搜档网
当前位置:搜档网 › Unity3D游戏开发之跟踪已下载资源包浅析

Unity3D游戏开发之跟踪已下载资源包浅析

Unity3D游戏开发之跟踪已下载资源包浅析
Unity3D游戏开发之跟踪已下载资源包浅析

Unity3D游戏开发之跟踪已下载资源包浅析

Keeping track of loaded AssetBundles

跟踪已下载资源包

Unity 一次只允许加载一个特定资源包 (AssetBundle) 实例到应用程序中。这意味着您无法检索 WWW 对象中之前已加载的相同资源包 (AssetBundle) 或尚未加载的资源包。实际上,这意味着您尝试访问之前已下载的如下资源包 (AssetBundle) 时:AssetBundle bundle = www.assetBundle;

程序将引出以下错误

Cannot load cached AssetBundle.A file of the same name is already loaded from another AssetBundle

且资源包属性将返回 null。如果第一次下载时下载了该资源包 (AssetBundle),则第二次下载时无法检索到该资源包,因此,无需再使用该资源包时,可以将其卸载或获取其引用,并在它存在于内存中时避免将其下载。可根据需求决定需要采取的相应措施,但我们建议在加载完对象后立即卸载该资源包 (AssetBundle)。这可释放内存空间,并且不会再收到有关加载已缓存资源包 (AssetBundles) 的错误。文章出处【狗刨学习网】

如需跟踪已下载资源包 (AssetBundles),可使用包装类协助管理下载,如下:

https://www.sodocs.net/doc/a316713555.html,ing UnityEngine;

https://www.sodocs.net/doc/a316713555.html,ing System;

https://www.sodocs.net/doc/a316713555.html,ing System.Collections;

https://www.sodocs.net/doc/a316713555.html,ing System.Collections.Generic;

5.

6.static public class AssetBundleManager {

7.// A dictionary to hold the AssetBundle references

8.static private Dictionary dictAssetBundleRefs;

9.static AssetBundleManager (){

10.dictAssetBundleRefs = new Dictionary();

11. }

12.// Class with the AssetBundle reference, url and version

13.private class AssetBundleRef {

14.public AssetBundle assetBundle = null;

15.public int version;

16.public string url;

17.public AssetBundleRef(string strUrlIn, int intVersionIn) {

18.url = strUrlIn;

19.version = intVersionIn;

20. }

21. };

22.// Get an AssetBundle

23.public static AssetBundle getAssetBundle (string url, int version){

24.string keyName = url + version.ToString();

25.AssetBundleRef abRef;

26.if (dictAssetBundleRefs.TryGetValue(keyName, out abRef))

27.return abRef.assetBundle;

28.else

29.return null;

30. }

31.// Download an AssetBundle

32.public static IEnumerator downloadAssetBundle (string url, int version){

33.string keyName = url + version.ToString();

34.if (dictAssetBundleRefs.ContainsKey(keyName))

35.yield return null;

36.else {

https://www.sodocs.net/doc/a316713555.html,ing(WWW www = WWW.LoadFromCacheOrDownload (url, version)){

38.yield return www;

39.if (www.error != null)

40.throw new Exception("WWW download:"+ www.error);

41.AssetBundleRef abRef = new AssetBundleRef (url, version);

42.abRef.assetBundle = www.assetBundle;

43.dictAssetBundleRefs.Add (keyName, abRef);

44. }

45. }

46. }

47.// Unload an AssetBundle

48.public static void Unload (string url, int version, bool allObjects){

49.string keyName = url + version.ToString();

50.AssetBundleRef abRef;

51.if (dictAssetBundleRefs.TryGetValue(keyName, out abRef)){

52.abRef.assetBundle.Unload (allObjects);

53.abRef.assetBundle = null;

54.dictAssetBundleRefs.Remove(keyName);

55. }

56. }

57.}

请记住,本示例中的 AssetBundleManager 类是静态的,正在引用的任何资源包(AssetBundles) 不会在加载新场景时销毁。请将此类当做指南例程,但正如最初建议的那样,最好在使用后立即卸载资源包 (AssetBundles)。您始终可以克隆之前实例化的对象,无需再下载该资源包 (AssetBundles)。文章出处【狗刨学习网】

光线跟踪讲解及源代码

计算机图形学期末作业 作业题目:Ray Tracing算法的实现 姓名:李海广 学号:S130201036 任课教师:秦红星

摘要 Ray Tracing算法又叫光线跟踪算法,它能通过递归方法逐个计算每个像素点的光强,然后就可以绘制出高度真实感的图像,因此该方法在图形学领域得到了广泛的应用。Ray Tracing算法的思想还能应用到移动通信终端定位领域,该领域里的射线跟踪法与此算法思想类似。MFC是微软公司提供的一个类库,以C++类的形式封装了Windows的API,并且包含一个应用程序框架,以减少应用程序开发人员的工作量。其中包含的类包含大量Windows句柄封装类和很多Windows的内建控件和组件的封装类。MFC在处理Windows窗口应用程序方面具有很大的优势,因此,本文使用MFC在VC6.0里实现Ray Tracing算法,并给出了该算法的详细讲解。 【关键词】Ray tracing 光线跟踪递归像素光强 MFC C++

目录 1.Ray Tracing算法概述 (1) 1.1Ray Tracing算法简介 (1) 1.2Ray Tracing算法的实现原理 (1) 2.Ray Tracing算法的具体实现 (2) 2.1算法的实现环境 (2) 2.2实现算法的C++程序简介 (2) 2.3算法的具体实现过程 (3) 2.4 程序运行结果 (11) 3.总结 (11) 3.1 通过该算法学到的东西 (11) 3.2本程序未完成的任务 (12) 4.参考文献 (12)

