搜档网
当前位置:搜档网 › 高中数学函数的奇偶性、单调性、周期性 同步练习 新课标 人教版 必修1(A)

高中数学函数的奇偶性、单调性、周期性 同步练习 新课标 人教版 必修1(A)

高中数学函数的奇偶性、单调性、周期性 同步练习 新课标 人教版 必修1(A)
高中数学函数的奇偶性、单调性、周期性 同步练习 新课标 人教版 必修1(A)

函数的奇偶性、单调性、周期性 同步练习

一.基础知识自测题:

1.函数f (x )、g (x )的定义域都是(-∞, +∞),若是f (x )奇函数,g (x )是偶函数,则F (x )=f (x )·g (x )是 奇函数 。

2.函数f (x )的定义域是R ,且当x ∈[0, +∞)时,f (x )为增函数,则当f (x )为奇函数时,它在(-∞, 0)上的增减性是 递减 ;当f (x )为偶函数时,它在(-∞, 0)上的增减性是 递增 。 3.下面有四个函数,① f (x )=2x +1; ② g (x )=

1

1+-x x ; ③ h(x )=

2

211x

x -+; ④ u (x )=

l g x

x +-11, 其中偶函数是③,奇函数是④,既不是偶函数也不是奇函数的是①、②。

4.对于函数y =f (x ),如果存在一个不为零的常数T ,使得当x 取定义域内的每一个

值时,f (x +T)=f (x ) 都成立,那么就把函数y =f (x )叫做周期函数,不为零的常数T 叫做这个函数的 周期 。 5.函数y =x

x +-11的递减区间是 (―∞, ―1)、(―1, +∞) ;函数y =

x

x +-11的递减区间是 (-1, +

1] 。

6.下面四个函数,① y =1

-x x ; ② y =)(log

5

.0x -; ③ y =1-x 2; ④ y =x 2

+2x ,其中在区间(-∞,

0)内为减函数的是 ① 。

7.已知y =f (x )在实数集上是周期为2的周期函数,且是偶函数,已知x ∈[2, 3]时,f (x )=x , 则当x ∈[-1, 0]时,f (x )的表达式是 y =-x +2 。 二.基本要求、基本方法:

1.理解函数的单调性和奇偶性的概念。

2.能运用定义判断简单函数的奇偶性和单调区间。

3.了解复合函数的单调性和奇偶性的意义,并能解决一些简单的函数问题。 4.理解函数的周期性概念,会求简单函数的最小正周期。 例1. 求出下列函数的单调区间: (1) y =

x

x 212

+; (2) y =162

+-x .

解:(1) 函数y =x x 212

+的定义域是x ∈R 且x ≠0, x ≠-2.

又函数u (x )=x 2+2x 的图象是开口向上的抛物线,顶点的横坐标是x =-1, ∴函数y =

x

x 21

2

+在区间(―∞, ―2)上单调递增;在区间上(―2, ―1]单调递增;

在区间上[-1, 0)单调递减;在区间(0, +∞)上单调递减。

(2) 函数y =162

+-x 的定义域是[-4, +4], u (x )=-x 2+16的图象是开口向下的 抛物线,顶点的横坐标是x =0, ∴函数y =162

+-x 在区间[-4, 0]上单调递增, 在区间[0, 4]上单调递减。

评注:解函数的增减性问题一定要注意原函数的定义域,只有在原函数的定义域内研究

问题才有意义。

例2. 定义在(-1, 1)上的奇函数f (x )是减函数,解关于a 的不等式:f (1―a )+f (1―a 2

)<0. 解:∵ f (1―a )+f (1―a 2

)<0, ∴ f (1―a )<-f (1―a 2

)=f (a 2

―1). 由不等式组??

???->-<-<-<-<1

111111122

a a a a -, 解得 ?????<<-<<<<12202

0a a a ,

∴ 不等式f (1―a )+f (1―a 2

)<0的解集是{a | 0

评注:把函数的增减性和奇偶性结合起来,同样要注意原函数的定义域。 例3. 若定义在实数集上的函数y =f (x )是一个最小正周期为3的周期函数,且已知

f (x )=??

??

?

<≤-≤

≤-023

23

0x x x x

, 求f (π)+f (-π)的值。

解:∵函数f (x )的最小正周期是3,∴ f (π)=f (π-3)=-(π-3)=3-π, f (-π)=f (-π+3)=3-π, ∴ f (π)+f (-π)=6-2π. 三.基本技能训练题:

1.已知偶函数f (x )的定义域是R ,则下列函数中为奇函数的是( B )。

(A ) si n [f (x )] (B ) x ·f (si nx ) (C ) f (x )·f (si nx ) (D ) [f (si nx )]2 2.已知偶函数f (x )在[0, 2]内单调递减,若a =f (-1), b =f (4

1

log

5

.0), c =f (l g 0.5),则a 、

b 、

c 之间的大小关系是( A )。

(A )c >a >b (B )a >b >c (C )b >a >c (D )c >b >a

3.若函数f (x )=x 2+2(a -1)x +2在区间(-∞, 4)上是减函数,那么实数a 的取值范围是( A )。 (A )a ≤-3 (B )a ≥-3 (C )a ≤5 (D )a ≥3

4.函数y =322

+--x x 的递增区间是 [―3, ―1] ;递减区间是 [-1, 1] 。 5.若f (x )=(m -1)x 2+2mx +3m -3为偶函数,则m 的值为 0 。

6.设f (x )是定义在R 上最小正周期为T 的函数,则f (2x +3)是( C )。 (A )最小正周期为T 的函数 (B )最小正周期为2T 的函数 (C )最小正周期为

2

T 的函数 (D )不是周期函数

7.设f (x )是以4为最小正周期的函数,且当-2≤x <2时, f (x )=x ,则f (-98.6)的值为 ( B )。

(A )98.6 (B )1.4 (C )5.4 (D )-2.6 8.函数y =

80

212

--x x 的单调递增区间是(―∞, ―8)。

9.已知f (x )=|1-x |,则f [f (x )]的单调递增区间是 [0, 1]、[2, +∞)。 10. 设定义在R 上的函数f (x )的最小正周期为2,且在区间(3,5]内单调递减,则

a =f (-2log

2

1)、b =f (-4)和c =f (-π)的大小关系是 a

四.试题精选 (一)选择题: 1.

下列四个函数:① y =

1

-x x ; ② y =x 2+x ; ③ y =-(x +1)2; ④ y =x

x -1+2,其中在(-∞,

0)上为减函数的是( A )。

(A )① (B )④ (C )①、④ (D )①、②、④ 2.

