+=+-=??-??-=??-=???)()(1 122112212 5分 三、计算题(本大题共3小题,每小题20分,总计60分) 1、利用叠加原理:微段→集中力qdx →dK = Ⅰ ?0 a K =?Ⅰ 10分 A

令cos cos x a a θθ==,cos dx a d θθ= ?111sin () 10 cos 22(cos a a a a a K d a θθθ--==Ⅰ 当整个表面受均布载荷时,1a a →. ?12()a a K -==Ⅰ 10分 2、边界条件是周期的: a. ,y x z σσσ→∞==. b.在所有裂纹内部应力为零.0,,22y a x a a b x a b =-<<-±<<±在区间内 0,0y xy στ== c.所有裂纹前端y σσ> 单个裂纹时 Z = 又Z 应为2b 的周期函数 ?sin z Z πσ= 10分 采用新坐标:z a ξ=- ?sin ()a Z π σξ+= 当0ξ→时,sin ,cos 1222b b b π π π ξξξ== ?sin ()sin cos cos sin 22222a a a b b b b b π π π π π ξξξ+=+ cos sin 222a a b b b π π π ξ= + 222 2[sin ()]( )cos 2 cos sin (sin )2222222a a a a a b b b b b b b π π π π π π π ξξξ+=++

岩石的损伤力学及断裂力学综述

岩石的断裂力学及损伤力学综述 摘要:论述了国内外断裂力学及损伤力学的学科发展历程,总结了岩体断裂力学损伤力学的研究内容、研究特点以及岩石力学专家们一些年来所取得的主要成果,并简单介绍了断裂力学损伤力学在岩土工程中的实际应用。最后,通过对岩石破坏的断裂-损伤理论的阐述,指出了综合考虑损伤与断裂的破坏理论是能更好地反映岩石实际破坏过程的一种新的理论, 可在以后的理论研究和实际工程中得以更为广泛的应用。 关键词:岩石 断裂力学 损伤力学 应用 1 引 言 岩石的破坏过程总是伴随着损伤(分布缺陷)和裂纹(集中缺陷)的交互扩展, 这种耦合效应使得裂纹尖端附近区域材料必然具有更严重的分布缺陷。岩石的破坏, 如脆性断裂和塑性失稳, 虽然有突然发生的表面现象, 但是, 从材料损伤的发生、发展和演化直到出现宏观的裂纹型缺陷, 伴随着裂纹的稳定扩展或失稳扩展, 是作为过程而展开的。 经典的断裂力学广泛研究的是裂纹及其扩展规律问题。物体中的裂纹被理想化为一光滑的零厚度间断面。在裂纹的前缘存在着应力应变的奇异场,而裂纹尖端附近的材料假定同尖端远处的材料性质并无区别。象裂纹这样的缺陷可称它为奇异缺陷,因此经典断裂力学中物体的缺陷仅仅表现为有奇异缺陷的存在。 而损伤力学所研究的是连续分布的缺陷, 物体中存在着位错、微裂纹与微孔洞等形形色色的缺陷,这些统称为损伤。从宏观来看, 它们遍布于整个物体。这些缺陷的发生与发展表现为材料的变形与破坏。损伤力学就是研究在各种加载条件下, 物体中的损伤随变形而发展并导致破坏的过程和规律。 事实上, 物体中往往同时存在着奇异缺陷和分布缺陷。在裂纹(奇异缺陷)附近区域中的材料必然具有更严重的分布缺陷, 它的力学性质必然不同于距离裂纹尖端远处的材料。因此, 为了更切合实际, 就必须把损伤力学和断裂力学结合起来, 用于研究物体更真实的破坏过程。 2 断裂力学 2.1 断裂力学学科发展 “断裂力学”指的是固体力学的一个重要分支,该学科要在假定裂纹存在的条件下,寻求裂纹长度、材料抗裂纹增长的固有阻力、以及能使裂纹高速扩展从而导致结构失效的应力之间的定量关系[]1。 断裂力学最早是在1920年提出的。当时格里菲斯为了研究玻璃、陶瓷等脆性材料的实际强度比理论强度低的原因,提出了在固体材料中或在材料的运行过程中存在或产生裂纹的设想,计算了当裂纹存在时,板状构件中应变能变化进而得出了一个十分重要的结果:常数≡a c δ。 1949年,奥罗万在分析了金属构件的断裂现象后对格里菲斯的公式提出了修正,他认为产生裂纹所释放的应变能不仅能转化为表面能,也应转化为裂纹前沿