1.Ray Tracing算法概述 1.1Ray Tracing算法简介 光线跟踪(Ray tracing),又称为光迹追踪或光线追迹,它是来自于几何光学的一项通用技术,它通过跟踪与光学表面发生交互作用的光线从而得到光线经过路径的模型。它用于光学系统设计,如照相机镜头、显微镜、望远镜以及双目镜等。这个术语也用于表示三维计算机图形学中的特殊渲染算法,跟踪从眼睛发出的光线而不是光源发出的光线,通过这样一项技术将具有一定数学模型的场景显现出来。这样得到的结果类似于光线投射与扫描线渲染方法的结果,但是这种方法有更好的光学效果,例如对于反射与折射有更准确的模拟效果,并且效率非常高,所以在追求高质量结果时我们经常使用这种方法。 在光线跟踪的过程中,我们要考虑许多因素。要跟踪的光线包括反射光线、散射光线和镜面反射光线,利用递归方法并且设定一定的阀值来跟踪;在计算光强度时,我们要考虑场景中物体的反射系数、漫反射系数和镜面反射系数,还有交点处的法向量,出射光线的方向向量;在求视线以及反射光线和场景中物体的交点时,要计算出离眼睛以及出射点最近的交点作为击中点,得到击中点之后,我们就可以计算出击中点的坐标。最终,通过三个公式计算出每一个像素点处三种光线的光强值,再将三个光强值相加,就得到了该像素点出的总光强值,最后将颜色缓冲器中的三种颜色值输出到屏幕上,就得到了我们需要的光线跟踪图像。 1.2Ray Tracing算法的实现原理 (1)对图像中的每一个像素,创建从视点射向该像素的光线; (2)初始化最近时间T为一个很大的值,离视点最近的物体指针设为空值; (3)对场景中的每一个物体,如果从视点出发的光线和物体相交,且交点处的时间t比最近时间T小,则将t的值赋给最近时间T,并设置该物体为最近物体,将物体指针指向该物体; (4)经过第三步的计算后,如果最近物体指针指向空值NULL,则用背景色填充该像素。如果该指针指向光源,则用光源的颜色填充该像素;

unity3d学习游戏开发心得

Unity3D 学习游戏开发心得 罗佳 小组排名:黄馨然,罗佳在这将近20天的游戏开发中,第一次一边学习,一边开发游戏,虽然最后做出来的游戏有点差强人意,但是在这整个过程中学到的东西让自己觉得这20天的努力让这一整个学期学到的知识一下子充盈好看了起来。首次开发自己的游戏,是一个较艰难的过程,有时候在一个问题上耗上五六个小时仍无半点进展,那感觉确实让人十分沮丧,同样的,耗上五六个小时解决一个问题时的喜悦之感也是无与伦比的。在这20天的开发过程中,个人感觉比较难的,就是摄像机的处理了,总是无法使场景中的游戏对象,显示在合理的位置,调整摄像机的位置以及角度都非常费时间。 一下是对自己在游戏开发过程中所领悟到的新知识做一个总结: 关于摄影机控制,如果场景中有多架摄影机,那么如何确定第一打开时间所显示的摄影机,就需要设置Camera属性中的Depth数值,数值越大的摄影机越优先显示。 关于材质数量的控制,如果一个物体给与一个材质球,那么Unity3D对于材质数量和贴图数量没有任何的限制。如果一个物体给与多个材质球,我们需要用 Multi/SubObject来实现,但是这种罗列的材质球的数量没有严格的控制,但尽量保持在10以内,过多的数量会导致一些错误。如果不使用Multi/SubObject材质球,也可以选择一些面,然后给与一个材质球。这样系统会自动将其转换成Multi/SubObject材质。综合而言Unity3D软件对于材质的兼容还是很好的。 关于物体的质感,“Diffuse”,“Diffuse Bumped”,“Bumped Specular” 这三种类型为常用类型,其中Bumped需要增加Normal法线贴图来实现凹凸。 Decal 这种材质为贴花材质,即相当于Mask类型,可以再Decal(RGBA)贴与一个带有Alpha 通道的图像,形成和原图像相叠加的效果。 Diffuse Detail 这种材质可以创造出污迹和划痕的效果,即相当于Blend混合材质。 Reflective 其中各种类型可以创造出金属反射效果,需要增加Cubmap贴图。

什么是光线追踪技术,以及它的历史-

什么是光线追踪技术,以及它的历史? 编者按:本文作者Blake Patterson是一名全栈开发者,他在文中向我们简单科普了什么是光线追踪技术,以及它的历史。 在目前的PC图形硬件中,讨论最多的技术是一项成为光线追踪(ray tracing)的渲染技术。该技术风靡的原因,都源于几年前英伟达发布的RTX开发平台,以及微软而后推出的针对DirectX 12的DirectX Raytracing(DXR)API。DXR可以让Windows开发者在3D环境中加快GPU进行实时光线追踪的速度。这对游戏爱好者来说是个重大利好,因为光线追踪可以实现更真实的光线渲染,可以在3D场景中进行现实中的动作。 但是,目前仅有少部分游戏能够使用DXR所支持的渲染功能,并且很少有GPU在设计时会将DXR考虑在内、将光线追踪计算的加速作为主要目标。但目前来看,光线追踪仍然热度不减,很多从业者依然愿意为此花大价钱买一台GPU。 今年8月14日,英伟达发布了新一代GPU架构——图灵(Turing),以下是国外某网站关于此事的报道: “英伟达于周一发布了下一代图形架构Turing,名字来源于上世纪初人工智能之父、计算机科学家Alan Turing。 最新的图形处理单元(GPU)比传统图形处理工作负载量更大,其中嵌入了针对人工智能任务和一种新的图形渲染技术(称为光线追踪)的加速器。” 但是,光线追踪并不是新技术。事实上,它几乎和最早的3D计算机图形技术一同出现。什么是光线追踪?A.J. van der Ploeg在他的文章Interactive Ray Tracing:The Replacement of Rasterization?中这样描述: “在计算机图形中,如果我们有一个三维场景,通常我们会想知道该场景在虚拟摄像机中是如何呈现的。这种计算虚拟相机中图像的方法就称作渲染。 目前渲染的标准方法是光栅化(rasterization),这是一种局部光线渲染方法。它是将从其他表面反射的光也算作在内,例如镜子中的光线。这对倒影或影子的渲染非常重要。例如,