若y =f (x )是R 上的偶函数,且当x ∈(0, +∞)时, f (x )=x (1-x ),那么当x ∈(-∞, 0)

时,f (x )的表达式是( B )。

(A )x (x +1) (B )-x (x +1) (C )-x (x -1) (D )x (x -1)

3.若函数y =f (x ) (f (x )不恒为零)的图象与y =-f (x )的图象关于原点对称,则y =f (x )( B )。 (A )是奇函数而不是偶函数 (B )是偶函数而不是奇函数 (C )既是奇函数又是偶函数 (D )既不是奇函数又不是偶函数 4.函数y =1

)

32

(-x 的单调递减区间是( C )。

(A )(-∞,1] (B )(-∞,0] (C )[1,+∞) (D )(-∞,0]∪[1,+∞)

5.已知y =f (x )在定义域R 上是减函数,则函数y =f (|x +2|)的单调递增区间是( D )。 (A )(-∞, +∞) (B )(2, +∞) (C )(-2, +∞) (D )(―∞, ―2) 6.在下列函数中,既是以π为周期的偶函数,又是在区间(0,

2

π

)上为增函数的是( B )。

(A )y =x 2

, x ∈R (B )y =|si nx |, x ∈R (C )y =c os2x , x ∈R (D )y =3x 2sin , x ∈R

7.若函数f (x )为定义在区间[-6, 6]上的偶函数,且f (3)>f (1),则下列各式一定成立的是(A )。 (A )f (-1)f (2) (D )f (2)>f (3) 8.现有三个函数:f 1(x )=(x -1)x x

-+11, f 2(x )=????

?<-->0

0x x

x x x

x , f 3(x )=??

?<-≥0

1

01x x , 在这三

个函数中,下面说法正确的是(A )。

(A )有一个偶函数,两个非奇非偶函数 (B )有一个偶函数,一个奇函数 (C )有两个偶函数,一个奇函数 (D )有两个奇函数,一个偶函数

9.已知函数y =f (x )是偶函数(x ∈R), 在x <0时,y 是增函数,对x 1<0, x 2>0,有|x 1|<|x 2|,则(A )。 (A )f (-x 1)>f (-x 2) (B )f (-x 1)

11.已知偶函数f (x )在[0, π)上是递减函数,那么下列三个数f (l g 100

1), f (

2

π

), f (3

2π-

),

从大到小的顺序是f (

2

π

)>f (l g

100

1)>f (32π-

)。

12.函数y =x +x

1在区间[2, 5]上的最大值为5

26;最小值为25。

13.如果函数f (x )=x 2·(

1

21-x

+m )为奇函数,则m 的值为2

1。

14.若函数p (x )、q (x )均为奇函数,f (x )=a ·p (x )+b ·q (x )+2 (a 2+b 2≠0, a , b 为常数)且f (x )在(0, +∞)上有最大值5,则f (x )的最小值为 -1 。 (三)解答题: 15.判断函数f (x )=

1

2

-x ax (a ≠0)在区间(-1,1)上的单调性。

解:设-1

1

2

11-x ax -

1

2

22-x ax =

)

1)(1())(1(2

22

11221---+x x x x x x a ,

∵ x 12-1<0, x 22-1<0, x 1x 2+1<0, x 2-x 1>0, ∴

)

1)(1())(1(2

22

11221---+x x x x x x >0,

∴ 当a >0时, f (x 1)-f (x 2)>0, 函数y =f (x )在(-1, 1)上为减函数, 当a <0时, f (x 1)-f (x 2)<0, 函数y =f (x )在(-1, 1)上为增函数。

16.设函数y =f (x )是定义在R 上的偶函数,并在区间(-∞, 0)内单调递增,

f (2a 2+a +1)

32

)

21

(+-a a 的单调区间。

解:函数y =f (x )是定义在R 上的偶函数,并在区间(-∞, 0)内单调递增, ∴ 在区间(0, +∞)上递减,又 ∵2a 2+a +1>0, 3a 2-2a +1>0, f (2a 2+a +1)

-2a +1), ∴2a 2+a +1>3a 2

-2a +1, 解得0

32

)

21

(+-a a 在(0,

2

3)上递增,在(

2

3, 3)上递减。

17.已知函数f (x )=2

)1

1(

+-x x (x ≥1),试求出f (x )的反函数y =f 1-(x )的单调区间。

解:函数f (x )=2

)1

1(+-x x (x ≥1)的值域为0≤y <1, 它的反函数f -1

(x )=

x

x -

+11 0≤x <1,

用函数增减性的定义证明该函数在0≤x <1上是增函数。 解2:考虑原函数的增减性,f (x )=(1-1

2+x )2

, 当x >1时, y =f (x )为增函数,∴它的反函数也是

增函数。

18.设函数y =f (x )是奇函数,对于任意x 、y ∈R 都有f (x +y )=f (x )+f (y ),且当x >0时, y <0, f (1)=-2,求函数y =f (x )在区间[-3, 3]上的最大值和最小值。 解:设x 1, x 2∈[-3, 3], 且x 10,

∴ f (x 2)-f (x 1)=f (x 2-x 1+x 1)-f (x 1)= f (x 2-x 1)+f (x 1)- f (x 1)= f (x 2-x 1)<0, ∴ 函数y =f (x )为减函数,

∴ 当x =3时, f (3)=3f (1)=-6, 为最小值;当x =-3时, f (-3)=3f (-1)=6 为最大值。 19.已知函数f (x )=4-x 2

, 求函数f (x 2

-2x -3)的递增区间。 解:设F (x )= f (x 2-2x -3)=f (u ), u =x 2-2x -3,

对于函数u =x 2-2x -3,当x ≥1时, 函数u 为增函数,当x <1时, 函数u 为减函数, 对于函数f (u )=4-u 2, 当u ≥0时, f (u )为减函数,当u <0时, f (u )为增函数, ∴ 当x ≥3时, 函数u 为增函数且u ≥0, f (u )为减函数,此时F (x )为减函数, 当1≤x ≤3时, 函数u 为增函数且u ≤0, f (u )为增函数,此时F (x )为增函数,

当-1≤x≤1时, 函数u为减函数且u≤0, f (u)为增函数,此时F(x)为减函数, 当x≤-1时, 函数u为减函数且u≥0, f (u)为减函数,此时F(x)为增函数,

综上得,函数f (x2-2x-3)的递增区间是[1, 3]与(-∞, -1).

