搜档网
当前位置:搜档网 › 核壳材料的制备机理及表征手段(原创)

核壳材料的制备机理及表征手段(原创)

纳米核壳结构简介

核壳结构微纳米材料应用技术 摘要 (2) 1核壳型纳米粒子的定义及分类 (2) 1.1 核壳型纳米粒子定义 (2) 1.2 核壳型纳米粒子分类 (2) 2 核壳结构微纳米材料形成机理 (3) 3有机—有机核壳结构微纳米材料制备 (3) 3.1乳液聚合法 (3) 3.2悬浮聚合法 (3) 4有机—无机核壳结构微纳米材料制备 (4) 4.1无皂聚合法 (4) 4.2化学共沉淀法 (4) 5无机—无机核壳结构微纳米材料制备 (4) 5.1种子沉积法 (5) 5.2水热法 (5) 6 核壳结构微纳米材料的应用 (6) 6.1 核壳结构微纳米材料的医学应用 (6) 6.2 核壳结构微纳米材料作为催化剂 (6) 参考文献 (7)

摘要 纳米科学被认为是21世纪头等重要的科学领域,它所研究的是人类过去从为涉及的非宏观、非围观的中间领域,使人们改造自然的能力延伸到分子、原子水平,标志这人类的科学技术进入了一个新的时代。纳米结构由于既有纳米微粒的特性如量子效应、小尺寸效应、表面效应等优点,又存在由纳米结构组合引起的新效应,如量子耦合效应和协同效应等,而且纳米结构体系很容易通过外场(电、磁、光)实现对其性能的控制。核壳型纳米微粒由于表面覆盖有与核物质不同性质纳米粒子,因此表面活性中心被适当的壳所改变,常表现出不同于模板核的性能,如不同的表面化学组成、稳定性的增加、较高的比表面积等,这些粒子被人为设计和可控制备以满足特定的要求。 关键词:纳米核壳纳米材料的应用 1核壳型纳米粒子的定义及分类 1.1 核壳型纳米粒子定义 核壳型纳米粒子是以一个尺寸在微米至纳米级的球形颗粒为核,在其表面包覆数层均匀纳米薄膜而形成的一种复合多相结构,核与壳之间通过物理或化学作用相互连接。广义的核壳材料不仅包括由相同或不同物质组成的具有核壳结构的复合材料,还包括空球、微胶囊等材料。 核壳型复合微球集无机、有机、纳米粒子的诸多特异性质与一体,并可通过控制核壳的厚度等实现复合性能的调控。通过对核壳结构、尺寸剪裁,可调控它们的磁学、光学、电学、催化等性质,因而有诸多不同于单组分胶体粒子的性质。他在材料学、化学组装、药物输送等领域具有极大的潜在应用价值。 1.2 核壳型纳米粒子分类 (1)无机—无机核壳结构微纳米材料:核壳均为无机材料的复合微纳米材料。 (2)无机—有机核壳结构微纳米材料:核为有机材料,壳为无机材料的复合微纳米材料。 (3)有机—无机核壳结构微纳米材料:核为无机材料,壳为有机材料的复合微纳米材料。 (4)有机—有机核壳结构微纳米材料:核壳均为有机材料的复合微纳米材料。 (5)复杂核壳结构微纳米材料:具有多层核壳结构,核壳多分分分别为有机或者无机材料。

材料表征方法思考题答案

第一章XRD 1.X射线的定义、性质、连续X射线和特征X射线的产生、特点。 答:X射线定义:高速运动的粒子与某种物质相撞击后猝然减速,且与该物质中的内层电子相互作用而产生的。性质:看不见;能使气体电离,使照相底片感光,具有很强的穿透能力,还能使物质发出荧光;在磁场和电场中都不发生偏转;当穿过物体时只有部分被散射;能杀伤生物细胞。 连续X射线产生:经典物理学解释——由于极大数量的电子射到阳极上的时间和条件不相同,因而得到的电磁波将具有连续的各种波长,形成连续X射线谱。量子力学解释——大量的电子在到达靶面的时间、条件均不同,而且还有多次碰撞,因而产生不同能量不同强度的光子序列,即形成连续谱。特点:强度随波长连续变化 特征X射线产生:当管电压达到或高于某一临界值时,阴极发出的电子在电场的加速下,可以将物质原子深层的电子击到能量较高的外部壳层或击出原子外,使原子电离。此时的原子处于激发态。处于激发态的原子有自发回到激发态的倾向,此时外层电子将填充内层空位,相应伴随着原子能量降低。原子从高能态变为低能态时,多出的能量以X射线的形式释放出来。因物质一定,原子结构一定,两特定能级间的能级差一定,故辐射出波长一定的特征X射线。特点:仅在特定的波长处有特别强的强度峰。 2.X射线与物质的相互作用 答:X射线与物质的相互作用,如图所示 一束X射线通过物体后,其强度因散射和吸收而被衰减,并且吸收是造成强度衰减的主要原因。 散射分为两部分,即相干散射和不相干散射。当X射线照射到物质的某个晶面时可以产生反射线,当反射线与X射线的频率、位相一致时,在相同反射方向上的各个反射波相互干涉,产生相干散射;当X射线经束缚力不大的电子或自由电子散射后,产生波长比入射X射线波长长的X射线,且波长随着散射方向的不同而改变,这种现象称为不相干散射。其中相干散射是X射线在晶体中产生衍射现象的基础。 物质对X射线的吸收是指X射线通过物质时,光子的能量变成了其它形式的能量,即产生了光电子、俄歇电子和荧光X射线。当X射线入射到物质的内层时,使内层的电子受激发而离开物质的壳层,则该电子就是光电子,与此同时产生内层空位。此时,外层电子将填充到内层空位,相应伴随着原子能量降低,放出的能量就是荧光X射线。当放出的荧光X射线回到外层时,将使外层电子受激发,从而产生俄歇电子而出去。产生光电子和荧光X射线的过程称为光电子效应,产生俄歇电子的过程称为俄歇效应。示意图见下:

材料结构表征及应用课程教学大纲

《材料结构表征及应用》课程教学大纲 一、《材料结构表征及应用》课程说明 (一)课程代码:08131016 (二)课程英文名称:Characterization and Application of Material structure (三)开课对象:物理系材料物理专业 (四)课程性质: 本课程是材料物理专业的一门专业必修课。 (五)教学目的 全面理解材料的结构与性能之间的关系,掌握材料结构表征的基本方法,从材料的成分分析、结构测定和形貌观察等方面出发探寻结构与性能之间的内在关系,从而实现材料设计的功能。 (六)教学内容: 介绍一些目前比较流行的基本的材料研究方法,从材料的成分分析、结构测定和形貌观察等方面出发探寻结构与性能之间的内在关系。 (七)学时数、学分数及学时数具体分配 学时数:72 学分数:4 (八)教学方式: 课堂教学 (九)考核方式和成绩记载说明: 考核方式为考试。严格考核学生出勤情况,达到学籍管理规定的旷课量取消考试资格,综合成绩根据出勤情况、平时成绩和期末成绩评定,出勤情况占20%,平时成绩占20%,期末成绩占60%。 二、讲授大纲与各章的基本要求 第一章绪论 教学要点: 通过本章的教学使学生初步了解表征材料结构的几种方法及其基本特点,概略的介绍本书将要介绍的内容。

1.了解材料的内在结构决定了材料的外在性能。 2.了解材料表征的基本方法 教学时数:2 教学内容: 第一节材料结构与材料性能的关系 第二节材料结构表征的基本方法 一、化学成分分析 二、结构测定 三、形貌观察 考核要求: 1.材料的结构决定材料的性能(领会) 2.材料结构表征的基本方法(识记) 第二章红外光谱及激光拉曼光谱 教学要点: 了解红外光谱的基本原理,掌握红外光谱实验的制样技术和结果分析方法,了解红外光谱实验的应用范围和前景,了解激光拉曼光谱的基本概念、实验原理和应用范围。 教学时数:16 教学内容: 第一节:红外光谱的基本原理 一、双原子分子的振动——谐报子和非谐振 二、多原子分子的简正振动 三、红外光谱的吸收和强度 第二节:红外光谱与分子结构 一、基团振动与红外光谱区域的关系 二、影响基团频率的因素 第三节:红外光谱图的解析方法 一、谱带的三个重要特征 二、解析技术 三、影响谱图质量的因素 第四节:红外光谱仪及制样技术 一、红外光谱仪的进展 二、傅里叶变换红外光谱仪原理 三、傅里叶变换红外光谱法的主要优点 四、红外光谱的表示方法 五、样品的制备技术 第五节:红外光谱在材料研究领域中的应用 一、高分子材料的研究 二、材料表面的研究 三、无机材料的研究 四、有机金属化合物的研究 第六节:红外光谱新技术及其应用 一、时间分辨光谱 二、红外光热光声光谱技术

最新材料结构表征重点知识总结

第一章,绪论 材料研究的四大要素:材料的固有性质,材料的结构,材料的使用使用性能。 材料的固有性质大都取决于物质的电子结构,原子结构和化学键结构。 材料表征的三大任务及主要测试技术:1、化学成分分析:质谱,色谱,红外光谱,核磁共振;2、材料结构的测定,X射线衍射,电子衍射,中子衍射;3、形貌观察:光学显微镜,电子显微镜,投射显微镜。 第二章,红外光谱及激光拉曼光谱 2.1红外光谱的基本原理 红外光谱的定义:当一束具有连续性波长的红外光照射物质时,该物质的分子就有吸收一定的波长红外光的光能,并将其转变为分子的振动能和装动能,从而引起分子振动—转动能级的跃迁,通过仪器记录下来不同波长的透射率的变化曲线,就是该物质的红外吸收光谱。中红外去波数范围(4000—400cm-1) 简正振动自由度(3n-6或3n-5)及其特点:3n-6是分子振动自由度3n-5是直线分子的振 动自由度 特点:分子质点在振动过程中保持不变,所有的原子都在同一瞬间通过各自的平衡位置。每 个简谐振动代表一种振动方式,有它自己的特 征频率 简正振动的类型:1、伸缩振动2、弯曲振动 分子吸收红外辐射必须满足的条件:主要振动过程中偶极矩的变化、振动能级跃迁几率 2.2红外光谱与分子结构 红外光谱分区:官能团去(4000-1330cm-1)指纹区(1330-400cm-1) 基团特征频率定义:具有相同化学键或官能团的一系列化合物有共同的吸收频率,这种频率就叫基团特征频率 影响因素,内部因素:诱导效应,共振效应,键应力的影响,氢键的影响,偶合效应,费米共振;外部因素:物态的变化的影响,折射率和粒度的影响,溶剂的影响 诱导效应:在具有一定极性的共价键中,随着取代基的电负性不同而产生不同程度的静电诱导作用,引起分子中电荷分布的变化,从而改变了键的常熟,使振动的频率发生改变,这就是诱导效应。 2.3红外光谱图的解析方法 普带的三个特征:1位置:基因存在的最有用的特征;2形状:有关基因存在的一些信息;3相对强度:把红外光谱中一条普带的强度和另一条谱带相比,可以得出一个定量的概念 影响谱图质量的因素:1仪器参数的影响;2环境的影响:空气湿度,样品污染等;3厚度的影响(要求10——50um) 2.7激光拉曼光谱 基本概念: 拉曼散射:人射光照射在样品上,人射光子与样品之间发生碰撞有能量交换称为拉曼散射斯托克斯线:拉曼散射中,散射光能量减少,在垂直方向测量到散射光中,可以检测到频率为()的线,称为斯托克斯线。 反斯托克斯线:相反,若样子分子获得能量,在大于人射光频率出收到散射光线 拉曼位移:斯托克斯线或反斯托克斯线与人射光频率之差称了拉曼位移