断裂与损伤力学发展与理论

1.断裂与损伤力学的发展过程以及要解决的问题。 2.材料疲劳损伤机理以及断裂力学基本分析方法。 3.新材料复合材料的损伤以及断裂破坏基础理论。 1、 断裂与损伤力学的发展过程以及要解决的问题 1.1 断裂力学的发展简史及要解决的问题 断裂力学理论最早是在1920年提出。当时Griffith 为了研究玻璃、陶瓷等脆性材料的实际强度比理论强度低的原因,提出了在固体材料中或在材料的运行过程中存在或产生裂纹的设想,其内容是:结构体系内裂纹扩展,体系内总能量降低,降低的能量用于裂纹增加新自由表面的表面能,裂纹扩展的临界条件是裂纹扩展力(即应变能释放率)等于扩展阻力(裂纹扩展,要增加自由表面能而引起的阻力)。很好地解释了玻璃的低应力脆断现象。计算了当裂纹存在时,板状构件中应变能的变化进而得出了一个十分重要的结果:=a c δ常数。 其中,c δ是裂纹扩展的临界应力;a 为裂纹半长度。他成功的解释了玻璃等脆性材料的开裂现象但是应用于金属材料时却并不成功。 1944年泽纳(Zener)和霍洛蒙(Hollmon)又首先把Griffith 理论用于金属材料的脆性断裂。不久欧文(Irwin)指出,Griffith 的能量平衡应该是体系内储存的应变能与表面能、塑性变形所做的功之间的能量平衡,并且还指出,对于延性大的材料,表面能与塑性功相比一般是很小的。同时把G 定义为“能量释放率”或“裂纹驱动力”,即裂纹扩展过程中增加单位长度时系统所提供的能量,或裂纹扩展单位面积系统能量的下降率。 1949年Orowam E 在分析了金属构件的断裂现象后对Griffith 的公式提出了修正,他认为产生裂纹所释放的应变能不仅能转化为表面能,也应转化为裂纹前沿的塑性应变功,而且由于塑性应变功比表面能大得多以至于可以不考虑表面能的影响,其提出的公式为 =a c δ=2/1)/2(λEU 常数 该公式虽然有所进步,但仍未超出经典的Griffith 公式范围,而且同表面能

《断裂力学》考试题含解析

二 K i ', =dx 0 J(a 2-x 2) 10分 一、 简答题(本大题共5小题,每小题6分,总计30分) 1、 (1)数学分析法:复变函数法、积分变换;(2)近似计算法:边界配置法、 有限元法;(3)实验应力分析法:光弹性法.(4)实验标定法:柔度标定法; 2、 假定:(1)裂纹初始扩展沿着周向正应力;一、为最大的方向;(2)当这个方 向上的周向正应力的最大值(;=)max 达到临界时,裂纹开始扩展? S 3、 应变能密度:W ,其中S 为应变能密度因子,表示裂纹尖端附近应力场 r 密度切的强弱程度。 4、 当应力强度因子幅值小于某值时,裂纹不扩展,该值称为门槛值。 5、 表观启裂韧度,条件启裂韧度,启裂韧度。 二、 推导题(本大题10分) D-B 模型为弹性化模型,带状塑性区为广大弹性区所包围,满足积分守恒的 诸条件。 积分路径:塑性区边界。 AB 上:平行于%,有dx 2 r O’ds r d %兀》s BD 上:平行于 %,有 dx 2 = 0 , ds = d% , T 2 - s J(WdX 2 -T 凹 ds) T 2 竺 dX ! X-I AB r B D A ;「s V B =:;S (V A ' V D ) 三、计算题(本大题共3小题,每小题20分,总计60分) 1、利用叠加原理:微段一集中力qdx — dKi = 2q ; a 2 dx 业(a-x 2 ) 2007断裂力学考试试题 B 卷答案 T 2 土 dx , BD 2 :x , 1 Sv

