搜档网
当前位置:搜档网 › (完整版)I2C总线协议及工作原理

(完整版)I2C总线协议及工作原理

I2C总线协议及工作原理

一、概述

1、I2C总线只有两根双向信号线。一根是数据线SDA,另一根是时钟线SCL。

SCL:上升沿将数据输入到每个EEPROM器件中;下降沿驱动EEPROM器件输出数据。(边沿触发)

SDA:双向数据线,为OD门,与其它任意数量的OD与OC门成"线与"关系。

I2C总线通过上拉电阻接正电源。当总线空闲时,两根线均为高电平(SDL=1;SCL=1)。连到总线上的任一器件输出的低电平,都将使总线的信号变低,即各器件的SDA及SCL都是线“与”关系。

2、主设备与从设备

系统中的所有外围器件都具有一个7位的"从器件专用地址码",其中高4位为器件类型,由生产厂家制定,低3位为器件引脚定义地址,由使用者定义。主控器件通过地址码建立多机通信的机制,因此I2C总线省去了外围器件的片选线,这样无论总线上挂接多少个器件,其系统仍然为简约的二线结构。终端挂载在总线上,有主端和从端之分,主端必须是带有CPU的逻辑模块,在同一总线上同一时刻使能有一个主端,可以有多个从端,从端的数量受地址空间和总线的最大电容400pF的限制。

主端主要用来驱动SCL line;

从设备对主设备产生响应;

二者都可以传输数据,但是从设备不能发起传输,且传输是受到主设备控制的。

二、协议

1.空闲状态

I2C总线总线的SDA和SCL两条信号线同时处于高电平时,规定为总线的空闲状态。此时各个器件的输出级场效应管均处在截止状态,即释放总线,由两条信号线各自的上拉电阻把电平拉高。

2.起始位与停止位的定义:

起始信号:当SCL为高期间,SDA由高到低的跳变;启动信号是一种电平跳变时序信号,而不是一个电平信号。

停止信号:当SCL为高期间,SDA由低到高的跳变;停止信号也是一种电平跳变时序信号,而不是一个电平信号。

起始和终止信号都是由主机发出的,在起始信号产生后,总线就处于被占用的状态;在终止信号产生后,总线就处于空闲状态。

接收器件收到一个完整的数据字节后,有可能需要完成一些其它工作,如处理内部中断服务等,可能无法立刻接收下一个字节,这时接收器件可以将SCL线拉成低电平,从而使主机处于等待状态。直到接收器件准备好接收下一个字节时,再释放SCL线使之为高电平,从而使数据传送可以继续进行。

3.ACK

发送器每发送一个字节,就在时钟脉冲9期间释放数据线,由接收器反馈一个应答信号。应答信号为低电平时,规定为有效应答位(ACK简称应答位),表示接收器已经成功地接收了该字节;应答信号为高电平时,规定为非应答位(NACK),一般表示接收器接收该字节没有成功。对于反馈有效应答位ACK的要求是,接收器在第9个时钟脉冲之前的低电平期间将SDA线拉低,并且确保在该时钟的高电平期间为稳定的低电平。如果接收器是主控器,则在它收到最后一个字节后,发送一个NACK信号,以通知被控发送器结束数据发送,并释放SDA线,以便主控接收器发送一个停止信号P。

如下图逻辑分析仪的采样结果:释放总线后,如果没有应答信号,sda应该一直持续为高电平,但是如图中蓝色虚线部分所示,它被拉低为低电平,证明收到了应答信号。这里面给我们的两个信息是:1)接收器在SCL的上升沿到来之前的低电平期间拉低SDA;

2)应答信号一直保持到SCL的下降沿结束;正如前文红色标识所指出的那样。

4.数据的有效性:

I2C总线进行数据传送时,时钟信号为高电平期间,数据线上的数据必须保持稳定,只有在时钟线上的信号为低电平期间,数据线上的高电平或低电平状态才允许变化。

5.数据的传送:

在I2C总线上传送的每一位数据都有一个时钟脉冲相对应(或同步控制),即在SCL 串行时钟的配合下,在SDA上逐位地串行传送每一位数据。数据位的传输是边沿触发。

工作过程

总线上的所有通信都是由主控器引发的。在一次通信中,主控器与被控器总是在扮演着两种不同的角色。

1.主设备向从设备发送数据

主设备发送起始位,这会通知总线上的所有设备传输开始了,接下来主机发送设备地址,与这一地址匹配的slave将继续这一传输过程,而其它slave将会忽略接下来的传输并等待下一次传输的开始。主设备寻址到从设备后,发送它所要读取或写入的从设备的内部寄存器地址;之后,发送数据。数据发送完毕后,发送停止位。(这段看不懂就别看了,没什么用)

写入过程如下:

发送起始位

1)发送从设备的地址和读/写选择位;释放总线,等到EEPROM拉低总线进行应答;如果EEPROM接收成功,则进行应答;若没有握手成功或者发送的数据错误时EEPROM不产生应答,此时要求重发或者终止。

2)发送想要写入的内部寄存器地址;EEPROM对其发出应答;

3)发送数据

4)发送停止位.