材料结构与表征

基本概念集锦 1、材料(materials):人类能用来制作有用物件的物质。 2、材料的四大家族 A. 金属材料 B. 无机非金属材料 C. 高分子材料 D. 复合材料 3、材料的结构与组成 第一层次:原子结构(电子构型、化学键、原子与电子性缺陷)。 第二层次:原子在空间的排列(单晶、多晶、非晶)。 第三层次:材料的显微组织形貌(各种缺陷)。 4、简正振动: 整个分子质心不变、整体不转动、各原子在原地作简谐振动且频率及相位相同、所有的原子都在同一瞬间通过各自的平衡位置,此时分子中的任何振动可视为所有上述简谐振动的线性组合。 将振动形式分成两类: a. 伸缩振动(νs、νas) b. 变形振动(又称弯曲振动或变角振动,用符号δ表示) 同一键型: ?反对称伸缩振动的频率大于对称伸缩振动的频率; ?伸缩振动频率远大于弯曲振动的频率; ?面内弯曲振动的频率大于面外弯曲振动的频率。 vas > vs >>δ面内>δ面外 5、分子吸收红外光谱的条件 (1)振动必须能够引起分子偶极矩的变化 (2)红外辐射光的频率与分子振动的频率相当 6、红外光谱信息区 ① 4000~2500 cm-1 X—H伸缩振动区 ② 2500~2000 cm-1 叁键、累积双键伸缩振动区 ③ 2000~1500 cm-1 双键伸缩振动区 ④ 1500~ 670 cm-1 单键振动(X—Y伸缩,X—H变形振动区)及指纹区

7、振动偶合: 当两个振动频率相同或相近的基团相邻并由同一原子相连时,两个振动相互作用(微扰)产生共振,谱带一分为二(高频和低频)。 8、Fermi(费米)共振: 当一振动的倍频或组频与另一振动的基频接近时,由于发生相互作用而产生很强的吸收峰或裂分分裂成两个不同频率的峰。 9、 1. >3200:O—H(1个峰,强,宽)或N—H(H个峰,中强,锐) 2. 3000左右:C—H 3. Ω≥4:苯环(单取代双峰、邻位单峰、间位三峰、对位单峰兰移) 4. 3050、1600、1500:苯环 5. 1700:C=O 6. -CH3:4个峰(2960、2870、1460、1380) 7. -CH2-:3个峰( 2930、2850、1460) 8. 异丙基:1385、1375等强双峰 9. C=C:单取代双峰,多取代单峰;顺式(690)、反式(970)

材料结构与表征复习整理(周玉第三版)

材料结构与表征 2017-2018复习整理 2018-1-4 暨南大学 ——D.S

2017-2018材料结构与表征重点整理 目录 绪论 (1) 第一章 X射线物理学基础 (2) 第二章 X射线衍射方向 (3) 第三章 X射线衍射强度 (3) 第四章多晶体分析方法 (4) 第五章物相分析及点阵参数精确测定 (5) 第六章(不考) (5) 第七章(不考) (5) 第八章电子光学基础 (5) 第九章透射电子显微镜 (6) 第十章电子衍射 (7) 第十一章晶体薄膜衍衬成像分析 (7) 第十二章(不考) (8) 第十三章扫描电子显微镜 (8) 第十四章(不考) (8) 第十五章电子探针显微镜分析 (8) 第十六章 (9) 参考文献 (10)

2017-2018材料结构与表征重点整理 绪论 1.组织结构与性能 本书主要介绍X射线衍射和电子显微镜分析材料的微观结构。 材料的组织结构与性能:a.结构决定性能;b.通过一定方法控制其显微组织形成条件。 加工齿轮实例: a.预先将钢材进行退火处理,使其硬度降低,以满足容易铣等加工工艺性能要求; b.加工好后再进行渗碳处理,使其强度、硬度提高,以满足耐磨损等使用性能的要求。 2. 显微组织结构分析表征: a.表面形貌观察(形态、大小、分布和界面状态等——光学显微镜、电子显微镜、原子力显微镜等; b.晶体结构分析(物相,晶体缺陷,组织结构等)——X射线衍射、电子衍射、热谱分析; c.化学成分分析(元素与含量、化学价态、分子量、分子式等)——光谱分析,能谱分析等。 3.传统测试方式 a.光学显微镜——分辨率200nm——只能观察表面形态而不能观察材料内部的组织结构,更不能进行对所观察的显微组织进行同位微区分析; b.化学分析——能给出试样的平均成分,不能给出元素分布,和光谱分析相同。 4.X射线衍射与电子显微镜 1.XRD——分辨率mm级——是利用X射线在晶体中的衍射现象来分析材料的晶体结构、晶格参数、晶体缺陷(位错等)、不同结构相的含量及内应力的方法,可以计算样品晶体晶体结构与晶格参数。 2.电子显微镜 透射电子显微镜——分辨率0.1nm——通过透过样品的电子束成像,可以观察微观组织形态并对观察区域进行晶体结构鉴定; 扫描电子显微镜——分辨率1nm——利用电子束在样品表面扫描激发出的代表样品表面特征的信号成像,观察表面形貌(断口)和成分分布; 电子探针显微分析——利用聚焦很细的电子束打在样品微观区域,激发出特征X射线,可以确定样品微观区域的化学成分,可与扫描电镜同时使用进行化学成分同位分析。