Unity3D游戏开发作品大盘点

经典重现《新仙剑OL》 《新仙剑OL》采用跨平台Unity3D引擎,耗资数千万,历时三年多,由台湾大宇正版授权,“仙剑之父”姚壮宪监制的全球首款Unity3D航母级双端(网页和客户端)中国风MMORPG网络游戏巨作。主打温情牌并且延续了仙剑系列的国风雅韵,人物塑造细腻唯美,场景构建精致逼真。 《蒸汽之城》(City of Steam) 由国内游戏公司参与开发的Unity3D页游《蒸汽之城》(City of Steam)在北美地区呼声颇高,该作是基于U3D引擎的纯3D角色扮演类网页游戏,它拥有目前市面上少有的360度镜头旋转纯3D画面,能给玩家带来3D客户端游戏体验。该作于不久前在北美开

启内测,反响较好。 角色扮演游戏《推倒Online》 《推倒Online》是一款由Unity3D游戏引擎开发,角色扮演、实时战斗为主,辅以社区交际元素的Q版3D网页游戏,由沈阳坐标科技于2010年11月公司创立之初开始设计研发。游戏以魔族崛起为世界背景,通过魔族勇士穿越封印征战大陆为引,展开剧情!制作宗旨走反传统搞怪路线,或可爱、或憨厚、或个性的美式魔幻卡通风格,简洁而不失质感。游戏以新颖的战斗模式、激烈的空间攻占、多样的生活交际经历为主要玩点,兼顾技能升级、装备合成、人物属性进化、游戏内小游戏等常规玩法的扩展,给玩家带来了全新的游戏盛宴。【狗刨学习网】

ARPG武侠《绝代双骄》 《绝代双骄》是一款纯中国风武侠ARPG即时战斗网页游戏,采用古龙经典小说为背景,3D游戏画面、无职业角色成长、推图式关卡副本、鼠标右键施放轻功、场景自由反馈等特色内容,为玩家带来非同凡响的3D武侠游戏体验。基于Unity3D游戏引擎,该作在武术特效上做了相当大的细节处理,无拘束轻功飞行、酣畅淋漓的打击感、刀刀见血拳拳到肉,都为游戏带来非常好的口碑。该作近期正在封测当中,有兴趣的玩家不妨关注一下。

光线追踪的应用及发展趋势.

课程论文 课程论文题目:光线追踪的应用及未来发展 学院:人民武装学院 专业:计算机科学与技术 班级:物联人151 学号: 1500860346 学生姓名:谭朝艳 指导教师:宁阳 2016 年6 月3 日

目录 摘要 ............................................................... II 第一章绪论 . (1) 1.1 光线追踪的定义 (1) 1.2 光线追踪的原理 (1) 1.2.1 自然现象 (1) 1.2.2 光线追踪的原理 (1) 1.3 光线追踪的特点 (3) 1.3.1 光线追踪的优点 (3) 1.3.2 光线追踪的缺点 (3) 第二章光线追踪的应用 (4) 2.1 光线追踪在图形渲染中的应用 (4) 2.2 光线追踪在物理学中的应用 (4) 2.3 光线追踪在实际应用 (4) 2.4 实时跟踪 (4) 第三章光线追踪的未来发展趋势 (6) 3.1 光线追踪VS光栅化 (6) 3.2 显卡何时才能实时光线追踪 (7) 3.3 光线追踪的未来发展 (8)

光线追踪的应用及未来发展 摘要 光线跟踪是一种真实地显示物体的方法,该方法由Appe在1968年提出。光线跟踪方法沿着到达视点的光线的反方向跟踪,经过屏幕上每一个象素,找出与视线相交的物体表面点P0,并继续跟踪,找出影响P0点光强的所有光源,从而算出P0点上精确的光线强度,在材质编辑中经常用来表现镜面效果。光线跟踪或称光迹追踪是计算机图形学的核心算法之一。在算法中,光线从光源被抛射出来,当他们经过物体表面的时候,对他们应用种种符合物理光学定律的变换。最终,光线进入虚拟的摄像机底片中,图片被生成出来。 关键字:光线跟踪(Ray tracing),真实感

Unity3D游戏开发之网络游戏服务器架构设计(如何做一名好主程)

Unity3D游戏开发之网络游戏服务器架构设计培训 (如何做一名好主程) 今天给大家讲一下如何做一个好的主程 入手 假如,我现在接手一个新项目,我的身份还是主程序。在下属人员一一到位之前,在和制作人以及主策划充分沟通后,我需要先独自思考以下问题: 1、服务器跑在什么样的操作系统环境下? 2、采用哪几种语言开发?主要是什么? 3、服务器和客户端以什么样的接口通讯? 4、采用哪些第三方的类库? 除了技术背景之外,考虑这些问题的时候一定要充分考虑项目需求和所能拥有的资源。 我觉得,先不要想一组需要几台机器各有什么功能这样的问题,也不要想需要多少个daemon 进程。假设就一台服务器,就一个进程,把所需要的资源往最小了考虑,把架构往最简单的方向想,直到发现,“哦,这么做无法满足策划要求的并发量”,再去修改设计方案。 操作系统:越单一越好。虽然FreeBSD的网络性能更好、虽然Solaris非常稳定,但选什么就是什么,最好别混着来。前端是FreeBSD,后端是Solaris,运营的人会苦死。也不要瞧不起用Windows的人,用Windows照样也能支持一组一万人在线,总之,能满足策划需求,好招程序员,运营成本低是要点。不同的操作系统有不同的特性,如果你真的对它们都很熟悉,那么必定能找到一个理由,一个足够充分的理由让你选择A而不是B而不是C。但做决策的时候要注意不要因小失大。 Programming Language:传统来说,基本都是C/C++。但是你也知道,这东西门槛很高,好的C/C++程序员很难招。用Perl/Python/Lua行不行?当然可以。但是纯脚本也不好,通常来说是混合着来。你要明白哪些是关键部分,我是说执行次数最多的地方而不是说元宝,这些必须用性能高的语言实现(比如C/C++比如Java),其它像节日活动这样很久才执行一次的,随便吧。脚本的好处是,可以快速搭原型。所以,尽早的,在你做完基本的地图和战斗模块之后,立马跑机器人测试吞吐量。这时候项目开发进度还不到10%,不行就赶紧改。 此处特别举个例子就是Java GC的问题。既然你要用java,而jvm需要通过执行garbage collection来回收内存,而garbage collection会使整个应用停顿,那你不妨试一试,内存在达到峰值的时候会停多久?策划可以接受吗?如果不可以,你可以采用其它的GC策略再试一试。这个问题应该不是Java独有的。网游和网站应用相比它很注重流畅性。这是你务必需要考虑的。 至于选择什么样的脚本语言,以及脚本在你的游戏中究竟是占80%还是20%?需要根据需求来看。有没有游戏完全不用脚本?有。有没有游戏滥用脚本?也有。如果你引入脚本的目的是因为策划不会C/C++而你希望策划能自己独立实现更多的游戏功能。你希望策划去写脚本?脚本也是程序,策划写的脚本难道就比程序员写脚本好?还是因为策划工资便宜?策划