基本初等函数专项训练经典题

一、简答题 1、设. (1)判断函数的奇偶性; (2)求函数的定义域和值域. 2、设函数 (Ⅰ)讨论的单调性; (Ⅱ)求在区间的最大值和最小值. 3、已知函数f(x)=x2+2ax+1(a∈R),f′(x)是f(x)的导函数. (1)若x∈[-2,-1],不等式f(x)≤f′(x)恒成立,求a的取值范围; (2)解关于x的方程f(x)=|f′(x)|; (3)设函数g(x)=,求g(x)在x∈[2,4]时的最小值. 4、经市场调查,某旅游城市在过去的一个月内(以30天计),旅游人数f(t)(万人)与时间t(天)的函数关系近似满足f(t)=4+,人均消费g(t)(元)与时间t(天)的函数关系近似满足g(t)=115-|t-15|. (1)求该城市的旅游日收益w(t)(万元)与时间t(1≤t≤30,t∈N*)的函数关系式; (2)求该城市旅游日收益的最小值(万元). 5、某商场对A品牌的商品进行了市场调查,预计2012年从1月起前x个月顾客对A品牌的商品的需求总量P(x)件与月份x的近似关系是: P(x)=x(x+1)(41-2x)(x≤12且x∈N*)

(1)写出第x月的需求量f(x)的表达式; (2)若第x月的销售量g(x)= (单位:件),每件利润q(x)元与月份x的近似关系为:q(x)=,问:该商场销售A品牌商品,预计第几月的月利润达到最大值?月利润最大值是多少?(e6≈403) 6、已知函数f(x)=x2-(1+2a)x+a ln x(a为常数). (1)当a=-1时,求曲线y=f(x)在x=1处切线的方程; (2)当a>0时,讨论函数y=f(x)在区间(0,1)上的单调性,并写出相应的单调区间. 7、某创业投资公司拟投资开发某种新能源产品,估计能获得10万元到1 000万元的投资收益.现准备制定一个对科研课题组的奖励方案:资金y(单位:万元)随投资收益x(单位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%. (1)若建立函数y=f(x)模型制定奖励方案,试用数学语言表述该公司对奖励函数f(x)模型的基本要求,并分析函数y=+2是否符合公司要求的奖励函数模型,并说明原因; (2)若该公司采用模型函数y=作为奖励函数模型,试确定最小的正整数a的值. 8、已知函数图象上一点P(2,f(2))处的切线方程为. (Ⅰ)求的值; (Ⅱ)若方程在内有两个不等实根,求的取值范围(其中为自然对数的底,); (Ⅲ)令,如果图象与轴交于,AB中点为,求 证:. 9、已知命题p:函数y=log a(1-2x)在定义域上单调递增;命题q:不等式(a-2)x2+2(a-2)x-4<0对任意实数x 恒成立.若p∨q是真命题,求实数a的取值范围.

高一数学必修一函数的奇偶性

函数的单调性和奇偶性 教材复习 基本知识方法 1.奇偶函数的性质: ()1函数具有奇偶性的必要条件是其定义域关于原点对称; ()2()f x 是偶函数?()f x 的图象关于y 轴对称;()f x 是奇函数?()f x 的图象关于原点对称; ()3奇函数在对称的单调区间内有相同的单调性,偶函数在对称的单调区间内具有相反的 单调性. 2.()f x 为偶函数()()(||)f x f x f x ?=-=. 3.若奇函数()f x 的定义域包含0,则(0)0f =. 4.判断函数的奇偶性的方法: ()1定义法:首先判断其定义域是否关于原点中心对称. 若不对称,则为非奇非偶函数;若对称,则再判断()()f x f x =-或()()f x f x =-是否定义域上的恒等式; ()2图象法; ()3性质法:设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域12D D D = 上:奇±奇=奇,偶±偶=偶,奇?奇=偶,偶?偶=偶,奇?偶=奇; 5. 判断函数的奇偶性有时可以用定义的等价形式:()()0f x f x ±-=,()1() f x f x =±-. 6.判断函数的单调性的方法: (1)定义法;(2)图象法;(3)性质法:在公共定义域内,利用函数的运算性质:若()f x 、)(x g 同为增函数,则①()()f x g x +为增函数;②()()f x g x 为增函数;③()1()0() f x f x >为减函数; ()()0f x ≥为增函数;⑤()f x -为减函数.

1.设)(x f 是定义在R 上的一个函数,则函数)()()(x f x f x F --=在R 上一定是( ) A .奇函数 B .偶函数 C .既是奇函数又是偶函数 D .非奇非偶函数。 2.函数)11()(+--=x x x x f 是( ) A .是奇函数又是减函数 B .是奇函数但不是减函数 C .是减函数但不是奇函数 D .不是奇函数也不是减函数 3.若)(x f 是偶函数,其定义域为()+∞∞-,,且在[)+∞,0上是减函数,则)2 52()23 (2++-a a f f 与的大小关系是( ) A .)23(-f >)252(2++a a f B .)23(-f <)2 52(2 ++a a f C .)23(-f ≥)252(2++a a f D .)23(-f ≤)2 52(2++a a f 4.设()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ?<的解集是( ) A .{}|303x x x -<<>或B .{}|303x x x <-<<或 C .{}|33x x x <->或 D .{}|3003x x x -<<<<或 5.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数, 则实数a 的取值范围是( ) A .3a ≤- B .3a ≥- C .5a ≤ D .3a ≥ 6.设()f x 是R 上的奇函数,且当[)0,x ∈+∞时,()(1f x x =,则当(,0)x ∈-∞时()f x =_____________________。 7.若函数2()1 x a f x x bx +=++在[]1,1-上是奇函数,则()f x 的解析式为________. 8.已知定义在R 上的奇函数()f x ,当0x >时,1||)(2-+=x x x f ,那么0x <时,()f x =. 9.设函数()f x 与()g x 的定义域是x R ∈且1x ≠±,()f x 是偶函数,()g x 是奇函数,且1()()1 f x g x x +=-,求()f x 和()g x 的解析式. 10.利用函数的单调性求函数x x y 21++=的值域;

《函数的奇偶性与周期性》教案

教学过程 一、课堂导入 我们生活在美的世界中,有过许多对美的感受,请想一下有哪些美? 对于对称美,请想一下哪些事物给过你对称美的感觉呢? 生活中的美引入我们的数学领域中,它又是怎样的情况呢?若给它适当地建立直角坐标系,那么会发现什么特点? 数学中对称的形式也很多,这节课我们就来复习在坐标系中对称的函数

二、复习预习 1、复习单调性的概念 2、复习初中的轴对称和中心对称 3、预习奇偶性的概念 4、预习奇偶性的应用

三、知识讲解 考点1 函数的奇偶性 [探究] 1. 提示:定义域关于原点对称,必要不充分条件. 2.若f(x)是奇函数且在x=0处有定义,是否有f(0)=0?如果是偶函数呢? 提示:如果f(x)是奇函数时,f(0)=-f(0),则f(0)=0;如果f(x)是偶函数时,f(0)不一定为0,如f(x)=x2+1. 3.是否存在既是奇函数又是偶函数的函数?若有,有多少个? 提示:存在,如f(x)=0,定义域是关于原点对称的任意一个数集,这样的函数有无穷多个.