双金属核壳结构

双金属核壳结构的制备及催化性能研究 摘要双金属核壳纳米结构由于具有大量的潜在应用价值,近年来已引起人们极大的关注。本文综述了水相体系还原法、多元醇体系还原法、热分解—还原法、化学镀法、胶体粒子模板法、共沉积法、电化学法、表面取代反应和表面处理等双金属核壳纳米结构的制备方法,简述了各种方法的原理、优缺点和应用情况,另外,对双金属核壳纳米结构电催化氧化、有机物加氢、催化脱氯、环境催化方面的应用作了简述。最后,对今后双金属核壳结构型的研究方向进行了展望。 关键词双金属核壳制备方法催化 1 引言 在对高性能新材料的探索过程中,纳米材料以其特殊的优异性能吸引了许多研究者的兴趣,掀起了纳米材料的研究热潮。对应用纳米技术制备具有某种功能的特性的材料来说,有必要寻求可靠、可控的方法纳米材合成料的。核壳结构纳米材料[1](core-shell nanomaterials)是指具有“核壳包裹”这种特殊原子排列方式的纳米复合材料,可看作是对原始纳米粒子的剪裁和改造,通常记作“核@壳”。金属@金属(即核壳双金属)纳米材料因其巨大的催化应用潜力而受到催化学者的广泛关注。 2 双金属核壳结构制备方法 2.1水相体系还原法 在水相中,利用不同还原剂和保护剂,通过先后两次还原不同金属形成核壳结构的纳米合金,这是目前使用最多的一种合成方法。 Yang等[ 2 ]用NaBH4还原合成Ag溶胶,再利用柠檬酸钠溶液热回流使Pt还原并沉积在Ag表面,得到红棕色Ag@Pt溶胶。Zhou等[3 ]在冰浴下,利用NaBH4还原HAuCl4制成Au 纳米溶胶,再逐滴加入H2PdC l4和抗坏血酸,得到深棕色Au @ Pd纳米溶胶。 一般地,水相中连续还原时,壳层金属通常采用较温和的还原剂(如抗坏血酸)以控制还原速率,使其更易更好地实现包覆效果,有时采用冰浴等降温手段效果更好[ 4 ]。 2.2 多元醇体系还原法 多元醇还原法是合成单金属(尤其是贵金属)纳米粒子最简便有效的方法之一,该方法也被用于制备双金属核壳结构。具体方法是:利用液相多元醇体系(多为乙二醇或1, 4-丁二醇)分散金属盐,升温回流使金属离子被多元醇还原并聚集,最终形成金属纳米粒子。该方法制备的金属纳米粒子尺度小,粒度均一,且分散性好。由于制备条件温和,过程简单,多元醇体系中的连续还原法被广泛应用于核壳结构纳米合金的制备中。Alayoglu等[5]采用多元

核壳结构-摘要

随着科学技术的快速发展,人们对功能型器件的要求越来越高,多铁性材料由于同时具有铁磁性能和铁电性能,并且能够通过两者的耦合协同作用,赋予材料新的发展潜力使其在存储器、传感器、转换器等多功能电子器件中具有很大的应用价值。 目前具有多铁性的单相体系较少,比较理想的只有铁酸铋,但其铁电性和铁磁性非常弱,为了改善多铁性,本研究采用具有较好铁电性的钛酸钡和较好铁磁性的铁酸钴,将二者制备成核壳结构,以提高材料的多铁性。目前研究CoFe2O4/BaTiO3核壳结构多铁性材料的报道较少。本文将首先通过沉淀法和溶胶-凝胶法制备铁电相钛酸钡、化学共沉淀法制备铁磁相铁酸钴,然后在此基础上通过溶胶-凝胶法和表面沉积法以铁磁相为核、铁电相为壳合成出具有核壳结构的CoFe2O4/BaTiO3多铁性复合材料,利用X射线衍射仪(XRD)、透射电子显微镜(TEM)、振动样品磁强计(VSM)和铁电测试仪等手段研究材料的组分、微形貌、铁磁性和铁电性能。 采用沉淀法和溶胶-凝胶法制备BaTiO3,研究不同工艺条件对制备产物的影响。在沉淀法中,研究了反应温度、反应浓度、反应时间、加料方式和煅烧温度对产物的影响。由实验结果可知,随着反应温度的升高、反应浓度的增大,产物粒径都逐渐减小;随着反应时间的延长,颗粒粒径则逐渐增大;逐渐滴加钛酸丁酯醇溶液时,所得颗粒粒径较大,结晶度较好;随着煅烧温度的升高,颗粒粒径逐渐增大,纯度逐渐提高,在此基础上确定了实验的最佳条件:反应温度为85℃,反应浓度为1.0 mol/L,逐滴加入钛酸丁酯醇溶液,反应1.5h后干

燥的粉体在850℃下煅烧2h。在溶胶-凝胶法中,研究了pH值、反应温度、醇盐浓度和煅烧温度对产物的影响。由实验可知,随着pH值的增大,凝胶时间逐渐缩短,粉体粒径先减小后增大;随着温度的升高,凝胶时间逐渐缩短,粒径则逐渐增大;随着醇盐浓度的增大,凝胶时间逐渐缩短,粒径则先增大后减小;煅烧温度达到700℃时,可以得到纯度很高的钛酸钡粉体,温度继续升高,粒径增大,在此基础上确定了实验的最佳条件:pH值为4、反应温度为50℃左右、醇盐浓度为 1.0mol/L下制备出凝胶,700℃下将凝胶煅烧2h。 CoFe2O4是一种性能优良的软磁材料,其突出特点是具有较高的磁晶各向异性常数(室温下为2.7×105 J·m3)、较高的矫顽力(室温下达到3.4×105 A·m-1)、温和的磁饱和强度(72A·m2·kg-1)。本文采用共沉淀法制备出了铁酸钻粉体,研究了反应温度、反应时间、反应浓度、加料方式等条件对粉体粒径的影响。实验结果表明,随着温度的升高和反应时间的延长,产物的粒径逐渐增大;随着反应浓度的增大,粒径则逐渐减小;迅速倒入沉淀剂时得到的粉体粒径更小,在此基础上得到了制各CoFe2O4粉体的最佳实验条件:反应温度为80℃、反应30min、沉淀剂浓度为5 mol/L迅速倒入,可制得纯度很高的纳米级粉体。 在前面两部分的实验基础上,通过表面沉积法和溶胶-凝胶法制备核壳结构CoFe2O4/BaTiO3多铁性复合粉体。通过XRD分析,两种方法都能得到BaTiO3和CoFe2O4的复合相,且纯度很高。TEM表明两种方法制备的粉体都有团聚现象,颗粒粒径属于纳米级别,并初步