光线投射,光线追踪与路径追踪的概念与区别

光线投射,光线追踪与路径追踪的概念与区别 光线投射Ray Casting [1968] 光线投射(Ray Casting),作为光线追踪算法中的第一步,其理念起源于1968年,由Arthur Appel在一篇名为《Some techniques for shading machine rendering of solids》的文章中提出。其具体思路是从每一个像素射出一条射线,然后找到最接近的物体挡住射线的路径,而视平面上每个像素的颜色取决于从可见光表面产生的亮度。 光线投射:每像素从眼睛投射射线到场景 光线追踪Ray Tracing [1979] 1979年,Turner Whitted在光线投射的基础上,加入光与物体表面的交互,让光线在物体表面沿着反射,折射以及散射方式上继续传播,直到与光源相交。这一方法后来也被称为经典光线跟踪方法、递归式光线追踪(Recursive Ray Tracing)方法,或Whitted-style 光线跟踪方法。 光线追踪方法主要思想是从视点向成像平面上的像素发射光线,找到与该光线相交的最近物体的交点,如果该点处的表面是散射面,则计算光源直接照射该点产生的颜色;如果该点处表面是镜面或折射面,则继续向反射或折射方向跟踪另一条光线,如此递归下去,直到光线逃逸出场景或达到设定的最大递归深度。 经典的光线追踪:每像素从眼睛投射射线到场景,并追踪次级光线((shadow, reflection, refraction),并结合递归 光线追踪(Ray tracing)是三维计算机图形学中的特殊渲染算法,跟踪从眼睛发出的光线而不是光源发出的光线,通过这样一项技术生成编排好的场景的数学模型显现出来。这样得到的结果类似于光线投射与扫描线渲染方法的结果,但是这种方法有更好的光学效果,例如对于反射与折射有更准确的模拟效果,并且效率非常高,所以当追求高质量的效果时经常使用这种方法。

光线跟踪器参数

虚拟现实场景制作中,用于室外渲染的渲染器很多,发挥所长用自己比较熟悉的渲染器为最佳工作方式。该教程用的是MAX自带的Light Tracer(光线跟踪)渲染器,所以首先需要先来了解一下Light Tracer(光线跟踪)渲染器控制面板中各个参数的含义: General Settings group(全局设置群组 ) Global Multiplier(全局倍增器):控制整体照明等级。默认=1.0 Object Multiplier(物体倍增器):控制场景中物体的光线反射等级。默认=1.0 Sky Lights toggle(天光开关):打开时,使场景中天光的重新聚集regathering生效。(一个场景可以包含多个天光)。默认=开on Sky Lights amount(天光数量):控制天光强度值。默认=1.0 Color Bleed(颜色溢出):控制颜色溢出的强度。当光线在场景中物体之间相互反射时,颜色溢出生效。默认=1.0 Rays/Sample(光线/采样) :向每个样本(或像素)投射的光线数。增加此值将使渲染结果更加平滑,这是以时间的增加为代价的。降低此值将出现粒状效果,但渲染更快。默认=250 Color Filter(颜色过滤器):对投射到物体上的光线进行过滤,设置一个不是白色的过滤器将给整体结果上色。默认=白色white Extra Ambient(附加环境光):不设置为黑色时,所设的颜色将作为附加环境光照明物体。默认=黑色black Ray Bias(光线偏移):与阴影光线跟踪偏移Ray-Trace Bias for shadows类似,使用它可以纠正伴随产物artifacts,例如当物体向自己身上投射阴影时会出现条带效果。默认=0.03 Bounces(反弹):被跟踪的反射光线数。增加此值将增加颜色溢出,降低此值会得到渲染较快,较不精确的效果。通常产生较为阴暗的图像。提高此值允许更多的光线飞行于整个场景,结果更明亮,更精确,当然耗时更长。默认=0。当弹射值=0时,光线跟踪将不考虑体积度量照明volumetric lighting Cone Angle(圆锥角度):控制使用重新聚集regathering的角度。降低此值可得到较轻的对比度,特别是对于由许多小物体在大物体上投射阴影的区域。范围=33.0~90.0,默认=88.0 Volumes toggle(体积开关):当打开时,光线跟踪将对诸如体积光Volume Light和体积雾Volume Fog进行处理。默认=开on(若要使光线跟踪对体积灯光起作用,弹射Bounces值必须大于零。) Volumes amount(体积数值):可使体积灯光的亮度值提高。增加此值可增加它对渲染场景的影响。降低则反之。默认=1.0 Adaptive Undersampling group(自适应降低采样群组) Adaptive Undersampling(自适应降低采样):打开时,光线跟踪使用降低采样。关闭时,对每个像素都进行取样。关闭它可以增加最终渲染的细节,但增加渲染时间。默认=开on Initial Sample Spacing(初始采样间距):图像的初始采样网点的距离。以像素为单位。默认=16x16 Subdivision Contrast(细分对比):决定一个区域是否应该细分的对比阀限。增加此值减少细分。太小的值会引起不必要的细分。默认=5.0 Subdivide Down To(细分底限):细分的最小间距,增加此值能增加渲染时间,但结果更精确。默认=1x1 Show Samples(显示采样):打开时,取样区域以红点被渲染出来。这显示出哪个地方取样最多,可以帮你选择降低采样的最优设置。默认=关off