5)EEPROM收到停止信号后,进入到一个内部的写入周期,大概需要10ms,此间任何操作都不会被EEPROM响应

详细:

需要说明的是:①主控器通过发送地址码与对应的被控器建立了通信关系,而挂接在总线上的其它被控器虽然同时也收到了地址码,但因为与其自身的地址不相符合,因此提前退出与主控器的通信;

2.主控器读取数据的过程:

读的过程比较复杂,在从slave读出数据前,你必须先要告诉它哪个内部寄存器是你想要读取的,因此必须先对其进行写入(dummy write):

1)发送起始位;

2)发送slave地址+write bit set;

3)发送内部寄存器地址;

4)重新发送起始位,即restart;

5)重新发送slave地址+read bit set;

6)读取数据

主机接收器在接收到最后一个字节后,也不会发出ACK信号。于是,从机发送器释放SDA线,以允许主机发出P信号结束传输。

7)发送停止位

详细:

2、数据传送格式

(1)字节传送与应答

每一个字节必须保证是8位长度。数据传送时,先传送最高位(MSB),每一个被传送的字节后面都必须跟随一位应答位(即一帧共有9位)。

由于某种原因从机不对主机寻址信号应答时(如从机正在进行实时性的处理工作而无法

接收总线上的数据),它必须将数据线置于高电平,而由主机产生一个终止信号以结束总线的数据传送。

如果从机对主机进行了应答,但在数据传送一段时间后无法继续接收更多的数据时,从机可以通过对无法接收的第一个数据字节的“非应答”通知主机,主机则应发出终止信号以结束数据的继续传送。

当主机接收数据时,它收到最后一个数据字节后,必须向从机发出一个结束传送的信号。这个信号是由对从机的“非应答”来实现的。然后,从机释放SDA线,以允许主机产生终止信号。

(2)数据帧格式

I2C总线上传送的数据信号是广义的,既包括地址信号,又包括真正的数据信号。

在起始信号后必须传送一个从机的地址(7位),第8位是数据的传送方向位(R/),用“0”表示主机发送数据(T),“1”表示主机接收数据(R)。每次数据传送总是由主机产生的终止信号结束。但是,若主机希望继续占用总线进行新的数据传送,则可以不产生终止信号,马上再次发出起始信号对另一从机进行寻址。

在总线的一次数据传送过程中,可以有以下几种组合方式:

a、主机向从机发送数据,数据传送方向在整个传送过程中不变:

注:有阴影部分表示数据由主机向从机传送,无阴影部分则表示数据由从机向主机传送。A表示应答,表示非应答(高电平)。S表示起始信号,P表示终止信号。

b、主机在第一个字节后,立即由从机读数据

c、在传送过程中,当需要改变传送方向时,起始信号和从机地址都被重复产生一次,但两次读/写方向位正好反相。

6、总线的寻址

I2C总线协议有明确的规定:采用7位的寻址字节(寻址字节是起始信号后的第一个字节)。

(1)寻址字节的位定义

D7~D1位组成从机的地址。D0位是数据传送方向位,为“0”时表示主机向从机写数据,为“1”时表示主机由从机读数据。

主机发送地址时,总线上的每个从机都将这7位地址码与自己的地址进行比较,如果相同,

则认为自己正被主机寻址,根据R/位将自己确定为发送器或接收器。

从机的地址由固定部分和可编程部分组成。在一个系统中可能希望接入多个相同的从机,从机地址中可编程部分决定了可接入总线该类器件的最大数目。如一个从机的7位寻址位有4位是固定位,3位是可编程位,这时仅能寻址8个同样的器件,即可以有8个同样的器件接入到该I2C总线系统中。

(2)寻址字节中的特殊地址

固定地址编号0000和1111已被保留作为特殊用途。

起始信号后的第一字节的8位为“0000 0000”时,称为通用呼叫地址。通用呼叫地址的用意在第二字节中加以说明。格式为:

第二字节为06H(0110)时,所有能响应通用呼叫地址的从机器件复位,并由硬件装入从机地址的可编程部分。能响应命令的从机器件复位时不拉低SDA和SCL线,以免堵塞总线。

第二字节为04H(0100)时,所有能响应通用呼叫地址并通过硬件来定义其可编程地址的从机器件将锁定地址中的可编程位,但不进行复位。

如果第二字节的方向位B为“1”,则这两个字节命令称为硬件通用呼叫命令。

在这第二字节的高7位说明自己的地址。接在总线上的智能器件,如单片机或其他微处理器能识别这个地址,并与之传送数据。硬件主器件作为从机使用时,也用这个地址作为从机地址。格式为:

在系统中另一种选择可能是系统复位时硬件主机器件工作在从机接收器方式,这时由系统中的主机先告诉硬件主机器件数据应送往的从机器件地址,当硬件主机器件要发送数据时就可以直接向指定从机器件发送数据了。

(3)起始字节

起始字节是提供给没有I2C总线接口的单片机查询I2C总线时使用的特殊字节。

不具备I2C总线接口的单片机,则必须通过软件不断地检测总线,以便及时地响应总线的请求。单片机的速度与硬件接口器件的速度就出现了较大的差别,为此,I2C总线上的数据传送要由一个较长的起始过程加以引导。

引导过程由起始信号、起始字节、应答位、重复起始信号(Sr)组成。

请求访问总线的主机发出起始信号后,发送起始字节(0000 0001),另一个单片机可以用一个比较低的速率采样SDA线,直到检测到起始字节中的7个“0”中的一个为止。在检测到SDA线上的高电平后,单片机就可以用较高的采样速率,以便寻找作为同步信号使用的第二个起始信号Sr。