材料结构表征及应用知识点总结

第一章绪论 材料研究的四大要素:材料的固有性质、材料的结构、材料的使用性能、材料的合成与加工。 材料的固有性质大都取决于物质的电子结构、原子结构和化学键结构。 材料结构表征的三大任务及主要测试技术: 1、化学成分分析:除了传统的化学分析技术外,还包括质谱(MC)、紫外(UV)、可见光、红外(IR)光谱分析、气、液相色谱、核磁共振、电子自旋共振、二次离子色谱、X射线荧光光谱、俄歇与X射线光电子谱、电子探针等。如质谱已经是鉴定未知有机化合物的基本手段;IR在高分子材料的表征上有着特殊重要地位;X射线光电子能谱(XPS)是用单色的X射线轰击样品导致电子的逸出,通过测定逸出的光电子可以无标样直接确定元素及元素含量。 2、结构测定:主要以衍射方法为主。衍射方法主要有X射线衍射、电子衍射、中子衍射、穆斯堡谱等,应用最多最普遍的是X射线衍射。在材料结构测定方法中,值得一提的是热分析技术。 3、形貌观察:光学显微镜、扫描电子显微镜、透射电子显微镜、扫描隧道显微镜、原子力显微镜。 第二章X射线衍射分析 1、X射线的本质是电磁辐射,具有波粒二像性。 X射线的波长范围:0.01~100 ? 或者10-8-10-12 m 1 ?=10-10m (1)波动性(在晶体作衍射光栅观察到的X射线的衍射现象,即证明了X射线的波动性); (2)粒子性(特征表现为以光子(光量子)形式辐射和吸收时具有的一定的质量、能量和动量)。 2、X射线的特征: ①X射线对物质有很强的穿透能力,可用于无损检测等。 ②X射线的波长正好与物质微观结构中的原子、离子间的距离相当,使它能被晶体衍射。晶体衍射波的方向与强度与晶体结构有关,这是X射线衍射分析的基础。 ③X射线光子的能量与原子内层电子的激发能量相当,这使物质的X射线发射谱与吸收谱在物质的成分分析中有重要的应用。 一、X射线的产生 1.产生原理 高速运动的电子与物体碰撞时,发生能量转换,电子的运动受阻失去动能,其中一小部分(1%左右)能量转变为X射线,而绝大部分(99%左右)能量转变成热能使物体温度升高。 2.产生条件 (1)产生自由电子;(2)使电子作定向的高速运动;(3)在其运动的路径上设置一个障碍物使电子突然减速或停止。 3.X射线管的结构 封闭式X射线管实质上就是一个大的真空二极管。基本组成包括: ①阴极:阴极是发射电子的地方。 ②阳极:亦称靶,是使电子突然减速和发射X射线的地方。 ③窗口:窗口是X射线从阳极靶向外射出的地方。 ④焦点:焦点是指阳极靶面被电子束轰击的地方,正是从这块面积上发射出X射线。 二、X射线谱 由X射线管发射出来的X射线可以分为两种类型:(1)连续X射线;(2)标识X射线。 1、连续X射线 具有连续波长的X射线,构成连续X射线谱,它和可见光相似,亦称多色X射线。 (1)产生机理

东华大学材料结构表征及其应用作业答案

“材料研究方法与测试技术”课程练习题 第二章红外光谱法 1.为什么说红外光谱是分子振动光谱?分子吸收红外光的条件是什 么?双原子基团伸缩振动产生的红外光谱吸收峰的位置主要与哪些因素有关? 答案:这是由于红外光谱是由样品分子振动吸收特定频率红外光发生能级跃迁而形成的。分子吸收红外光的条件是:(1)分子或分子中基团振动引起分子偶极矩发生变化;(2)红外光的频率与分子或分子中基团的振动频率相等或成整数倍关系。双原子基团伸缩振动产生的红外光谱吸收峰的位置主要与双原子的折合质量(或质量)和双原子之间化学键的力常数(或键的强度;或键的离解能)有关。 2.用诱导效应、共轭效应和键应力解释以下酯类有机化合物的酯羰 基吸收峰所处位置的范围与饱和脂肪酸酯的酯羰基吸收峰所处位置范围(1735~1750cm-1)之间存在的差异。 芳香酸酯:1715~1730cm-1 α酮酯:1740~1755cm-1 丁内酯:~1820cm-1 答案:芳香酸酯:苯环与酯羰基的共轭效应使其吸收峰波数降低;α酮酯:酯羰基与其相连的酮羰基之间既存在共轭效应,也存在吸电子的诱导效应,由于诱导效应更强一些,导致酯羰基吸收峰的波数上升;丁内酯:四元环的环张力使酯羰基吸收峰的波数增大。

3.从以下FTIR谱图中的主要吸收峰分析被测样品的化学结构中可能 存在哪些基团?分别对应哪些吸收峰? 答案:3486cm-1吸收峰:羟基(-OH);3335cm-1吸收峰:胺基(-NH2或-NH-);2971cm-1吸收峰和2870cm-1吸收峰:甲基(-C H3)或亚甲基(-CH2-);2115cm-1吸收峰:炔基或累积双键基团(-N=C=N-);1728cm-1吸收峰:羰基;1604cm-1吸收峰、1526cm-1吸收峰和1458cm-1吸收峰:苯环;1108cm-1吸收峰和1148cm-1吸收峰:醚基(C-O-C)。1232cm-1吸收峰和1247cm-1吸收峰:C-N。 第三章拉曼光谱法 1. 影响拉曼谱峰位置(拉曼位移)和强度的因素有哪些?如果分子的同一种振动既有红外活性又有拉曼活性,为什么该振动产生的红外光谱吸收峰的波数和它产生的拉曼光谱峰的拉曼位移相等?