Unity3D游戏开发之塔防游戏项目讲解(上)

[Unity3D]Unity3D游戏开发之塔防游戏项目讲解(上) 通常意义上讲,塔防游戏是指一类在地图上建造炮台或者类似建筑物来阻止敌人进攻 的策略类游戏。从这个概念中,我们可以快速地抽离出来三个元素,即地图(场景)、敌人、炮台(防守单位)。当我们抽离出来这样三个元素后,现在塔防游戏就变成了这样的一种描述,即敌人按照地图中设计的路径进攻,玩家利用防守单位进行防守的一类策略游戏。经 典的塔防游戏有哪些呢?比如我们最为熟悉的《植物大战僵尸》、《保卫萝卜》都是塔防 类游戏的经典游戏。如果我们将塔防游戏中的防守单位的范围扩大到玩家,那么像《英雄 联盟》这样的游戏同样是可以称之为塔防游戏的,因为敌我阵营的最终目的都是要摧毁敌 方的防御塔,只是敌我双方都从炮台或者怪物变成了有血有肉的人物,加之角色扮演(RPG)和即时战略(RTS)等元素的混合渗透,使得这样的游戏从单纯的塔防游戏变成了一款可玩 度极高的游戏(天啊,我居然在夸这个游戏.....)。好了,那么我们就来尝试着做出一个简单 的塔防游戏吧,注意是简单的塔防游戏哦,既然塔防游戏的三个要素是地图、敌人和防守 单位,那么我们就从这三个方面来着手设计这个游戏吧!在本篇文章中,我们将用到下面 的知识: ?Unity2D中的Sprite动画 ?Unity3D中的可视化辅助类Gizmos ?塔防游戏中敌人按路径寻路的实现 ?Unity3D uGUI的初步探索 ?简单的AI算法 一、地图篇 地图是一个塔防游戏中玩家最为关注的地方,因为地图和敌人将直接影响到玩家的策略。如图是从《保卫萝卜》游戏中提取的一张游戏地图。在这张地图中我们可以清楚看到 怪物进攻的路径,怪物将沿着地图中的路径向我方防守单位发起攻击。那么,在游戏中, 我们该怎样确定怪物的攻击路径呢?首先我们可以对地图进行下分析,在地图中基本上基 本上只有两种类型的区域,即可以放置防守单位的区域和不可放置防守单位的区域两种。 由此我们可以设计出下面的结构:

蒙特卡洛光线追踪

光线追踪原理 光的基本传递模型 1 在一个要渲染的场景中,我们认为光能由预先指定的光源发出,然后我们以光线来描述光能的传递过程,当整个场景中的光能信息被我们计算出来后,我们收集这些信息转化为顶点的亮度。 2 光线经过物体表面可以产生反射和漫反射,光线透过物体可以产生折射和散射。具体产生哪种出射效果,依据物体的表面属性而定。物体的表面一般不会是理想的某种单一属性的表面,表面可以同时存在反射,折射,漫反射等多种属性,各种属性按一定比例混合之后才是其表面反射模型。 3 一点的在某一个视线方向上的光亮度=该点在该方向的自身发光亮度+半球入射光能在该方向所产生的反射光亮度. 4 关于散射,高度真实的散射是一个很难模拟的物理过程,一般在渲染中都不会采用过于复杂的物理模型来表示散射,而是采用一些取巧的办法来计算散射。 5 在常见的渲染中,有两种效果很难模拟,但是它们会使人眼觉得场景更真实。 [1]color bleeding :入射光为漫反射,受光表面属性为漫反射,出射光是漫反射。比如把一本蓝色的纸制的书靠近白色的墙,墙上会有浅浅的蓝晕。 [2]caustics:入射光为镜面反射或折射,受光表面属性为漫反射,出射光是漫反射。比如把一个装了红色葡萄酒的酒杯放在木桌上面,会有光透过杯中的酒在桌上形成一块很亮的红色区域。 传统的阴影算法: 游戏中传统的光照算法,是利用公式法来计算特定类型光源的直接光照在物体表面所产生的反射和漫反射颜色,然后再使用阴影算法做阴影补偿。标准的阴影算法不能计算面光源,改进以后的阴影算法通过对面光源采样,可以模拟出软阴影的效果。但是这些方法计算的光照都是来自直接光源的,忽略了光的传播过程,也就无法计算出由光的传播所产生的效果。通过特定的修正,我们也可以计算特定的反射折射或漫反射过程,但是无法给出一种通用并且物理正确的方法。目前游戏中大多是采用改进的阴影算法来进行渲染,它的优点是效率比较高,结合预计算的话,还是可以产生比较生动可信的效果。 传统的逆向光线追踪: 正如前面描述的那样,要想计算光能在场景中产生的颜色,最自然的考虑就是,从光源出发,正向跟踪每一根光线在场景中的传递过程,然后收集信息。然而这个想法在被提出的来的那个时代的计算机硬件上是不可能实现的,当时人们认为,正向光线追踪计算了大量对当前屏幕颜色不产生贡献的信息,而且它把看不见的物体也计算在内,极大的浪费了效率。 于是人们想出的另一个方法是:只计算有用的,从人眼出发,逆向跟踪光线。 逆向光线追踪从视点出发,向投影屏幕发出光线,然后追踪这个光线的传递过程。如果这个光线经过若干次反射折射后打到了光源上,则认为该光线是有用的,递归的计算颜色,否则就抛弃它。很显然,这个过程是真实光线投射的逆过程,它同样会产生浪费(那些被抛弃的逆向光线),而且只适用于静态渲染。