在起始信号后的应答时钟脉冲仅仅是为了和总线所使用的格式一致,并不要求器件在这个脉冲期间作应答。

总线数据传送的模拟

i2c协议以及其相关bug分析总结

i2c协议以及其相关bug分析总结 篇一:I2C协议以及其相关bug分析总结_袁刚20XX1202 一、I2C通信协议 ................................................ ................................................... (2) 1、I2C 协议:............................................... . (2) 2、I2C时序 ................................................ . (3) 3、I2C协议中文版本 ................................................ .. (7) 二、I2C协议中遇到的BUG分析 ................................................ .. (8) 1、项目A72A中时序问题 ................................................ (8)

2、T03 Light sensor 无ACK问题................................................. (8) 3、S26I 电池以及F01电池问题................................................. (9) 4、现象ACK后面的半高的小毛刺分析 ................................................ (10) 5、T05C G-sensor无数据问题 ................................................ .. (11) 三、I2C协议使用注意事项 ................................................ .. (12) 1、I2C level shift 普通MOS以及level shift IC (12) 2、I2C使用注意事项以及bug总结 ................................................ (15) 文档整理人:袁刚 20XX年12月2日 一、I2C通信协议

I2C原理简介及那些坑

一般情况下, i2c 设备焊接没什么问题,按照设备手册一步步来,基本上就顺风顺水能够用起来。如果这么一个简单的东西,有时候想要的结果死活不出来,反复的检查问题的原因,查询解决办法,核查设备的数据手册,甚至发送和接收的每一条命令与数据都知道是什么意思,仍然无法解决问题,那该怎么办呢? 本文主要针对 i2c 设备,讲解如何解决 i2c 设备主机与从机直接无法正常数据交互的问题,侧重点是针对硬件设计不太合理、i2c 设备设计不标准导致总线故障的情况,并且通过分析现象,提出解决方案。对于在设备初始化中,没有设置相应的寄存器或者发送命令,而导致的无法获取想要的数据情况,不作详细介绍。 1 i2c 基本用法 i2c 总线是一种简单、双向二线制同步串行总线。所有主机在 SCL 线上产生它们自己的时钟来传输总线上的报文,SDA 线传输每个字节必 须为 8 位,每次传输可以发送的字节数量不受限制,每个字节后必须跟 一个响应位。在空闲状态时,SCL 与 SDA 均为高电平。 通常一些低功耗 i2c 设备,芯片引脚使用上拉输出即可满足与其正 常数据交互,还有一些 i2c 设备,则需要在总线上外加一个上拉电阻, 此时相应的 I/O 配置成开漏输出,其他的按照芯片手册进行标准配置。 2 硬件问题汇总 2.1 无法正常拉高拉低引脚 首先确定 SDA 与SCL 引脚能够被拉高、拉低,检测方式直接软件控 制 I/O 口输出引脚低电平/高电平,测量引脚电压是否能够随着芯片引 脚的设置输出相应的状态。 如果不能被拉低,检测虚焊、上拉电阻断开、i2c 设备是否正常、 芯片引脚是否损坏等问题,确保能够正常被拉高或者拉低。 2.2 电气特性无法满足 如果正常拉高、拉低的情况下,依然无法正常读取数据。通常建 议,根据负载电流更换小阻值的电阻。 如果需要详细知道原因,就具体查询 i2c 设备电气特性。大多数 i2c 设备电气特性,大致下图所示

I2C总线的结构与工作原理

I2C总线的结构与工作原理 2.1概述 2.1.1 I2C总线在单片机应用系统设计中的意义 现代消费类产品、通讯类产品、仪器仪表、工业测控系统中,逐渐形成了以一个或 多个单片机组成的智能系统,这些系统硬件结构都有相似之处: 1.单片机电路已日趋简单化和标准化。通常是由单片机(MICROCONTROLLER)、程序存储器(EPROM)、数据存储器(SRAM)构成的三片体系,或采用有在片程序存储器的单片机与数据存储器构成的二片体系,以及单片机与通用外围接口器件(PSD)构成的最简单体系。 2. 都有一些外围通用电路,如EEPROM、I/O口、A/D、D/A、日历时钟等外围器件和键盘、LED/LCD显示器、打印机接口等外围设备模块等。 3.面对系统特殊应用的一些电路,如无线电、电视、音像系统中的数字协调、编码、解码、图象处理、频率合成、音调控制、立体声处理等。 在上述的一些电路中,除与单片机直接相关的程序存储器、并行扩展的数据存储器外,单片机对许多外围电路之间主要是实现控制功能,而且许多外设并不要求很高的数据传送速度。为了简化系统,提高系统的可靠性,缩短产品开发周期,增加硬件结构的灵活性,Philips公司推出了一种高效、可靠、方便的串行扩展总线I2C总线。 在单片机应用系统中推广I2C总线后将会大大改变单片机应用系统结构性能、对单片机的应用开发带来以下好处: 可最大限度地简化结构。二线制的I2C串行总线使得各电路单元之间只需最简单的连接,而且总线接口都集成在器件中,不需另加总线接口电路。电路的简化省去了电路板上大量走线,减少电路板面积,提高了可靠性,降低了成本。 可实现电路系统的模块化、标准化设计。在I2C总线上各单元电路除了个别中断引线外,相互之间没有其他连线,用户常用的单元电路基本上与系统电路无关,故极易形成用户自己的标准化、模块化设计。 标准I2C总线模块的组合开发方式大缩短了新品的开发周期。 I2C总线各节点具有独立的电器特性,各节点单元电路能在相互不受影响的情况下,甚至在系统供电情况下,接入或撤除。I2C总线系统构成具有最大的灵活性。系统该型设计、或对已加工好的电路板需扩展功能时,对原有设计及电路板系统影响最小。 I2C总线系统可方便地对某一接点电路进行故障诊断与跟踪,有极好的可维护性 目前Philips及I2C总线器件,除带有I2C总线单片机、常用的通用外围器件外,在家电产品、电讯、电视、音像产品中已发展成套I2C总线器件,在这些部门中I2C总线系统已得到了广泛的应用。 2.1.2 I2C总线的一般应用特性 I2C总线系统中,带有I2C总线的单片机,其I2C总线输入输出口的电器结构、相关的特殊功能寄存器(SFR)设置以及所提供的标准程序模块,为用户掌握I2C总线的系统设计和应用软件的编制带来极大的方便。 I2C总线的串行数据传送与一般UART的串行数据传送无论从借口电器特性、传送状态管理以及程序编制特点都有很大的不同,了解这些特点十分重要。 1.二线传输。I2C总线上所有的节点,如主器件(单片机,微处理器)、外围器件、借口模块等都连到同名端的SDA、SCL上。 2.系统中有多个主器件时,这些器件都可作总线的主控制器(无中心主机),I2C总线工作时任何一个主件都可成为主控制器,多机竞争时的时钟同步与总线仲裁都由硬件与标准软件模块自动完成,无须用户介入。 3.I2C总线传输时,采用状态码的管理方法。对应于总线数据传输时的任何一种状态,在状态寄存器中会出现相应的状态码,并且会自动进入响应的状态处理程序中进行自动处理,无须用户介入,用户只须将Philips公司提供的标准状态处理器一定的空间即可。 4.系统中所有外围器件及模块采用器件地址及引脚地址的编码方法。系统中主控制器对任何节点的寻址采用纯软件寻址方法,避免了片选线的先连方法。系统中若有地址编码冲突可通过改变地址引脚的电平设置来解决。 5.所有带I2C接口的外围器件都具有应答功能。片有多少单元地址时,读数据、写时都有地址自动加1功能。这样,在I2C 总线对某一器件读写多个字节时很容易实现自动操作,即准备好读、写入口条件后,只须启动I2C总线就可自动完成n个字节的读、写操作。 6.I2C总线电器接口为开漏晶体管组成,开路输出没有找到电源的钳位二级管,而连到I2C总线的每个器件上,其自身