金钯核壳结构纳米结构制备

N,N-B i s(2-hydroxyethy l)-2-am i noethanesu lf on i c Ac i d-ass i sted L i qu i d-phase Growth o f Au@Pd Core-She ll Nanopart i c l es w i th H i gh Cata l yt i c Act i v i ty We i Zhang,Hu i p i ng Zhao,Zhong Lu,Fengx i Chen,*and Rong Chen* Schoo l o f Chem i stry and Env i ronmenta l Eng i neer i ng,Wuhan Inst i tute o f Techno l ogy,Wuhan430073,P.R.Ch i na (E-ma il:rchenhku@w i https://www.sodocs.net/doc/a117610454.html,,f xchen@w i https://www.sodocs.net/doc/a117610454.html,) Au@Pd core-she ll nanopart i c l es were success f u ll y synthes i zed v i a sequent i a l reduct i on o f Au(III)and Pd(II)sa l ts w i th BES at room temperature.The Au@Pd nanopart i c l es exh i b i ted s i gn i?cant l y h i gher cata l yt i c act i v i ty f or var i ous Suzuk i react i ons than monometa lli c Pd or Au nanopart i c l es.S i ze-dependent cata l yt i c act i v i ty was a l so observed,i.e., the Au@Pd nanopart i c l es o f<10nm showed h i gher act i v i ty. REPRINTED FROM Vol.44No.102015p.1371–1373 CMLTAG October5,2015 The Chemical Society of Japan

利用高分子材料制备核壳结构

自组装、光敏感的向列型液晶/聚合物核壳纤维的构造和特征介绍 LC(液晶)材料和LC/聚合物材料已经广泛应用于多种灵敏的光调节装置[1-3]。最近,研究人员制备出了胆甾型液晶与表面涂有连续功能涂料的纤维基底复合的模型[4]。还有其他显示技术与纤维复合,如发光二极管(LED)[5]照亮光导纤维,有机发光二极管(OLED)装饰玻璃纤维[6]。 以前报道的技术大部分认为液晶对纺织品物理性能会造成负面影响,比如会降低纺织品的灵活性和透气性。LC材料具有某些独特的性质,如具有近晶状中间相、分子水平上的自动排列、双折射和非凡的力学性能,因此它可被用作制备复合纤维。静电纺丝制备的液晶弹性体与此类材料一样具有各向异性,有望制备某种机械器件[7-9]。据报道,静电纺丝制备的液晶聚硅氧烷具有胆固醇链和低分子量特性,且观察不到聚硅氧烷的相分离和低分子液晶[10]。另一方面,聚合物溶液中加入添加剂可以在同轴纺丝过程中保证小分子有效分散于纤维核心[11],而不是表面[12]。例如,Lagerwall et al.报道过有关同轴纺丝时,将向列型液晶混入聚乙烯(乙烯吡咯烷酮)(PVP)/二氧化钛鞘,这是为了获得低分子量液晶为核、聚合物为壳的复合纤维[13]。用这个方法时,液晶材料通过一条独立的通道进入纤维中心。以前的各种研究报道过如何制备双折射纤维,但都没有描述有关这种核壳结构液晶超细纤维的光学结构和形态特征,或者有关液晶核对聚合物壳的影响。

本文成功地表征了低分子量液晶在静电纺丝过程中、在聚合物超细纳米纤维中心的自组装行为。研究人员获悉,电纺PLA超细纳米纤维的结构可利用光学特征进行表征。另外,有序的液晶纤维显示的光学特性表明液晶纤维阵列具有光调制特性。用均质液晶/聚合物溶液纺丝可以制备高度双折射和光灵敏性的液晶纤维结构。通过改变液晶溶液的浓度和静电纺丝的工艺参数可以获得光学性质和形态特征最佳的液晶复合纤维。用偏光显微镜(POM)和热分析仪证明:5CB在PLA纤维核心具有相分离和自组装能力,制成纤维后,5CB的质量分数超过28%。利用WAXD和DSC研究柔韧的5CB是如何影响PLA外壳结晶性的。 2、实验部分 2.1原料 聚丙醇酸(Mw=186000,Mw/Mn=1.76)、氯仿和丙酮(不用净化)、4-氰-4'-戊基联苯(5CB) 2.2 静电纺丝过程 静电纺丝装置包括一个高压装置、一部可控注射泵、和一步安装在圆盘上的收集器。本研究使用的收集器包括一个铜质圆盘、一个菱形铝网、用玻璃基底包覆的铟锡氧化物(玻璃质地为细粒状,厚约1.1mm),还有与铜质圆盘配套的盖玻片(厚为0.1mm),5ml的玻璃注射器。静电纺丝装置水平放置,这是为了将纤维收集在离注射泵尖端6-16cm远的收集器上。5CB/PLA静电纺丝复合纤维的合成如下:首先,将5CB和PLA混合加入氯仿/丙酮溶剂(体积比为3:1)。将混合液

《材料结构表征及应用》思考题

第二章 1、什么是贝克线?其移动规律如何?有什么作用?在两个折射率不同的物质接触处,可以看到比较黑暗的边缘,在这轮廓附近可以看到一条比较明亮的线细线,当升降镜筒时,亮线发生移动,这条明亮的细线称为贝克线。 贝克线的移动规律:提升镜筒,贝克线向折射率大的介质移动。根据贝克线的移动,可以比较相邻两晶体折射率的相对大小。 2、单偏光镜和正交偏光镜有什么区别?单偏光下和正交偏光下分别可以观察哪些现象?单偏光(仅使用下偏光)下可以观察晶体的形态、结晶习性、解理、颜色以及突起、糙面、多色性和吸收性,比较晶体的折光率(贝克线移动),用油浸法测定折光率等,对矿物鉴定十分重要。 正交偏光镜:联合使用上、下偏光镜,且两偏光镜的振动面处于互相垂直位置。可看到消光现象、球晶。 第三章 1.电子透镜的分辨率受哪些条件的限制? 透镜的分辨率主要取决于照明束波长儿其次还有透镜孔径半角和物 方介质折射率。 2.透射电镜主要分为哪几部分? 电子光线系统(镜筒)、电源系统、真空系统和操作控制系统。 3.透射电镜的成像原理是什么?透射电镜,通常采用热阴极电子枪来获得电子束作为 照明源。热阴极发射的电子,在阳极加速电压的作用下,高速穿过阳极孔,然后被聚光镜会聚成具有一定直径的束斑照到样品上。具有一定能量的电子束与样品发生作用,产生反映样品微区厚度、平均原子序数、晶体结构或位向差别的多