Unity3D游戏开发菜鸟快速上手指南

大家对Unity3D游戏引擎应该并不陌生,因为Unity3D在轻量级游戏开发和跨平台上面有他独特的优势,所以在当前可谓是炙手可热。17xuee游戏学院简单介绍了Unity3D的一些基础。并且有部分内容根据天天飞车项目经验做了简单分析。适合没有接触过Unity3D和手游开发,并想了解其大概的同学。 1Unity3D简介 1.1编辑器简介 编辑器整体视图如图1.1所示。里面包括了Unity常用的编辑窗口: 图1.1 Unity编辑器界面 Project视图、Hierarchy视图、Scene视图、Game视图、Inspector视图、Console视图、Profiler视图。 1.1.1Project视图 Project视图可以理解为工程目录,里面罗列了工程里面的所有资源文件。常见的资源包括:脚本、预设(Prefab)、模型、贴图、动画、Shader等。用户可以通过右上角的搜索框,搜索工程内的文件。

1.1.2Hierarchy视图 Hierarchy视图显示了当前游戏场景中,所有的游戏对象。游戏对象是通过树形结构排布,展开后可以看到每个子节点对象。常用的游戏对象包括:摄像机、场景物件、玩家、光源等。 1.1.3Game视图 Game视图是游戏视角,即游戏最终展示给玩家的内容。游戏视角包括两部分:1、场景中当前摄像机照射的场景;2、游戏UI界面。 1.1.4Scene视图 Scene视图有点像3DMax的编辑环境,在这里可以看到当前场景中的所有游戏对象。双击Hierarchy中的游戏对象,可以在Scene中定位到对应的物件。在游戏运行期间,暂停游戏。开发人员可以在Scene中找到对应的游戏对象,查看当前帧的世界场景,方便查找BUG。 1.1.5Inspector视图 Inspector视图是游戏对象的属性面板。选择一个物件后,可以在Inspector面板中查看或编辑游戏对象的属性。游戏运行期间,修改游戏对象属性,可以马上作用到游戏对象。这一特点对于美术的编辑、程序查BUG或者策划调整游戏参数有很大帮助。 Unity的游戏对象是通过Component(组件)控制的。常见的Component有:Transform(模型坐标)、Collider(碰撞检测器)、Rigidbody(刚体属性)、Animation(动画)、AudioSource (声音源)、Script(游戏脚本)等。 1.1.6Console视图 Console视图是控制台信息输出窗口。输出的信息包括:游戏脚本编译错误信息、游戏运行期间的日志输出、断言、崩溃信息。

光线追踪原理

什么是光线追踪及其优缺点 光线追踪是一种真实地显示物体的方法,该方法由Appel在1968年提出。光线追踪方法沿着到达视点的光线的反方向跟踪,经过屏幕上每一个象素,找出与视线相交的物体表面点P0,并继续跟踪,找出影响P0点光强的所有光源,从而算出P0点上精确的光线强度,在材质编辑中经常用来表现镜面效果。 光线追踪或称光迹追踪是计算机图形学的核心算法之一。在算法中,光线从光源被抛射出来,当他们经过物体表面的时候,对他们应用种种符合物理光学定律的变换。最终,光线进入虚拟的摄像机底片中,图片被生成出来。由于该算法是成像系统的完全模拟,所以可以模拟生成十分复杂的图片。 几大图形巨头很早就提出了光线追踪的具体执行方案,但是一直由于硬件资源的不成熟,导致很多功能还无法实现,最大的一点就是不能支持实时渲染。但Larrabee可能会是第一款支持实时光线追踪的GPU产品,光线追踪也一定是NVIDIA和Intel等在最新一代3D显示技术中的必争之地。 【光线追踪的优点】 光线追踪的流行来源于它比其它渲染方法如扫描线渲染或者光线投射更加能够现实地模拟光线,象反射和阴影这样一些对于其它的算法来说都很难实现的效果,却是光线追踪算法的一种自然结果。光线追踪易于实现并且视觉效果很好,所以它通常是图形编程中首次尝试的领域。

【光线追踪的缺点】 光线追踪的一个最大的缺点就是性能,扫描线算法以及其它算法利用了数据的一致性从而在像素之间共享计算,但是光线追踪通常是将每条光线当作独立的光线,每次都要重新计算。但是,这种独立的做法也有一些其它的优点,例如可以使用更多的光线以抗混叠现象,并且在需要的时候可以提高图像质量。尽管它正确地处理了相互反射的现象以及折射等光学效果,但是传统的光线追踪并不一定是真实效果图像,只有在非常紧似或者完全实现渲染方程的时候才能实现真正的真实效果图像。由于渲染方程描述了每个光束的物理效果,所以实现渲染方程可以得到真正的真实效果,但是,考虑到所需要的计算资源,这通常是无法实现的。于是,所有可以实现的渲染模型都必须是渲染方程的近似,而光线追踪就不一定是最为可行的方法。包括光子映射在内的一些方法,都是依据光线追踪实现一部分算法,但是可以得到更好的效果。

基于unity3d游戏设计开发

分类号论文选题类型 U D C 编号 本科毕业论文(设计) 题目基于Unity3D 的android 手机赛车游戏的设计与开发 院(系)信息与新闻传播学院 专业教育技术学 年级2009 学生姓名尹超凡 学号2009214026 指导教师赵刚 二○一三年五月

华中师范大学 学位论文原创性声明 本人郑重声明:所呈交的学位论文是本人在导师指导下独立进行研究工作所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。本人完全意识到本声明的法律后果由本人承担。 学位论文作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保障、使用学位论文的规定,同意学校保留并向有关学位论文管理部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权省级优秀学士学位论文评选机构将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 本学位论文属于 1、保密□,在_____年解密后适用本授权书。 2、不保密□。 (请在以上相应方框内打“√”) 学位论文作者签名:日期:年月日 导师签名:日期:年月日