考点2 周期性 (1)周期函数: 对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y =f(x)为周期函数,称T为这个函数的周期. (2)最小正周期: 如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.

四、例题精析 【例题1】 【题干】判断下列函数的奇偶性 (1)f(x)=lg 1-x 1+x ;(2)f(x)= ? ? ?x2+x(x>0), x2-x(x<0); (3)f(x)= lg(1-x2) |x2-2|-2 .

(完整版)函数奇偶性知识点和经典题型归纳

函数奇偶性 知识梳理 1. 奇函数、偶函数的定义 (1)奇函数:设函数()y f x =的定义域为D ,如果对D 内的任意一个x ,都有()()f x f x -=-, 则这个函数叫奇函数. (2)偶函数:设函数()y f x =的定义域为D ,如果对D 内的任意一个x ,都有()()f x f x -=, 则这个函数叫做偶函数. (3)奇偶性:如果函数()f x 是奇函数或偶函数,那么我们就说函数()f x 具有奇偶性. (4)非奇非偶函数:无奇偶性的函数是非奇非偶函数. 注意:(1)奇函数若在0x =时有定义,则(0)0f =. (2)若()0f x =且()f x 的定义域关于原点对称,则()f x 既是奇函数又是偶函数. 2.奇(偶)函数的基本性质 (1)对称性:奇函数的图象关于原点对称,偶函数的图象关于y 轴对称. (2)单调性:奇函数在其对称区间上的单调性相同,偶函数在其对称区间上的单调性相反. 3. 判断函数奇偶性的方法 (1)图像法 (2)定义法 ○ 1 首先确定函数的定义域,并判断其定义域是否关于原点对称; ○ 2 确定f(-x)与f(x)的关系; ○ 3 作出相应结论: 若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数; 若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数. 例题精讲 【例1】若函数2()f x ax bx =+是偶函数,求b 的值. 解:∵函数 f (x )=ax 2+bx 是偶函数, ∴f (-x )=f (x ).∴ax 2+bx= ax 2-bx. ∴2bx=0. ∴b =0. 【例3】已知函数21()f x x =在y 轴左边的图象如下图所示,画出它右边的图象. 题型一 判断函数的奇偶性 【例4】判断下列函数的奇偶性. (1)2()||(1)f x x x =+; (2)1()f x x x =;

人教A版数学必修一函数的奇偶性

数学·必修1(人教A版) 1.3.3 函数的奇偶性 ?基础达标 1.已知f(x)是定义在R上的奇函数,则f(0)的值为( ) A.-1 B.0 C.1 D.无法确定

解析:∵f(x)为R上的奇函数, ∴f(-x)=-f(x),∴f(0)=-f(0),∴f(0)=0. 答案:B 2.(2013·山东卷)已知函数f(x)为奇函数,且当x>0时,f(x) =x2+1 x ,则f(-1)=( ) A.-2B.0C.1D.2 答案:A 3.如果偶函数在区间[a,b]上有最大值,那么该函数在区间[-b,-a]上( ) A.有最大值B.有最小值 C.没有最大值D.没有最小值 解析:∵偶函数图象关于y轴对称,由偶函数在区间[a,b]上具有最大值,∴在区间[-b,-a]上有最大值. 答案:A 4.已知f(x)=ax3+bx+5,其中a,b为常数,若f(-7)=-7,则f(7)=( ) A.7B.-7C.12D.17 解析:∵f(-7)=-7, ∴a(-7)3+b(-7)+5=-7, ∴73a+7b=12. ∴f(7)=73a+7b+5=12+5=17. 答案:D 5.若函数f(x)=(k-2)x2+(k-1)x+3是偶函数,则f(x)的递减区间是________. 解析:∵f(x)是偶函数,∴f(-x)=f(x), ∴k-1=0,∴k=1,

∴f(x)=-x2+3的递减区间为[0,+∞). 答案:[0,+∞) ?巩固提高 6.设f(x)是R上的任意函数,则下列叙述正确的是( ) A.f(x)f(-x)是奇函数 B.f(x)|f(-x)|是奇函数 C.f(x)-f(-x)是偶函数 D.f(x)+f(-x)是偶函数 解析:取f(x)=x,则f(x)f(-x)=-x2是偶函数,A错,f(x)|f(-x)|=x2是偶函数,B错;f(x)-f(-x)=2x是奇函数,C 错.故选D. 答案:D 7.已知定义在R上的偶函数f(x)的单调递减区间为[0,+∞),则使f(x)<f(2)成立的自变量取值范围是( ) A.(-∞,2) B.(2,+∞) C.(-2,2)D.(-∞,-2)∪(2,+∞) 解析:∵f(x)是偶函数且在[0,+∞)为减区间,示意图如下:由图示可知:f(x)<f(2)成立的自变量的取值范围是(-∞,- 2)∪(2,+∞). 答案:D

《函数的单调性和奇偶性》经典例题

经典例题透析 类型一、函数的单调性的证明 1.证明函数上的单调性. 证明:在(0,+∞)上任取x1、x2(x1≠x2),令△x=x2-x1>0 则 ∵x1>0,x2>0,∴∴上式<0,∴△y=f(x2)-f(x1)<0 ∴上递减. 总结升华: [1]证明函数单调性要求使用定义; [2]如何比较两个量的大小?(作差) [3]如何判断一个式子的符号?(对差适当变形) 举一反三: 【变式1】用定义证明函数上是减函数. 思路点拨:本题考查对单调性定义的理解,在现阶段,定义是证明单调性的唯一途径. 证明:设x1,x2是区间上的任意实数,且x10 ∴x1f(x2) 上是减函数. 总结升华:可以用同样的方法证明此函数在上是增函数;在今后的学习中经常会碰到这个函数,在此可以尝试利用函数的单调性大致给出函数的图象.