I2C总线协议详解

I2C总线协议详解 I2C总线定义 -------------------------------------------------------------------------------- I2C(Inter-Integrated Circuit)总线是一种由PHILIPS公司开发的两线式串行总线,用于连接微控制器及其外围设备。I2C总线产生于在80年代,最初为音频和视频设备开发,如今主要在服务器管理中使用,其中包括单个组件状态的通信。例如管理员可对各个组件进行查询,以管理系统的配置或掌握组件的功能状态,如电源和系统风扇。可随时监控内存、硬盘、网络、系统温度等多个参数,增加了系统的安全性,方便了管理。 I2C总线特点 -------------------------------------------------------------------------------- I2C总线最主要的优点是其简单性和有效性。由于接口直接在组件之上,因此I2C总线占用的空间非常小,减少了电路板的空间和芯片管脚的数量,降低了互联成本。总线的长度可高达25英尺,并且能够以10Kbps的最大传输速率支持40个组件。I2C总线的另一个优点是,它支持多主控(multimastering),其中任何能够进行发送和接收的设备都可以成为主总线。一个主控能够控制信号的传输和时钟频率。当然,在任何时间点上只能有一个主控。 I2C总线工作原理 -------------------------------------------------------------------------------- 总线的构成及信号类型 -------------------------------------------------------------------------------- I2C总线是由数据线SDA和时钟SCL构成的串行总线,可发送和接收数据。在CPU与被控IC之间、IC与IC之间进行双向传送,最高传送速率100kbps。各种被控制电路均并联在这条总线上,但就像电话机一样只有拨通各自的号码才能工作,所以每个电路和模块都有唯一的地址,在信息的传输过程中,I2C总线上并接的每一模块电路既是主控器(或被控器),又是发送器(或接收器),这取决于它所要完成的功能。CPU发出的控制信号分为地址码和控制量两部分,地址码用来选址,即接通需要控制的电路,确定控制的种类;控制量决定该调整的类别(如对比度、亮度等)及需要调整的量。这样,各控制电路虽然挂在同一条总线上,却彼此独立,互不相关。 I2C总线在传送数据过程中共有三种类型信号,它们分别是:开始信号、结束信号和应答信号。 开始信号:SCL为高电平时,SDA由高电平向低电平跳变,开始传送数据。 结束信号:SCL为高电平时,SDA由低电平向高电平跳变,结束传送数据。

I2C总线中文讲解,详尽通俗

一. I2C总线简介 I2C管理总线:(Intel-Integrated Circuit bus)I2C总线是一种由飞利浦Philip公司开发的串行总线,产生于80年代,最初为音频和视频设备开发,现主要在服务器管理中使用。是两条串行的总线,它由一根数据线(SDA)和一根时钟线(SDL)组成。 ◆I2C总线的数据传输过程基本过程为: ●主机发出开始信号。 ●主机接着送出1字节的从机地址信息,其中最低位为读写控制码(1为读、0为写), 高7位为从机器件地址代码。 ●从机发出认可信号。 ●主机开始发送信息,每发完一字节后,从机发出认可信号给主机。 ●主机发出停止信号。 I2C数据传输图 ◆I2C总线上各信号的具体说明: ●开始信号:在时钟线(SCL)为高电平其间,数据线(SDA)由高变低,将产生一 个开始信号。 ●停止信号:在时钟线(SCL)为高电平其间,数据线(SDA)由低变高,将产生一 个停止信号。 ●应答信号:既认可信号,主机写从机时每写完一字节,如果正确从机将在下一个时钟 周期将数据线(SDA)拉低,以告诉主机操作有效。在主机读从机时正确读完一字节后,主机在下一个时钟周期同样也要将数据线(S DA)拉低,发出认可信号,告诉从机所发数据已经收妥。(注:读从机时主机在最后1字节数据接收完以后不发应答,直接发停止信号)。 注意:在I2C通信过程中,所有的数据改变都必须在时钟线SCL为低电平时改变,在时钟线SCL为高电平时必须保持数据SDA信号的稳定,任何在时钟线为高电平时数据线上的电平改变都被认为是起始或停止信号。 ◆I2C总线数据格式:

I2C数据格式图 I2C支持两种数据格式: _ 7-bit/10-bit 寻址数据格式 _ 7-bit/10-bit 寻址和重复开始信号的数据格式 ?S ―I2C 开始标识 ?Slava address ―从设备地址。 有两种从地址类型: 1)固定的从地址,I2C总线只能接一个同类型的固定的从地址设备。 2)半固定的从地址,前半部分地址是固定的,后半部分地址是可编程的,I2C总线只能接多个同类型的半固定的从地址设备。 如7bit半固定从地址通常7-bit 中四个较重要的位(MSB) 为固定的,并依器件本身性质的分类区分,如1010 即代表串行EEPROM,而其他三个较不重要的位(LSB),即A2、A1 与A0 则可以通过硬件电子引脚设定,并取得高达8 个不同的I2C 地址组合,因此在同一个I2C 总线上可以有8 个相同形式的器件运作,这些引脚固定在VCC 高电压代表逻辑1,固定在接地低电压则代表逻辑0,7-bit 的定址方式可以带来总线上128 个器件的组合,但由于部份地址设定保留给特殊指令应用,因此实际上最高器件数大约为120 个。 ?R/W ―读写操作表示位,0 表示写,1表示读。 ?ACK ―读写完一个byte的地址数据的应答信号 ?Data ―数据,紧跟设备地址传输的第一个byte数据(Data)可以是子地址(sub-address) 表示设备的寄存器。 ?S ―I2C结束标识 ◆关于从地址的分配 I2C器件的从地址是由I2C总线协会实行统一分配的,飞利浦作为标准I2C总线标准的维护者,负责所有I2C从地址的注册程序以确保能够适当协助授权厂商或其他公司进行从地址的分配。为了避免I2C器件的从地址的冲突必须依赖现有从地址的完整性和可靠的申请注册资料才能达成,所以I2C器件厂家必须向philip公司提交I2C从地址申请并提交一定的费用。 从地址的申请有两种: 第一种是为某一特定的I2C器件设备申请从地址;

i2c总线原理

I2C总线原理 ?什么是I2C总线? I2C即Inter IC,由Philips公司开发,是当今电子设计中应用非常广泛的串行总线之一,主要用于电压、温度监控,EEPROM数据的读写,光模块的管理等。 I2C总线只有两根线,SCL和SDA,SCL即Serial Clock,串行参考时钟,SDA即Serial Data,串行数据。 ?I2C总线的速率能达到多少? 标准模式下:100Kbps 快速模式下:400Kbps 高速模式下:3.4Mbps I2C总线结构如下图所示: 如上图所示,I2C是OC或OD输出结构,使用时必须在芯片外部进行上拉,上拉电阻R的取值根据I2C总线上所挂器件数量及I2C总线的速率有关,一般是标准模式下R选择10kohm,快速模式下R选取1kohm,I2C总线上挂的I2C器件越多,就要求I2C的驱动能力越强,R的取值就要越小,实际设计中,一般是先选取4.7kohm上拉

电阻,然后在调试的时候根据实测的I2C波形再调整R的值。 ?I2C总线上最多能挂多少个I2C器件? I2C总线上允许挂接I2C器件的数量由两个条件决定: 1).I2C从设备的地址位数。I2C标准中有7位地址和10位地址两种。如果是7位地址,允许挂接的I2C器件数量为:27=128,如果是10位地址,允许挂接的I2C 器件数量为:210=1024,一般I2C总线上挂接的I2C器件不会太多,所以现在几乎所有的I2C器件都使用7位地址。 2).挂在I2C总线上所有I2C器件的管脚寄生电容之和。I2C总线规范要求,I2C 总线容性负载最大不能超过470pF。 ?I2C总线是如何工作的? 1).I2C总线传输的特点。 I2C总线按字节传输,即每次传输8bits二进制数据,传输完毕后等待接收端的应答信号ACK,收到应答信号后再传输下一字节。等不到ACK信号后,传输终止。空闲情况下,SCL和SDA都处于高电平状态。 2).如何判断一次传输的开始? 如上图所示,I2C总线传输开始的标志是:SCL信号处于高电平期间,SDA信号出现一个由高电平向低电平的跳变。 3).如何判断一次传输的结束? 如上图所示,I2C总线传输结束的标志是:SCL信号处于高电平期间,SDA信号出现一个由低电平向高电平的跳变。跟开始标识正好相反。 4).什么样的I2C数据才是有效的。

简单的I2C协议理解 i2c程序(调试通过)