目录 内容摘要 (1) 关键词 (1) Abstract (1) Key words (1) 1.引言 (2) 1.1研究背景 (2) 1.2研究意义 (2) 1.3本文结构 (3) 2. 研究主要内容 (3) 2.1 研究方法及手段 (3) 2.2 技术路线 (4) 2.3 开发环境 (4) 2.4运行环境 (6) 3. Unity3D简介 (6) 3.1总体概述 (6) 3.2软件特色 (6) 3.3Unity3D 包的使用 (8) 3.4.Unity3D 发布平台 (9) 4.游戏的总体设计 (9) 4.1游戏目标 (9) 4.2 游戏框架 (9) 4.3游戏界面设计 (10) 5.游戏功能的实现 (11) 5.1碰撞检测的实现 (11) 5.2 terrain 地形的创建 (12) 5.3 prefab 树的创建 (16) 5.4 赛车方向改变和加速减速的实现 (18) 6.总结 (19) 致谢 (23) 参考文献 (24)

实时光线追踪渲染

1 引言 经历了多年发展, 直到本世纪初, 以影视CG为典型代表的离线渲染(非实时渲染) 技术终于能达到真假难辨的程度, 而一脉相承的实时渲染在应用上距离这一目标无疑还有所欠缺。实时光线追踪, 可能就是这欠缺中的关键一环。将当前的实时渲染技术与离线渲染技术相比较, 二者在模型细节、纹理效果、材质表现和基本光影等方面所呈现出的视觉效果的差异已经不再明显。得益于硬件性能的不断提高, 越来越多的曾经只能用于离线渲染的技术和方法也已经应用于实时渲染以获得更加逼真的显示效果。 2 定义与简介 在自然界中,光源发出的光线会不断地向前传播,直到遇到一个妨碍它继续传播的物体表面——把“光线”看作在一串在同样路径中传输的光子流的话,在完全的真空中,这条光线将是一条标准的直线。但是实际上,由于大气折射,引力效应、材质反射等多种因素——在现实中,光子流实际上是会被吸收、反射与折射的——物体表面可能在一个或者多个方向反射全部或者部分的光线,并有可能吸收部分光线,使得最终光线以种种形式,不同的强度,反射或者折射进人的眼睛。 不过,这一点在计算机图形学中却有所不同——作为三维计算机图形学中的特殊渲染算法,光线追踪的原理颇有把物理中“光线追踪”方法反过来用的意味——它通过将光的路径跟踪为图像平面中的像素并模拟其与虚拟对象的相遇来生成图像,从而产生高度拟真的光影效果,还可以轻松模拟各种光学效果(例如反射和折射,散射和色散现象(例如色差))——唯一的缺点,就是它相对较高的计算成本了。 光线追踪主要思想是从视点向成像平面上的像素发射光线,找到阻挡光线传播的最近物体,如果交点表面为散射面,则计算光源直接照射该点产生的颜色;如果该交点表面为镜面或折射面,则继续向反射或折射方向跟踪另一条光线,如此往复循环,直到光线射出场景或者达到规定计算次数(还是为了节省资源)。这个方法被称之为经典光线跟踪方法或者递归式光线追踪方法。利用Compute Shader,屏幕的每个像素点向外释放一条射线来采样颜色,利用光线可逆的原则,每条光线根据碰撞到的物体进行反射,如此反复直到采样到天空盒(无限远)或者达到最大的反射次数。 运用光线追踪技术,有以下渲染特性: ?更精确的反射、折射和透射。 ?更准确的阴影。包括自阴影、软阴影、区域阴影、多光源阴影等。 ?更精准的全局光照。 ?更真实的环境光遮蔽(AO)

unity3d开发过哪些游戏

unity3d开发过哪些游戏 unity,也称unity3d,是近几年非常流行的一个3d游戏开发引擎,跨平台能力强,使用它开发的手机游戏数不胜数。unity3d开发过哪些游戏?Unity3D游戏作品大盘点! 经典重现《新仙剑OL》 《新仙剑OL》采用跨平台Unity3D引擎,耗资数千万,历时三年多,由台湾大宇正版授权,“仙剑之父”姚壮宪监制的全球首款Unity3D航母级双端(网页和客户端)中国风MMORPG网络游戏巨作。主打温情牌并且延续了仙剑系列的国风雅韵,人物塑造细腻唯美,场景构建精致逼真。

Unity3D作品大盘点 《蒸汽之城》(City of Steam) 由国内游戏公司参与开发的Unity3D页游《蒸汽之城》(City of Steam)在北美地区呼声颇高,该作是基于U3D引擎的纯3D角色扮演类网页游戏,它拥有目前市面上少有的360度镜头旋转纯3D画面,能给玩家带来3D客户端游戏体验。该作于不久前在北美开启内测,反响较好。 Unity3D作品大盘点 角色扮演游戏《推倒Online》

《推倒Online》是一款由Unity3D游戏引擎开发,角色扮演、实时战斗为主,辅以社区交际元素的Q版3D网页游戏,由沈阳坐标科技于2010年11月公司创立之初开始设计研发。游戏以魔族崛起为世界背景,通过魔族勇士穿越封印征战大陆为引,展开剧情!制作宗旨走反传统搞怪路线,或可爱、或憨厚、或个性的美式魔幻卡通风格,简洁而不失质感。游戏以新颖的战斗模式、激烈的空间攻占、多样的生活交际经历为主要玩点,兼顾技能升级、装备合成、人物属性进化、游戏内小游戏等常规玩法的扩展,给玩家带来了全新的游戏盛宴。 Unity3D游戏作品大盘点 ARPG武侠《绝代双骄》

unity 3D游戏开发

unity 3D游戏开发 毕业设计 题目 Unity3D游戏开发院系计算机科学与工程系专业计算机科学与技术年级 2011 学号 姓名 指导教师讲师 2015年 3 月 28 日 教务处制 毕业设计书原创性声明 本人郑重声明:所呈交的设计书是本人在指导教师的指导下独立进行研究所取得的研究成果。除了设计书中特别加以注明引用的内容外~本设计书不包含任何其他个人或集体已经发表或撰写的成果作品。本人完全意识到本声明的法律后果由本人承担。 毕业设计书作者签名 年月日 毕业设计书版权使用授权书 本毕业设计书作者完全了解学校有关保障、使用毕业设计书的规定~同意学校保留并向有关学位设计书管理部门或机构送交设计书的复印件和电子版~允许设计书被查阅和借阅。本人授权省级优秀学士学位设计书评选机构将本设计书全部或部分内容编入有关数据库进行检索~可以采用影印、缩印或扫描等复制手段保存和汇编本学位设计书。 本设计书属于: 保密?~在年解密后适用本授权书。