类型二、求函数的单调区间 2. 判断下列函数的单调区间; (1)y=x2-3|x|+2;(2) 解:(1)由图象对称性,画出草图 ∴f(x)在上递减,在上递减,在上递增. (2) ∴图象为 ∴f(x)在上递增. 举一反三: 【变式1】求下列函数的单调区间: (1)y=|x+1|;(2)(3). 解:(1)画出函数图象, ∴函数的减区间为,函数的增区间为(-1,+∞); (2)定义域为,其中u=2x-1为增函数,

在(-∞,0)与(0,+∞)为减函数,则上为减函数; (3)定义域为(-∞,0)∪(0,+∞),单调增区间为:(-∞,0),单调减区间为(0,+∞). 总结升华: [1]数形结合利用图象判断函数单调区间; [2]关于二次函数单调区间问题,单调性变化的点与对称轴相关. [3]复合函数的单调性分析:先求函数的定义域;再将复合函数分解为内、外层函数;利用已知函数的单调性解决.关注:内外层函数同向变化→复合函数为增函数;内外层函数反向变化→复合函数为减函数. 类型三、单调性的应用(比较函数值的大小,求函数值域,求函数的最大值或最小值) 3. 已知函数f(x)在(0,+∞)上是减函数,比较f(a2-a+1)与的大小. 解:又f(x)在(0,+∞)上是减函数,则. 4. 求下列函数值域: (1);1)x∈[5,10];2)x∈(-3,-2)∪(-2,1); (2)y=x2-2x+3;1)x∈[-1,1];2)x∈[-2,2]. 思路点拨:(1)可应用函数的单调性;(2)数形结合. 解:(1)2个单位,再上移2个单位得到,如图 1)f(x)在[5,10]上单增,;

高中必修一函数的奇偶性详细讲解及练习(详细答案)

函数的单调性和奇偶性 例1(1)画出函数y=-x2+2|x|+3的图像,并指出函数的单调区间. 解:函数图像如下图所示,当x≥0时,y=-x2+2x+3=-(x-1)2+4;当x<0时,y=-x2-2x+3=-(x+1)2+4.在(-∞,-1]和[0,1]上,函数是增函数:在[-1,0]和[1,+∞)上,函数是减函数. 评析函数单调性是对某个区间而言的,对于单独一个点没有增减变化,所以对于区间端点只要函数有意义,都可以带上. (2)已知函数f(x)=x2+2(a-1)x+2在区间(-∞,4]上是减函数,求实数a的取值范围.分析要充分运用函数的单调性是以对称轴为界线这一特征. 解:f(x)=x2+2(a-1)x+2=[x+(a-1)]2-(a-1)2+2,此二次函数的对称轴是x=1-a.因为在区间(-∞,1-a]上f(x)是单调递减的,若使f(x)在(-∞,4]上单调递减,对称轴x=1-a必须在x=4的右侧或与其重合,即1-a≥4,a≤-3. 评析这是涉及逆向思维的问题,即已知函数的单调性,求字母参数范围,要注意利用数形结合.例2判断下列函数的奇偶性: (1)f(x)=- (2)f(x)=(x-1). 解:(1)f(x)的定义域为R.因为 f(-x)=|-x+1|-|-x-1| =|x-1|-|x+1|=-f(x). 所以f(x)为奇函数. (2)f(x)的定义域为{x|-1≤x<1},不关于原点对称.所以f(x)既不是奇函数,也不是偶函数. 评析用定义判断函数的奇偶性的步骤与方法如下: (1)求函数的定义域,并考查定义域是否关于原点对称. (2)计算f(-x),并与f(x)比较,判断f(-x)=f(x)或f(-x)=-f(x)之一是否成立.f

函数的奇偶性与周期性练习题

函数的奇偶性与周期性 1.奇函数f (x )的定义域为R ,若f (x +2)为偶函数,则f (1)=1,则f (8)+f (9)= ( ) A. -2 B.-1 C. 0 D. 1 2.在函数①|2|cos x y =,②|cos |x y = ,③)62cos(π +=x y ,④)42tan(π -=x y 中,最小正周期为π的所有函数为 A.①②③ B. ①③④ C. ②④ D. ①③ 3.设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是 A. )()(x g x f 是偶函数 B. )(|)(|x g x f 是奇函数 C. |)(|)(x g x f 是奇函数 D. |)()(|x g x f 是奇函数 4.已知()f x 是定义在R 上的奇函数,且是以2为周期的周期函数,若当(]0,1x ∈时 2()1f x x =-,则7()2 f 的值为 A 34- B 34 C 12- D 12 5.下列函数为偶函数的是 A. sin y x = B. 3y x = C. x y e = D. y = 6.设()f x 是周期为2的奇函数,当0≤x ≤1时,()f x =2(1)x x -,则5 ()2f -= (A) -12 (B)1 4- (C)14 (D)12 7.下列函数中,既是偶函数又在()0,+∞单调递增的函数是 (A )3y x = (B) 1y x =+ (C )21y x =-+ (D) 2x y -= 8.下列函数为偶函数的是() A.()1f x x =- B.()2f x x x =+ C.()22x x f x -=- D.()22x x f x -=+ 9.偶函数y=f(x)的图像关于直线x=2对称,f(3)=3,则f(-1)=_______. 10.函数)4)(()(-+=x a x x f 为偶函数,则实数a = . 11.已知()f x 为奇函数,()()9,(2)3,(2)g x f x g f =+-==则 .

奇偶性的典型例题

函数的奇偶性 一、关于函数的奇偶性的定义 定义说明:对于函数)(x f 的定义域内任意一个x : ⑴)()(x f x f =- ?)(x f 是偶函数; ⑵)()(x f x f -=-?)(x f 奇函数; 函数的定义域关于原点对称是函数为奇(偶)函数的必要不充分条件。 二、函数的奇偶性的几个性质 ①、对称性:奇(偶)函数的定义域关于原点对称; ②、整体性:奇偶性是函数的整体性质,对定义域内任意一个x 都必须成立; ③、可逆性: )()(x f x f =- ?)(x f 是偶函数; )()(x f x f -=-?)(x f 奇函数; ④、等价性:)()(x f x f =-?0)()(=--x f x f )()(x f x f -=-?0)()(=+-x f x f ⑤、奇函数的图像关于原点对称,偶函数的图像关于y 轴对称; ⑥、可分性:根据函数奇偶性可将函数分类为四类:奇函数、偶函数、既是奇函数又是偶函数、 非奇非偶函数。 三、函数的奇偶性的判断 判断函数的奇偶性大致有下列两种方法: 第一种方法:利用奇、偶函数的定义,主要考查)(x f 是否与)(x f -、)(x f 相等,判断步骤如下: ①、定义域是否关于原点对称; ②、数量关系)()(x f x f ±=-哪个成立; 例1:判断下列各函数是否具有奇偶性 ⑴、x x x f 2)(3+= ⑵、2 432)(x x x f += ⑶、1 )(2 3--=x x x x f ⑷、2)(x x f = []2,1-∈x