简单的I2C协议理解 一. 技术性能: 工作速率有100K和400K两种; 支持多机通讯; 支持多主控模块,但同一时刻只允许有一个主控; 由数据线SDA和时钟SCL构成的串行总线; 每个电路和模块都有唯一的地址; 每个器件可以使用独立电源 二. 基本工作原理: 以启动信号START来掌管总线,以停止信号STOP来释放总线; 每次通讯以START开始,以STOP结束; 启动信号START后紧接着发送一个地址字节,其中7位为被控器件的地址码,一位为读/写控制位R/W,R /W位为0表示由主控向被控器件写数据,R/W为1表示由主控向被控器件读数据; 当被控器件检测到收到的地址与自己的地址相同时,在第9个时钟期间反馈应答信号; 每个数据字节在传送时都是高位(MSB)在前; 写通讯过程: 1. 主控在检测到总线空闲的状况下,首先发送一个START信号掌管总线; 2. 发送一个地址字节(包括7位地址码和一位R/W); 3. 当被控器件检测到主控发送的地址与自己的地址相同时发送一个应答信号(ACK); 4. 主控收到ACK后开始发送第一个数据字节; 5. 被控器收到数据字节后发送一个ACK表示继续传送数据,发送NACK表示传送数据结束; 6. 主控发送完全部数据后,发送一个停止位STOP,结束整个通讯并且释放总线; 读通讯过程: 1. 主控在检测到总线空闲的状况下,首先发送一个START信号掌管总线; 2. 发送一个地址字节(包括7位地址码和一位R/W); 3. 当被控器件检测到主控发送的地址与自己的地址相同时发送一个应答信

号(ACK); 4. 主控收到ACK后释放数据总线,开始接收第一个数据字节; 5. 主控收到数据后发送ACK表示继续传送数据,发送NACK表示传送数据结束; 6. 主控发送完全部数据后,发送一个停止位STOP,结束整个通讯并且释放总线; 四. 总线信号时序分析 1. 总线空闲状态 SDA和SCL两条信号线都处于高电平,即总线上所有的器件都释放总线,两条信号线各自的上拉电阻把电平拉高; 2. 启动信号START 时钟信号SCL保持高电平,数据信号SDA的电平被拉低(即负跳变)。启动信号必须是跳变信号,而且在建立该信号前必修保证总线处于空闲状态; 3. 停止信号STOP 时钟信号SCL保持高电平,数据线被释放,使得SDA返回高电平(即正跳变),停止信号也必须是跳变信号。 4. 数据传送 SCL线呈现高电平期间,SDA线上的电平必须保持稳定,低电平表示0(此时的线电压为地电压),高电平表示1(此时的电压由元器件的VDD决定)。只有在SCL线为低电平期间,SDA上的电平允许变化。 5. 应答信号ACK I2C总线的数据都是以字节(8位)的方式传送的,发送器件每发送一个字节之后,在时钟的第9个脉冲期间释放数据总线,由接收器发送一个ACK(把数据总线的电平拉低)来表示数据成功接收。 6. 无应答信号NACK 在时钟的第9个脉冲期间发送器释放数据总线,接收器不拉低数据总线表示一个NACK,NACK有两种用途: a. 一般表示接收器未成功接收数据字节; b. 当接收器是主控器时,它收到最后一个字节后,应发送一个NACK信号,以通知被控发送器结束数据发送,并释放总线,以便主控接收器发送一个停止信号STOP。 五. 寻址约定