不保密?。 ,请在以上相应的方框内打“?”, 作者签名年月日 指导教师签名年月日 目录 1 绪论 ................................................ 7 1.1 论文研究背景...................................................................... ........................... 7 1.2论文研究目的...................................................................... ............................ 7 1.3论文研究内容...................................................................... ............................ 8 2 游戏开发工具及可行性分 析 ............................. 9 2.1 游戏主要开发引擎...................................................................... ................... 9 2.2 开发可行性分析...................................................................... ....................... 9 2.3本章小结...................................................................... .................................. 10 3游戏设 计 ............................................ 11 3.1 总体设计...................................................................... ................................. 11 3.1.1 游戏介

光线追踪实验报告

Ray Tracer---光线跟踪实验报告 711064XX XXX 一、实验目的 在计算机图形学课程作业中,题目要求是做Ray Tracing 或碰撞检测,其中对Ray Tracing 的要求是: (1)多种形状物体,Ball, box等 (2)包含多种材质物体:纯镜面反射、透明物体、纯漫反射、半透明物体等 (3)Moving in a 3D world (4)environment texture 二、实验原理 在这次实验中,使用了真正的光线跟踪算法,而不是采用环境纹理来反映周围环境。 1、光线跟踪简介 光线跟踪是一种真实地显示物体的方法,该方法由Appel在1968年提出为了 生成在三维计算机图形环境中的可见图像,光线跟踪是一个比光线投射或者 扫描线渲染更加逼真的实现方法。这种方法通过逆向跟踪与假象的照相机镜 头相交的光路进行工作,由于大量的类似光线横穿场景,所以从照相机角度 看到的场景可见信息以及软件特定的光照条件,就可以构建起来。当光线与 场景中的物体或者媒介相交的时候计算光线的反射、折射以及吸收。由于一 个光源发射出的光线的绝大部分不会在观察者看到的光线中占很大比例,这 些光线大部分经过多次反射逐渐消失或者至无限小,所以对于构建可见信息 来说,逆向跟踪光线要比真实地模拟光线相互作用的效率要高很多倍。计算 机模拟程序从光源发出的光线开始查询与观察点相交的光线从执行与获得正 确的图像来说是不现实的。 2

由以上经典的光线追踪算法可以发现,在此算法中,环境中的物体等模型,并不是 一次性的画好的,而是对整个场景一个像素一个像素的画上去的,光线跟踪算法中 的每一根光线要与场景中的每一个物体所含的每一个面求交。 三、光线跟踪算法实现 1、计算观察光线 首先需要确定光线的数学表达式。一条光线实际上只是一个起点和一个传播方向, 假设起点为O(x1,y1,z1),屏幕上一点为D(x2,y2,z2),则光线的方向dir(x3,y3,z3)为: dir=O–D; 即 在程序中,光线的起点定义为: 方向为: 由此可以确定一条光线

光线跟踪算法思想

光线跟踪算法思想 一、概述 本试验完成了基本光线跟踪、高级光线跟踪(反射、折射、透明、阴影)、光线跟踪加速算法等三个与光线跟踪有关的内容。 二、算法简述 1.面片求交 面片求交采用了先求交后判断的方法。现将光线的方程代入平面方程中求出交点。然后将该面片与交点都投影到同一个平面中如XOY平面。投影时需要判断投影结果是否会退化为一条直线,如果发生这种情况则要投影到另一平面内。 投影后,将交点坐标代入到面的边线方程中(要保证线的方向一致),并判断符号,如果符号始终相同,则表示点在面内。 2.球体求交 球体求交也采用了将光线方程代入球体方程的方式。如果方程无解表示没有交点。如果有两个大于0的解,则取较小的一个;如果一个大于0,一个小于0的解,则取大于零的解。 如果没有大于零的解则仍判定为不相交。 3.光线跟踪算法 设定视点和画布 for 画布上的每一行 { for 每一行上的每个像素 { 生成一条从视点到像素点的光线ray LT[i,j] = ray.RayTrace(物体数组,光源数组,1) } } //计算光线与物体的交点,并计算光强 V oid RayTrace(物体数组,光源数组,递归深度) { for 每个物体 { 计算光线与该物体的交点 if 光线起点到交点的距离小于已记录的最短距离且大于0 { 将最短距离设置为该距离

在这条光线对象中记录交点坐标,平面法向量,透明度,物体序号等 } } 对于距光线起点最近的那个点,执行 ComputeIntensity(物体数组,交点数组序号,光源数组,递归深度) } V oid ComputeIntensity(物体数组,交点数组序号,光源数组,递归深度) { 给物体加上环境光强 for (每个光源) { 生成一条从光源指向交点的光线 判断该光线是否与其他不透明的物体相交 if (不相交) 将该光线光强乘以满反射系数和镜面反射系数加到被跟踪光线的光强中 } if (递归深度< 设定深度) { if (需要反射) { 生成一条以交点为起点的反射光线reflectRay reflectRay.RayTrace(物体数组,光源数组,递归深度+1) 将reflectRay的光强与镜面反射系数相乘,加到原被跟踪光线光强中} if (需要折射) { 生成一条以交点为起点的折射光线refractRay refractRay.RayTrace(物体数组,光源数组,递归深度+1) 将refractRay的光强与透明系数相乘,加到原被跟踪光线光强中} } } 4.光线跟踪加速算法(层次包围球) 本作业选择了包围球而不是包围和来实现加速。这是基于光线与包围球求交比与包围盒求交速度快的考虑。虽然包围盒比包围球能更紧密地包围住物体,但与包围盒求交时需要处理所有可见面片并且对求出的交点还要判断是否在面片内,这样,当物体数量较少时反而起不到加速的作用。因此我觉得包围盒更适合于规模很大的光线跟踪计算。

相关主题