⑸、x x x f -+-=22)( ⑹、2211)(x x x f -+-= 解:⑴为奇函数 ⑵为偶函数 ⑶为非奇非偶函数 ⑷为非奇非偶函数 ⑸为非奇非偶函数 ⑹既是奇函数也是偶函数 注:教材中的解答过程中对定义域的判断忽略了。 例2:判断函数???<≥-=)0()0()(22x x x x x f 的奇偶性。 .)(),()() ()()()(,0,0) ()()(,0,0) (0)0(:22222为奇函数故总有有时即当有时即当解x f x f x f x f x x x f x x x f x x x f x x x f f =-∴-=--=-=->-<-=-=--=-<->-== 第二种方法:利用一些已知函数的奇偶性及下列准则(前提条件为两个函数的定义域交集不为空集):两个奇函数的代数和是奇函数;两个偶函数的和是偶函数;奇函数与偶函数的和既不非奇函数也非偶函数;两个奇函数的积为偶函数;两个偶函数的积为偶函数;奇函数与偶函数的积是奇函数。 四、关于函数的奇偶性的几个命题的判定。 命题 1 函数的定义域关于原点对称,是函数为奇函数或偶函数的必要不充分 条件。 此命题正确。如果函数的定义域不关于原点对称,那么函数一定是非奇非偶函数,这一点可以由奇偶性定义直接得出。 命题2 两个奇函数的和或差仍是奇函数;两个偶函数的和或差仍是偶函数。 此命题错误。一方面,如果这两个函数的定义域的交集是空集,那么它们的和或差没有定义;另一方面,两个奇函数的差或两个偶函数的差可能既是奇函数又是偶函数,如f(x)=x(x ∈〔-1,1〕),g(x)=x(x ∈〔-2,2〕),可以看出函数f(x)与g(x)都是定义域上的函数,它们的差只在区间〔-1,1〕上有定义且f(x)-g(x)=0,而在此区间上函数f(x)-g(x)既是奇函数又是偶函数。 命题3 f(x)是任意函数,那么|f(x)|与f(|x|)都是偶函数。 此命题错误。一方面,对于函数|f(x)|=? ??<-≥),0)((),(0)((),(x f x f x f x f 不能保证f(-x)=f(x)或f(-x)=-f(x);另一方面,对于一个任意函数f(x)而言,不能保证它的定义域关于原点对称。如果所给函数的定义域关于原点对称,那么函数f(|x|)是偶函数。 命题4 如果函数f(x)满足:|f(x)|=|f(-x)|,那么函数f(x)是奇函数或偶 函数。

高中数学必修一函数的奇偶性练习

单元测试(2) 一、选择题:(每小题4,共40分) 1. 下列哪组中的两个函数是同一函数 ( ) A .2y =与y x = B 。3y =与y x = C .y = 2y = D 。y =与2 x y x = 2. 若()f x =(3)f -等于 ( ) (A)32- (B)34 - (C)34 (D)32± 3. 函数f(x)=2-x +(x-4)0的定义域为 ( ) A . {x|x>2,x ≠4} B 。{x|x ≥2,或x ≠4} C 。[) ()2,44,+∞ D 。[)2,+∞ 4.函数y=x 2-1的值域是 ( ) A . (-∞,-1) B 。 [)1,-+∞ C 。 [-1,0] D 。 R 5. 函数f(x)=x|x|+x 3是 ( ) A . 偶函数 B 。奇函数 C 。非奇非偶函数 D 。既奇又偶函数 6.若函数)(x f 在区间(a ,b )上为增函数,在区间(b ,c )上也是增函数,则函数)(x f 在区间(a ,c )上 ( ) A .必是增函数 B 。必是减函数 C .是增函数或是减函数 D 。无法确定增减性 7.函数x x x x f +=)(的图象是 ( ) 8. .函数f (x )=x 2+2(a -1)x +2在区间(-∞,4)上递减,则a 的取值范围是 ( ) A.[)3,-+∞ B.(],3-∞- C.(-∞,5) D.[)3,+∞ 9、设偶函数f(x)的定义域为R ,当x [0,)∈+∞时f(x)是增函数,则f(-2),f(π),f(-3)的大小关系是 A B C D

( ) A 。f(π)>f(-3)>f(-2) B 。f(π)>f(-2)>f(-3) C .f(π)-a >0,则F (x )= f (x)-f (-x)的定义域是 . 12.若函数 f (x )=(k -2)x 2+(k-1)x +3是偶函数,则f (x )的递减区间是 . 13.函数y=(x-1)2-2,0≤x ≤2的最大值是 ,最小值是 . 14.设奇函数f(x)的定义域为[?5,5].若当x ∈[0,5]时,f (x )的图象如右图, 则不等式f (x )<0的解集是 . 三、解答题:(共40分). 15.已知,a b 为常数,若22 ()43,()1024,f x x x f ax b x x =+++=++ 则求b a -5的值。 16. (12分)如图,用长为1的铁丝弯成下部为矩形,上部为半圆形的框架,若半圆半径为x ,求此框架围成的面积y 与x 的函数式y =f (x ),并写出它的定义域.

函数的奇偶性与周期性 知识点与题型归纳

1.结合具体函数,了解函数奇偶性的含义. 2.会运用函数的图象理解和研究函数的奇偶性. 3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性. ★备考知考情 1.对函数奇偶性的考查,主要涉及函数奇偶性的判断,利用奇偶函数图象的特点解决相关问题,利用函数奇偶性求函数值,根据函数奇偶性求参数值等. 2.常与函数的求值及其图象、单调性、对称性、零点等知识交汇命题. 3.多以选择题、填空题的形式出现. 一、知识梳理《名师一号》P18 注意: 研究函数奇偶性必须先求函数的定义域 知识点一函数的奇偶性的概念与图象特征 1.一般地,如果对于函数f(x)的定义域内任意一个x, 都有f(-x)=f(x),那么函数f(x)就叫做偶函数. 2.一般地,如果对于函数f(x)的定义域内任意一个x, 都有f(-x)=-f(x),那么函数f(x)就叫做奇函数. 1