种信息。透过样品的电子束强度,其取决于这些信息,经过物镜聚焦放大在其平面上形成一幅反映这些信息的透射电子像,经过中间镜和投影镜进一步放大,在荧光屏上得到三级放大的最终电子图像,还可将其记录在电子感光板或胶卷上。 4.请概述透射电镜的制样方法。 支持膜法,复型法、晶体薄膜法和超薄切片法。高分子材料必要时还需染色、刻蚀。 5.扫描电镜的工作原理是什么? 由三极电子枪发射出来的电子束,在加速电压作用下,经过2?3个电子透镜聚焦后,在样品表面按顺序逐行进行扫描,激发样品产生各种物理信号,如二次电子、背散射电子、吸收电子、X射线、俄歇电子等。这些物理信号分别被相应的收集器接受,经放大器放大后,送到显像管的栅极上,用来同步地调制显像管的电子束强度,即显像管荧光屏上的亮度。由于供给电子光学系统使电子束偏向的扫描线圈的电源也就是供给阴极射线显像管的扫描线圈的电源,此电源发出的锯齿波信号同时控制两束电子束作同步扫描。因此,样品上电子束的位置与显像管荧光屏上电子束的位置是一一对应的。这样,在长余辉荧光屏上就形成一幅与样品表面特征相对应的画面——某种信息图,如二次电子像、背散射电子像等。画面上亮度的疏密程度表示该信息的强弱分布。 6.扫描电镜成像的物理信号包括哪几种? 二次电子、背散射电子、吸收电子、X 射线、俄歇电子等 7.相对于光学显微镜和透射电镜,扫描电镜各有哪些优点? SEM 的景深大、放大倍数连续调节范围大,分辨本领比较高、能配置各种附件,做表面成分分析及表层晶体学位向分析等

核壳材料

核壳材料的合成与制备 材料研10 孔祥朝 摘要:本文本文通过对文献资料的查阅,介绍了核壳材料的定义,性能,应用和制备方法。核壳材料融合了材料各组分本身的优点,展示了优于各组分的优异性能;并且由于其固有的核壳结构而使其性能的可控性强,因而在众多领域有着广阔的应用前景,已经成为纳米材料科学研究的重要组成部分。 关键词:核壳,模板 核壳材料一般由中心的核以及包覆在外部的壳组成。核壳部分材料可以是高分子、无机物和金属等。随着核壳材料的不断发展,其定义变得更加广泛。对于核与壳由两种不同物质通过物理或化学作用相互连接的材料,都可称为核壳材料。广义的核壳(core-shell)材料不仅包括由相同或不同物质组成的具有核壳结构的复合材料,也包括空心球(hollow spheres)、微胶囊(microcapsules)等材料。核壳材料外貌一般为球形粒子,也可以是其它形状。包覆式复合材料由中心粒子和包覆层组成,按包覆层的形态可以分为层包覆和粒子包覆,粒子包覆又可分为沉积型和嵌入型两种,如图1.1所示。 图1.1包覆式复合粒子形态(a)层包覆型;(b)粒子包覆沉积型;(c)粒子包覆嵌入型 包覆在粒子外部的壳可以改变核材料的表面性质,并赋予粒子光、电、磁、催化等特性,如改变粒子表面电荷、赋予粒子功能性、增强表面反应活性、提高粒子稳定性并防止核与外部介质发生物理或化学作用等。首先,核壳材料对应于材料核层与壳层单层材料的核层和壳层性质,可以调节核壳物质种类来控制复合材料总的性质。其次,由于核壳材料性质与核层、壳层层厚有关,控制制备工艺进而控制核层、壳层厚度可以调节核壳材料的性质。再次,核壳纳米复合材料由

核壳结构纳米复合材料的制备

核壳结构纳米复合材料的制备及应用 摘要:核壳结构纳米复合材料由于独特的物理、化学特性和广泛的应用前景,近年来成为研究的热点。本文系统地综述了核壳结构纳米复合材料的类型,针对应用方向总结了核壳结构纳米复合材料的研究现状。系统地归纳了核壳结构纳米复合材料在光学、催化、医药与生物、光子晶体、超疏水涂层等方面的应用,评述了其特点和发展的方向,并对其应用前景进行了展望。 关键词:核壳结构;纳米复合材料;超疏水涂层 1. 引言 目前人类正在享受迅速发展的科技所带来的舒适和方便,也品尝着盲目和短视造成的生存环境不断恶化的苦果。因而开发高效、低能耗、适用范围广和有深度氧化能力的化学污染物清除技术一直是环保技术追求的目标。纳米光催化技术是从20世纪70年代逐步发展起来的一门新兴环保技术,是一种具有广阔应用前景的绿色环境治理技术。 光催化现象是20世纪70年代Fijishima和Honda等[1]人在研究水在二氧化钛电极上的光致分解时发现的,他们借鉴植物的光合作用原理设计了一个太阳光伏打电池,即在水中插人一个n型半导体二氧化钛电极和一个铂黑电极,当用波长低于415 nm的光照射氧化钛电极时,发现在二氧化钛电极上有氧气放出,在铂电极上有氢气放出。产生此现象的原因在于,光照使半导体二氧化钛阳极产生具有极高氧化还原能力的电子-空穴对。在上述的光致半导体分解水的过程中,半导体作为一种媒介在反应前后是不变化的,但借助它却把光能转化成了化学反应的推动力。在这种意义上,半导体与催化反应中催化材料起的作用相似。随后的大量研究发现:不用外电路直接将沉积有金属铂的二氧化钛悬浮于水中,在光照下它也能使水分解。光催化正是在这个概念和方法基础上发展起来的。 随着纳米技术的发展,核壳结构纳米复合材料成为复合材料、纳米材料等领域研究的热点。核壳结构的纳米复合材料(CSNC)一般由中心的核以及包覆在外部的壳组成,CSNC中的内核与外壳之间通过物理、化学作用相互连接。广义的核壳结构不仅包括由不同物质组成的具有核壳结构的纳米复合材料,还包括中空微球、微胶囊等纳米复合材料。由于CSNC具有许多独特的物理和化学特性,在超疏水表面涂层、材料学、化学、磁学、电学、光学、生物医学、催化等领域都具有潜在的应用价值。 本文依据材料性能对CSNC的研究进展进行了总结,本文的目的不在于将全部文献进行回顾,而是针对应用方向对一些文献进行评述。目的在于指出应用方向、研究进展和存在的问题,以期为研究CSNC提供一些研究思路。 图1 核壳结构结构纳米复合为求及中控为求的结构示意图:(a)经典核壳结构;(b)空心球; (c)海胆型结构;(d)胶囊型结构