I2C总线协议规范 v2.1

THE I2C-BUS SPECIFICATION VERSION 2.1 JANUARY 2000

CONTENTS 1PREFACE. . . . . . . . . . . . . . . . . . . . . . . . . . .3 1.1Version 1.0 - 1992. . . . . . . . . . . . . . . . . . . . 3 1.2Version 2.0 - 198. . . . . . . . . . . . . . . . . . . . . 3 1.3Version 2.1 - 1999. . . . . . . . . . . . . . . . . . . . 3 1.4Purchase of Philips I2C-bus components . . 3 2THE I2C-BUS BENEFITS DESIGNERS AND MANUFACTURERS. . . . . . . . . . . . . . .4 2.1Designer benefits . . . . . . . . . . . . . . . . . . . . 4 2.2Manufacturer benefits. . . . . . . . . . . . . . . . . 6 3INTRODUCTION TO THE I2C-BUS SPECIFICATION . . . . . . . . . . . . . . . . . . . . .6 4THE I2C-BUS CONCEPT . . . . . . . . . . . . . . .6 5GENERAL CHARACTERISTICS . . . . . . . . .8 6BIT TRANSFER . . . . . . . . . . . . . . . . . . . . . .8 6.1Data validity . . . . . . . . . . . . . . . . . . . . . . . . 8 6.2START and STOP conditions. . . . . . . . . . . 9 7TRANSFERRING DATA. . . . . . . . . . . . . . .10 7.1Byte format . . . . . . . . . . . . . . . . . . . . . . . . 10 7.2Acknowledge. . . . . . . . . . . . . . . . . . . . . . . 10 8ARBITRATION AND CLOCK GENERATION . . . . . . . . . . . . . . . . . . . . . .11 8.1Synchronization . . . . . . . . . . . . . . . . . . . . 11 8.2Arbitration . . . . . . . . . . . . . . . . . . . . . . . . . 12 8.3Use of the clock synchronizing mechanism as a handshake. . . . . . . . . . . 13 9FORMATS WITH 7-BIT ADDRESSES. . . .13 107-BIT ADDRESSING . . . . . . . . . . . . . . . . .15 10.1Definition of bits in the first byte . . . . . . . . 15 10.1.1General call address. . . . . . . . . . . . . . . . . 16 10.1.2START byte . . . . . . . . . . . . . . . . . . . . . . . 17 10.1.3CBUS compatibility. . . . . . . . . . . . . . . . . . 18 11EXTENSIONS TO THE STANDARD- MODE I2C-BUS SPECIFICATION . . . . . . .19 12FAST-MODE. . . . . . . . . . . . . . . . . . . . . . . .19 13Hs-MODE . . . . . . . . . . . . . . . . . . . . . . . . . .20 13.1High speed transfer. . . . . . . . . . . . . . . . . . 20 13.2Serial data transfer format in Hs-mode. . . 21 13.3Switching from F/S- to Hs-mode and back . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2313.4Hs-mode devices at lower speed modes. . 24 13.5Mixed speed modes on one serial bus system. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 13.5.1F/S-mode transfer in a mixed-speed bus system. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 13.5.2Hs-mode transfer in a mixed-speed bus system. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 13.5.3Timing requirements for the bridge in a mixed-speed bus system. . . . . . . . . . . . . . 27 1410-BIT ADDRESSING. . . . . . . . . . . . . . . . 27 14.1Definition of bits in the first two bytes. . . . . 27 14.2Formats with 10-bit addresses. . . . . . . . . . 27 14.3General call address and start byte with 10-bit addressing. . . . . . . . . . . . . . . . . . . . 30 15ELECTRICAL SPECIFICATIONS AND TIMING FOR I/O STAGES AND BUS LINES. . . . . . . . . . . . . . . . . . . . 30 15.1Standard- and Fast-mode devices. . . . . . . 30 15.2Hs-mode devices. . . . . . . . . . . . . . . . . . . . 34 16ELECTRICAL CONNECTIONS OF I2C-BUS DEVICES TO THE BUS LINES . 37 16.1Maximum and minimum values of resistors R p and R s for Standard-mode I2C-bus devices . . . . . . . . . . . . . . . . . . . . . 39 17APPLICATION INFORMATION. . . . . . . . . 41 17.1Slope-controlled output stages of Fast-mode I2C-bus devices. . . . . . . . . . . . 41 17.2Switched pull-up circuit for Fast-mode I2C-bus devices . . . . . . . . . . . . . . . . . . . . . 41 17.3Wiring pattern of the bus lines. . . . . . . . . . 42 17.4Maximum and minimum values of resistors R p and R s for Fast-mode I2C-bus devices . . . . . . . . . . . . . . . . . . . . . 42 17.5Maximum and minimum values of resistors R p and R s for Hs-mode I2C-bus devices . . . . . . . . . . . . . . . . . . . . . 42 18BI-DIRECTIONAL LEVEL SHIFTER FOR F/S-MODE I2C-BUS SYSTEMS . . . . 42 18.1Connecting devices with different logic levels. . . . . . . . . . . . . . . . . . . . . . . . . 43 18.1.1Operation of the level shifter . . . . . . . . . . . 44 19DEVELOPMENT TOOLS AVAILABLE FROM PHILIPS. . . . . . . . . . . . . . . . . . . . . 45 20SUPPORT LITERATURE . . . . . . . . . . . . . 46

I2C总线原理及应用实例

I2C总线 原理及应 用实例 I2C(Inter-Integrated Circuit)总线是一种由PHILIPS公司开发的两线式串行总线,用于连接微控制器及其外围设备。I2C总线产生于在80年代,最初为 音频和视频设备开发,如今主要在服务器管理中使用,其中包括单个组件状态的 通信。例如管理员可对各个组件进行查询,以管理系统的配置或掌握组件的功能 状态,如电源和系统风扇。可随时监控内存、硬盘、网络、系统温度等多个参数, 增加了系统的安全性,方便了管理。 1 I2C总线特点 I2C总线最主要的优点是其简单性和有效性。由于接口直接在组件之上,因此I2C总线占用的空间非常小,减少了电路板的空间和芯片管脚的数量,降低了互 联成本。总线的长度可高达25英尺,并且能够以10Kbps的最大传输速率支持 40个组件。I2C总线的另一个优点是,它支持多主控(multimastering),其中 任何能够进行发送和接收的设备都可以成为主总线。一个主控能够控制信号的传 输和时钟频率。当然,在任何时间点上只能有一个主控。 2 I2C总线工作原理 2.1 总线的构成及信号类型 I2C总线是由数据线SDA和时钟SCL构成的串行总线,可发送和接收数据。在CPU与被控IC之间、IC与IC之间进行双向传送,最高传送速率100kbps。各种 被控制电路均并联在这条总线上,但就像电话机一样只有拨通各自的号码才能工 作,所以每个电路和模块都有唯一的地址,在信息的传输过程中,I2C总线上并 接的每一模块电路既是主控器(或被控器),又是发送器(或接收器),这取决 于它所要完成的功能。CPU发出的控制信号分为地址码和控制量两部分,地址码 用来选址,即接通需要控制的电路,确定控制的种类;控制量决定该调整的类别 (如对比度、亮度等)及需要调整的量。这样,各控制电路虽然挂在同一条总线 上,却彼此独立,互不相关。 I2C总线在传送数据过程中共有三种类型信号,它们分别是:开始信号、结束信号和应答信号。 开始信号:SCL为高电平时,SDA由高电平向低电平跳变,开始传送数据。 结束信号:SCL为低电平时,SDA由低电平向高电平跳变,结束传送数据。 应答信号:接收数据的IC在接收到8bit数据后,向发送数据的IC发出特定的低电平脉冲,表示已收到数据。CPU向受控单元发出一个信号后,等待受控单 元发出一个应答信号,CPU接收到应答信号后,根据实际情况作出是否继续传递 信号的判断。若未收到应答信号,由判断为受控单元出现故障。 目前有很多半导体集成电路上都集成了I2C接口。带有I2C接口的单片机有:CYGNAL的 C8051F0XX系列,PHILIPSP87LPC7XX系列,MICROCHIP的PIC16C6XX 系列等。很多外围器件如存储器、监控芯片等也提供I2C接口。 3 总线基本操作 I2C规程运用主/从双向通讯。器件发送数据到总线上,则定义为发送器,器件接收数据则定义为接收器。主器件和从器件都可以工作于接收和发送状态。总