2 3.奇函数的图象关于原点对称; 偶函数的图象关于y 轴对称. 知识点二 奇函数、偶函数的性质 1.奇函数在关于原点对称的区间上的单调性相同, 偶函数在关于原点对称的区间上的单调性相反. 2. 若f (x )是奇函数,且在x =0处有定义,则(0)0=f . 3. 若f (x )为偶函数,则()()(||)f x f x f x =-=. 《名师一号》P19 问题探究 问题1 奇函数与偶函数的定义域有什么特点? (1)判断函数的奇偶性,易忽视判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件. (2)判断函数f (x )的奇偶性时,必须对定义域内的 每一个x , 均有f (-x )=-f (x )、f (-x )=f (x ), 而不能说存在x 0使f (-x 0)=-f (x 0)、f (-x 0)=f (x 0). (补充) 1、若奇函数()f x 的定义域包含0,则(0)0=f . (0)0=f 是()f x 为奇函数的 既不充分也不必要条件 2.判断函数的奇偶性的方法 (1)定义法: 1)首先要研究函数的定义域,

函数的奇偶性及周期性综合运用

函数的奇偶性及周期性 1. 已知定义在 R 上的奇函数 f(x) 满足 f(x+2)= -f(x) f(6) 的值为 ( ) A.-1 B.0 C.1 D.2 【答案】 B 【解析】 ∵ f(x+2)=-f(x), ∴ f(6)=f(4+2)=-f(4)=f(2)= -f(0) 又 f(x) 为R 上的奇函数 , ∴ f(0)=0. ∴ f(6)=0. 2. 函数 f ( x) x 3 sin x 1( x R), 若 f(a)=2, 则 f(-a) 的值为 ( ) A.3 B.0 C.-1 D.-2 【答案】 B 【解析】 设 g ( x) 3 sinx, 很明显 g(x) 是一个奇函数 . x ∴ f(x)=g(x)+1. ∵ f(a)=g(a)+1=2, ∴ g(a)=1. ∴ g(-a)=-1. ∴ f(-a)=g(-a)+1=-1+1=0. 3. 已知 f(x) 是定义在 R 上的偶函数 , 并满足 f(x+2)= 1 1 x 2 时 ,f(x)=x-2, 则 f ( x) f(6.5) 等于?? ( ) A.4.5 B.-4.5 C.0.5 D.-0.5 【答案】 D 【 解 析 】 由 f(x 2) 1 得 f(x 4) 1 f ( x ) f ( x 2) f(6.5)=f(2.5). 因为 f(x) 是偶函数 , 得 f(2.5)=f(-2.5)=f(1.5), 而 1 x 2 时 ,f(x)=x-2, 所以 f(1.5)=-0.5. 综上 , 知f(6.5)=-0.5. 4. 已知函数 f(x) 是定义在 R 上的奇函数 , 当 x>0时 ,f(x)= - 是 ( ) A. ( 1) B. ( 1] C. (1 ) D. [1 ) 【答案】 A 【解析】 当 x>0时 f ( x ) 1 2 x 1 1 x 2 当 x<0时,-x>0, ∴ f( x ) 1 2 x . 又∵ f(x) 为 R 上的奇函数 , ∴ f(-x)=-f(x). ∴ f ( x ) 1 2 x . ∴ f ( x ) 2 x 1 . ∴ f ( x) 2 1 1 即 2 x 1 . x ∴ x<-1. 2 2 ∴不等式 f ( x ) 1 的解集是 ( 1) . 2 5. 设 g(x) 是定义在 R 上、以 1为周期的函数 . 若函数 f(x)=x+g(x) 则f(x) 在区间 [0,3] . f ( x) 那 么 f(x) 的 周 期 是 4, 得 2 x 则不等式 f ( x) 1 的解集 2 1 2 在区间 [0,1] 上的值域为 [-2,5],

函数的基本性质(考点加经典例题分析)

函数的基本性质 函数的三个基本性质:单调性,奇偶性,周期性 一、单调性 1、定义:对于函数)(x f y =,对于定义域内的自变量的任意两个值21,x x ,当21x x <时,都有))()()(()(2121x f x f x f x f ><或,那么就说函数)(x f y =在这个区间上是增(或减)函数。 2、图像特点:在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的。(提示:判断函数单调性一般都使用图像法,尤其是分段函数的单调性。) 3.二次函数的单调性:对函数c bx ax x f ++=2 )()0(≠a , 当0>a 时函数)(x f 在对称轴a b x 2- =的左侧单调减小,右侧单调增加; 当0-x f x f x f x f 或; ⑸根据定义下结论。 例2、判断函数1 2)(-+= x x x f 在)0,(-∞上的单调性并加以证明.

5.复合函数的单调性:复合函数))((x g f y =在区间),(b a 具有单调性的规律见下表: 以上规律还可总结为:“同向得增,异向得减”或“同增异减”。 例3:函数322-+=x x y 的单调减区间是 ( ) A.]3,(--∞ B.),1[+∞- C.]1,(--∞ D.),1[+∞ 6.函数的单调性的应用: 判断函数)(x f y =的单调性;比较大小;解不等式;求最值(值域)。 例4:求函数1 2-= x y 在区间]6,2[上的最大值和最小值. 二、奇偶性 1.定义: 如果对于f(x)定义域内的任意一个x,都有)()(x f x f =-,那么函数f(x)就叫偶函数; (等价于:0)()()()(=--?=-x f x f x f x f ) 如果对于f(x)定义域内的任意一个x,都有)()(x f x f -=-,那么函数f(x)就叫奇函数。 (等价于:0)()()()(=+-?-=-x f x f x f x f ) 注意:当0)(≠x f 时,也可用1) ()(±=-x f x f 来判断。 2.奇、偶函数的必要条件:函数的定义域在数轴上所示的区间关于原点对称。 若函数)(x f 为奇函数,且在x=0处有定义,则0)0(=f ; 3.判断一个函数的奇偶性的步骤 ⑴先求定义域,看是否关于原点对称; ⑵再判断)()(x f x f -=-或)()(x f x f =- 是否恒成立。