Z 二.— (sin 2b -sin ( a) 2b 二(a ))2 兀a 2 -(sin 2b ) 31 u J-L u ,cos = 1 2b 2b JE JE JE it 二 sin ——cos 一a cos 一 sin — a 2b 2b 2b Tt .. Tt 二——cos ——a sin 2b 2b ■ . 2 ' - 2 2 二 [sin ( a)] = ( ) cos a 2 —0 时,sin 2b sin =( a)二 2b n a 2b 仝 2b 2b - n n IT 2 cos ——a sin ——a (sin — a) b 2b 2b b.在所有 裂纹 内部 应力 为零.y =0, -a ::: x ::: a, -a _ 2b ::: x ::: a _ 2b 在区间内 C.所有裂纹前端;「y ?匚 单个裂纹时Z - —^Z — Jz 2 —a 2 又Z 应为2b 的周期函数 二 Z 二 J 兀z 2 兀a 2 、(sin —)2 - (sin —)2 Y 2b 2b 采用新坐标:『:=z - a 令 x=acosv= \ a -x = acosv, dx 二 acosrdr 匚 K “ 2q. a :n 1(a1a )咤 d 一 Yu '0 a cos 日 当整个表面受均布载荷时,耳-;a. K i = 2q J^s in 10分 2、 边界条件是周期的: a. Z 、,二y 7 一;「 .兀z 二 sin b 10分 sin A (a /a)

断裂力学的发展与研究现状 - glearningtjueducn

万方数据

万方数据

万方数据

万方数据

断裂力学的发展与研究现状 作者:康颖安, KANG Ying-an 作者单位:湖南工程学院,机械工程系,湖南,湘潭,411101 刊名: 湖南工程学院学报(自然科学版) 英文刊名:JOURNAL OF HUNAN INSTITUTE OF ENGINEERING(NATURAL SCIENCE EDITION) 年,卷(期):2006,16(1) 被引用次数:1次 参考文献(10条) 1.范天佑断裂理论基础 2003 2.陈会军;李永东;唐立强多孔材料中裂纹尖端的渐近场[期刊论文]-哈尔滨工程大学学报 2000(03) 3.张淳源粘弹性断裂力学 1994 4.张俊彦;张淳源裂纹扩展条件及其温度场研究 1996(01) 5.Rice J R;Rosengren G F Plane strain deformation near a crack tip in a powerlaw hardening material 1968 6.Hutchinson J W Singular behavior at the end of a tensile crack in a hardening material 1968 7.黄克智弹塑性断裂力学的一个重要进展 1993(01) 8.Wells A A Applications of fracture mechanics at/and beyond general yielding 1963 9.Irwin G R Analysis of stress and strains near the end of a crack traversing a plate 1957 10.沈成康断裂力学 1996 引证文献(1条) 1.单丙娟浅谈断裂力学的发展与研究现状[期刊论文]-内蒙古石油化工 2007(7) 本文链接:https://www.sodocs.net/doc/ae15781565.html,/Periodical_hngcxyxb-zr200601011.aspx

2011-2012学年__材料力学性能复习提纲(有答案).

《材料力学性能》期末复习提纲(2012年12月) 一、材料在单向静拉伸载荷下的力学性能: 1. 画出低碳钢、高碳钢和铸铁拉伸时的应力—应变曲线,理解弹性变形和弹性极限、比例极限、屈 服极限(和)、塑性和应变硬化(加工硬化)等概念;低碳钢试样拉伸过程中颈缩现象出 现在应力-应变图的哪一个阶段(最高点以后)?吕德斯带(Lüders Band)出现在哪一个阶段?(出现在屈服台阶上)材料种类对应力—应变曲线如何产生影响? (1)主要目的是了解塑性材料和脆性材料静载单轴拉伸的区别,图1—1和图2—1 (2)弹性(弹性变形):是一种可逆变形,当外力去除(卸载)后,所产生的变形可以自动恢 复,这种现象我们称之为弹性变形; (3)弹性极限:弹性变形的最大极限应力(材料由弹性变形过度到弹—塑性变形时的应力); (4)比例极限:应力与应变成正比关系(直线关系)的最大应力; (5)屈服极限:呈现屈服现象的金属材料拉伸时,试样在外力不增加或减小的情况下,仍能 继续伸长时的应力称为屈服点或屈服极限,用表示,对于没有明显屈服平台的材料, 经常用等来表示其屈服点或屈服极限; (6)塑性(塑性变形):是一种不可逆变形,当外力卸载后,所产生的总变形中有不能完全恢 复而产生(遗留、残留)的永久变形部分,这种现象我们称之为塑性变形;(7)应变硬化(加工硬化):在屈服阶段,随着塑性变形的增大,变形抗力不断增大的现象(延 伸问题:需要应变强化的材料对于应变硬化曲线有何要求?); (8)应变速率、温度和材料种类对应力—应变曲线产生的影响:温度升高,材料变软(见教 材中图1-11和1-12)。 不同材料的影响,不同温度、不同应变速率的影响分别如下:

断裂损伤力学在土木工程中的应用

断裂损伤力学在土木工程中的应用 摘要:通过对断裂力学形成过程和形成原因, 来源于生产实践, 又指导生产实践的辩证关系等进行分析, 说明科学技术进步与社会生产实践相辅相成的辩证关系, 阐述断裂力学的发展与工程实践是密切相关的基本观点, 并按照断裂力学发展的成熟度, 简要介绍了线弹性断裂力学、弹塑性断裂力学等经典断裂力学的基本理论。 关键词:断裂力学; 形成发展; 应用研究 Abstract: For its beautiful colors, dry- green jade is very popular and has an important role in jewelry market. In order to deeply understand the substantive characteristics, the author systematically studies the chemical composition, mineralogy of dry-green of jade by means of microscope, electron micro pro be, X-ray diffraction, Infrared ray spectra, and discovers that this specimen contains tremendous hornblende and kiosk ocher, but which also contains a lot of mica that rarely appears in jade. So, considering the formation Conditions of jade ore deposits, this paper preliminary analyze this special phenomenon, and provides significant clues for the further study of jade. Key words: Kosmochor; Mica; Hornblende; Mineral characteristic; Jade ore deposits 1断裂力学的形成与发展 断裂力学起源于20世纪初期, 发展于20世纪后期, 是一门研究

09年B卷试题及答案哈工大断裂力学考试试题

一、 填空(25分,每空1分) 1. 在断裂力学中,按照裂纹受力情况可将裂纹分为三种基本类型,简述均匀各向同性材料的两种裂纹类型的受力特点: Ⅰ型 受垂直于裂纹面的拉应力作用 Ⅱ型 受平行于裂纹面而垂直于裂纹前缘的剪应力作用 2. 对于有一定塑性的金属材料,应用能量平衡理论时,材料抵抗裂纹扩展能力这个概念,包括两个部分,即 形成裂纹新表面所需的表面能 和 裂纹扩展所需的塑性应变能 ,只有当 应变能释放率 大于代表材料抵抗裂纹扩展能力的常数时,裂纹才失稳扩展。 3. 最大周向应力准则的两个基本假定是:的方向开裂裂纹沿最大周向应力max θσ和 当此方向的周向应力达到临界时,裂纹失稳扩展 。该假定的缺点是 (1)没有综合考虑其它应力分量的作用 (2)不能将广义的平面应变和平面应力两类问题区分开来 4. 常用的计算应力强度因子的方法有 积分变换法 、 有限元法 和普遍形式的复变函数法 。(任意写出三种即可) 5.在复合型断裂准则中,以能量为参数的断裂准则一般包括 应变能密度因子 准则和 应变能释放 准则。 6. 经典J 积分守恒性成立的前提条件包括 应用全量理论和单调加载 、 仅适用于小变形 和 不存在体积力 。(任意写出三个即可) 7. 疲劳破坏过程按其发展过程可分为四个阶段,包括裂纹成核阶段、微观裂纹扩展阶段 、 宏观裂纹扩展阶段 和 断裂阶段 。 8. HRR 理论是Hutchinson 、Rice 和Rosengren 应用 J 积分等恒性 以及 材料的硬化规律 确定应力和应变的幂次。该理论存在一个重要矛盾是: 既然考虑了塑性变形,裂纹尖端的应力就不应该是奇异的 。 9. 可以表征材料断裂韧性度量的力学量主要有IC K 、IC G 和C δ。(任意写出三个即可) 二、 简答题(50分) 1. 简述脆性材料断裂的K 准则IC I K K =的物理含义以及其中各个量的意义,并结合线弹 性断裂力学理论简单讨论K 的适用范围。(15分) 答:物理含义:裂纹尖端应力强度因子I K 达到第一临界值IC K 时,裂纹将失稳扩展。

相关主题