核壳结构图形 文献中Supporting Information

[Supporting Information] One-Step and Room Temperature Synthesis of Au@Pd Core-Shell Nanoparticles with Tunable Structure Using Plant Tannin as Reductant and Stabilizer Xin Huang, Hao Wu, Shangzhi Pu, Wenhua Zhang,Xuepin Liao,* and Bi Shi*

Fig. S1. The particle size distribution of BT0.4-Au0.5.

Fig. S2. The particle size distribution of BT0.4-Pd0.5.

Fig. S3. TEM image of cubic BT0.4-Pd1.0.

the center of the particle (top), and another from the edge (bottom).

Fig. S5. TEM image (a) and the corresponding size distribution (b) of BT0.4-Au1.0@Pd0.02. HAADF-STEM image (c) and EDS mapping images (d, e, f) of BT0.4-Au1.0@Pd0.02. Cross-sectional compositional line spectra (g) of the BT0.4-Au1.0@Pd0.02 in (c).

材料结构表征重点 (2)

1紫外光谱 1紫外吸收光谱:电子跃迁光谱,吸收光波长范围200-400nm(近紫外区),可用于结构鉴定和定量分析。产生:外层电子从基态跃迁到激发态。 2四种电子能级跃迁所需能量ΔΕ大小顺序:n→π*< π→π*< n→σ*< σ→σ*3生色基:可以产生π→π* 和n→π*跃迁的基团。如—C=C—,—N=N—,C=O,C=S,芳环,共轭双键 4助色基;本身不具有生色基作用,但与生色基相连时,通过非键电子的分配,扩展了生色基的共轭效应,影响生色基的吸收波长,增大吸收系数,因常使化合物的颜色加深,故称助色基。 5红移:由于化合物结构变化(共轭、引入助色团取代基)或采用不同溶剂后,吸收峰位置向长波方向的移动,叫红移(长移)。 6蓝移:由于化合物结构变化(共轭、引入助色团取代基)或采用不同溶剂后,吸收峰位置向短波方向的移动,叫蓝移(紫移,短移) 7吸收谱带的类型:R吸收带,K吸收带,B吸收带,E吸收带 8.高强度的吸收为共轭重键,270nm以上左右的低强度吸收可能为醛酮的羰基吸收,210nm 左右的低强度吸收可能为羧基及其衍生物,250~300nm左右的中等强度吸收表明有芳环存在 2红外光谱 1红外光谱定义:当样品受到频率连续变化的红外光照射时,分子吸收某些频率的辐射,并由其振动运动或转动运动引起偶极矩的净变化,产生的分子振动和转动能级从基态到激发态的跃迁,从而形成的分子吸收光谱称为红外光谱。又称为分子振动转动光谱。 2红外光谱图:纵坐标为吸收强度,横坐标为波长λ(微米)和波数1/λ单位:cm-1。可分为两个区,即官能团区和指纹区。 https://www.sodocs.net/doc/a117610454.html,mbert-Beer 定律: A=log(I0/I)=klc A: 吸光度I0,I: 入射光和透射光的强度k: 吸光系数l: 样品厚度c: 样品浓度 4.IR产生的条件:(1)辐射应具有能满足物质产生振动跃迁所需的能量; (2)辐射与物质间有相互偶合作用。对称分子:没有偶极矩,辐射不能引起共振,无红外活性。如:N2、O2、Cl2 等。非对称分子:有偶极矩,红外活性。 5.分子中基团的基本振动形式:伸缩振动(包括对称伸缩振动,反对称伸缩振动)弯曲振动(包括面内弯曲与面外弯曲) 6.影响基团频率发生位移的因素:A诱导效应。吸电子基团使吸收峰向高频位移 B共轭效应。共轭效应使碳碳双键的伸缩振动频率向低频位移 C空间效应;场效应,空间位阻,环张力 D氢键效应:伸缩振动向低频位移,弯曲振动向高频位移7常见的基团频率:羰基伸缩振动在1600~1900cm-1之间,往往是谱图的第一强峰,特征非常明显;C=C伸缩振动出现在1600~1660cm-1之间,一般强度较弱;单核芳烃的C=C伸缩振动出现在1500~1480cm-1和1600~1590cm-1两个区域。是鉴定芳核的重要标志。2000~2500cm-1是叁键和累积双键区。1370~1380cm-1为甲基的弯曲振动区 8.多原子的简振振动数目为3n-6,如水分子共有三个简振振动,直线型分子有3n-5个简振振动。简振振动包括伸缩振动(键长发生变化)与弯曲振动(键角发生变化)

相关主题