高中数学必修一函数的性质单调性与奇偶性典型精讲精练

1文档收集于互联网,已整理,word 版本可编辑. 函数单调性 证明格式: ① 取任意两个数12,x x 属于定义域D ,且令12x x <(反之亦可); ② 作差12()()f x f x -并因式分解; ③ 判定 12()()f x f x -的正负性,并由此说明函数的增减性; 例 1 用定义法判定下列函数的增减性: ① y x =; ②2y x =; ③3y x =; ④y = ⑤1 y x = ; 练习:1. 判断函数()f x = 2.证明函数 3()f x x x =+在R 上是增函数; 例 2 已知函数 1 ()(0)f x x x x =+>,求证:函数的单调减区间为(0,1],增区间为[1,)+∞,并画出图像; 练习:证明函数 x x x f 2 )(+ =在),2(+∞上是增函数。 3.复合函数的单调性 复合函数的单调性判断(同增异减):构造中间过度函数,按定义比较函数大小并确定函数的单调性; 例 3 判断函数的单调性: (1 ) ()f x = (2 )()f x =; (3) 2 1 ()2 f x x = +; 练习:① y = ②2 13y x = -; ③ 2 154y x x = +-; ④ y ; 4.函数的单调性的等价关系 设[]1212,,,x x a b x x ∈≠那么 []1212()()()0x x f x f x -->?[]1212()() 0(),f x f x f x a b x x ->?-在上是增函数; []1212()()()0x x f x f x --时,()1f x >且对任意的,a b 都有()()()f a b f a f b +=? (1)求证: (0)1f = ; (2)求证:对任意的x R ∈恒有 ()0f x > ; (3)求证:f(x)是R 上的增函数 ; (4)若2()(2)1f x f x x ?->,求x 的取值范围 相关练习 1、设 ()f x 的图像关于原点对称,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ?<的解集是………………( ) A {}|303x x x -<<>或 B {}|303x x x <-<<或 C {}|33x x x <->或 D {}|3003x x x -<<<<或 2、若 )(x f 的图像关于y 轴对称,且在[)+∞,0上是减函数,则235()(2)2 2 f f a a -++与的大小关系…( ) A )2 3(-f >)25 2(2++a a f B )23 (-f <)25 2(2++a a f C ) 23 (-f ≥ )2 5 2(2++a a f D 3() 2f -≤25(2)2 f a a ++

1.10基本初等函数奇偶性和周期性

1.10基本初等函数奇偶性和周期性 姓名___________ 本节重点:①能够正确判断函数的奇偶性和周期性;②运用基本初等函数的性质解题。 一.基础练习 1. 写出下列函数中,奇函数是________;偶函数是________;非奇非偶函数是________ ①sin 2y x = ②2cos y x = ③4221y x x =++ ④2(1)y x =- ⑤()x x f x e e -=- ⑥1()1 x f x x -=+ ⑦1()lg 1 x f x x -=+ ⑧23 ()f x x -= 2. 已知多项式函数32()f x ax bx cx d =+++,系数,,,a b c d 满足__________时,()f x 是奇函数; 满足___________时,它是偶函数. 3. 定义在R 上的奇函数()f x 满足(2)()f x f x +=-,则(2)f =________. 4. 函数sin 2y x =的周期是________;tan y x π=的周期是________. 5. 已知函数()f x 是定义在(-3,3)上的奇函数,当03x << ()f x 图象如右,则不等式 ()0f x x >的解集是____________. 二、例题讲解 例1:判断下列函数的奇偶性 (1)2 ()2||3f x x x =-- (2)22 2,0 ()2,0 x x x f x x x x ?-≥?=?--,实数a 的范围是____________.

函数的奇偶性练习题[(附答案)

函数的奇偶性 1.函数f (x )=x(-1﹤x ≦1)的奇偶性是 ( ) A .奇函数非偶函数 B .偶函数非奇函数 C .奇函数且偶函数 D .非奇非偶函数 2. 已知函数f (x )=ax 2+bx +c (a ≠0)是偶函数,那么g (x )=ax 3+bx 2+cx 是( ) A .奇函数 B .偶函数 C .既奇又偶函数 D .非奇非偶函数 3. 若函数f (x )是定义在R 上的偶函数,在]0,(-∞上是减函数, 且f (2)=0,则使得f (x )<0的x 的取值范围是 ( ) A.(-∞,2) B. (2,+∞) C. (-∞,-2)?(2,+∞) D. (-2,2) 4.已知函数f (x )是定义在(-∞,+∞)上的偶函数. 当x ∈(-∞,0)时,f (x )=x -x 4,则 当x ∈(0.+∞)时,f (x )= . 5. 判断下列函数的奇偶性: (1)f (x )=lg (12+x -x ); (2)f (x )=2-x +x -2 (3) f (x )=? ? ?>+<-). 0() 1(),0()1(x x x x x x 6.已知g (x )=-x 2-3,f (x )是二次函数,当x ∈[-1,2]时,f (x )的最小值是1,且f (x )+g (x )是奇函数,求f (x )的表达式。 7.定义在(-1,1)上的奇函数f (x )是减函数,且f(1-a)+f(1-a 2 )<0,求a 的取值范围 8.已知函数21 ()(,,)ax f x a b c N bx c += ∈+是奇函数,(1)2,(2)3,f f =<且()[1,)f x +∞在上是增函数, (1)求a,b,c 的值; (2)当x ∈[-1,0)时,讨论函数的单调性. 9.定义在R 上的单调函数f (x )满足f (3)=log 23且对任意x ,y ∈R 都有 f (x+y )=f (x )+f (y ). (1)求证f (x )为奇函数; (2)若f (k ·3x )+f (3x -9x -2)<0对任意x ∈R 恒成立,求实数k 的取值范围.

人教高中数学必修一函数的奇偶性知识点及例题解析

高中数学函数的奇偶性知识点及例题解析 一、知识要点: 1、函数奇偶性的概念 一般地,对于函数)(x f ,如果对于函数定义域内任意一个x ,都有)()(x f x f =-,那么函数)(x f 就叫做偶函数。 一般地,对于函数)(x f ,如果对于函数定义域内任意一个x ,都有)()(x f x f -=-,那么函数)(x f 就叫做奇函数。 理解: (1)奇偶性是针对整个定义域而言的,单调性是针对定义域内的某个区间而言的。这两个概念的区别之一就是,奇偶性是一个“整体”性质,单调性是一个“局部”性质; (2)定义域关于原点对称是函数具有奇偶性的必要条件。 2、按奇偶性分类,函数可分为四类: 奇函数非偶函数、偶函数非奇函数、非奇非偶函数、亦奇亦偶函数. 3、奇偶函数的图象: 奇函数?图象关于原点成中心对称的函数,偶函数?图象关于y 轴对称的函数。 4、函数奇偶性的性质: ①具有奇偶性的函数,其定义域关于原点对称(也就是说,函数为奇函数或偶函数的必要条件是其定义域关于原点对称)。 ②常用的结论:若f(x)是奇函数,且x 在0处有定义,则f(0)=0。 ③奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同,最值相反。奇函数f(x)在区间[a,b](0≤a

相关主题