I2C串行接口介绍

I2C串行总线通信原理

采用串行总线技术可以使系统的硬件设计大大简化、系统的体积减小、可靠性提高。同时,系统的更改和扩充极为容易。 常用的串行扩展总线有:I2C (Inter IC BUS)总线、单总线(1-WIRE BUS)、SPI(Serial Peripheral Interface)总线等。本章仅讨论I2C串行总线。

一、IIC概述 IIC(Inter-Integrated Circuit)总线,许多文献写作I2C,主要用于同一电路板内各集成电路模块(IC)之间的连接。IIC采用双向2线制串行数据传输方式,简化IC之间的通信连接。IIC协议是PHILIPS公司于二十世纪八十年代初提出,其后,PHILIPS和其他厂商提供了种类丰富的IIC兼容芯片。目前,IIC总线标准已经成为世界性的工业标准。各大半导体公司推出了大量的带有IIC接口的芯片,如RAM、EEPROM、Flash ROM、A/D、D/A转换、 LED/LCD驱动、I/O接口、实时时钟等。

二、IIC总线特点 在硬件结构上,它采用数据(SDA)和时钟(SCL)两根线来完成数据的传输及外围器件的扩展,任何一个具有IIC总线接口的外围器件,不论其功能差别有多大,都具有相同的电气接口,因 此都可以挂接在总线上,使其连接方式变得十分 简单。 对各器件的寻址是软寻址方式,因此节点上没有必须的片选线,器件地址给定完全取决于器件 类型与单元结构,这也简化了IIC系统的硬件连接。

另外IIC总线能在总线竞争过程中进行总线控制权的仲裁和时钟同步,并且不会造成数据丢失,因此由IIC总线连接的多机系统可以是一个多主机系统,支持多主控。 串行的8位双向数据传输位速率在标准模式下可达100kbit/s,快速模式下可达400kbit/s,高速模式下可达3.4Mbit/s。

i方c总线协议

竭诚为您提供优质文档/双击可除 i方c总线协议 篇一:i2c总线协议 1.i2c协议 2条双向串行线,一条数据线sda,一条时钟线scl。 sda传输数据是大端传输,每次传输8bit,即一字节。 支持多主控(multimastering),任何时间点只能有一个主控。 总线上每个设备都有自己的一个addr,共7个bit,广播地址全0. 系统中可能有多个同种芯片,为此addr分为固定部分和可编程部份,细节视芯片而定,看datasheet。 1.1i2c位传输 数据传输:scl为高电平时,sda线若保持稳定,那么sda上是在传输数据bit; 若sda发生跳变,则用来表示一个会话的开始或结束(后面讲)数据改变:scl为低电平时,sda线才能改变传输的bit 1.2i2c开始和结束信号

开始信号:scl为高电平时,sda由高电平向低电平跳变,开始传送数据。结束信号:scl为高电平时,sda由低电平向高电平跳变,结束传送数据。 1.3i2c应答信号 master每发送完8bit数据后等待slave的ack。 即在第9个clock,若从ic发ack,sda会被拉低。 若没有ack,sda会被置高,这会引起master发生RestaRt或stop流程,如下所示: 1.4i2c写流程 写寄存器的标准流程为: 1.master发起staRt 2.master发送i2caddr(7bit)和w操作0(1bit),等待ack 3.slave发送ack 4.master发送regaddr(8bit),等待ack 5.slave发送ack 6.master发送data(8bit),即要写入寄存器中的数据,等待ack 7.slave发送ack 8.第6步和第7步可以重复多次,即顺序写多个寄存器 9.master发起stop 写一个寄存器

I2C总线协议及工作原理

I2C总线协议及工作原理 一、概述 1、I2C总线只有两根双向信号线。一根是数据线SDA,另一根是时钟线SCL。 SCL:上升沿将数据输入到每个EEPROM器件中;下降沿驱动EEPROM器件输出数据。(边沿触发) SDA:双向数据线,为OD门,与其它任意数量的OD与OC门成"线与"关系。 I2C总线通过上拉电阻接正电源。当总线空闲时,两根线均为高电平(SDL=1;SCL=1)。连到总线上的任一器件输出的低电平,都将使总线的信号变低,即各器件的SDA及SCL都是线“与”关系。 2、主设备与从设备 系统中的所有外围器件都具有一个7位的"从器件专用地址码",其中高4位为器件类型,由生产厂家制定,低3位为器件引脚定义地址,由使用者定义。主控器件通过地址码建立多机通信的机制,因此I2C总线省去了外围器件的片选线,这样无论总线上挂接多少个器件,其系统仍然为简约的二线结构。终端挂载在总线上,有主端和从端之分,主端必须是带有CPU的逻辑模块,在同一总线上同一时刻使能有一个主端,可以有多个从端,从端的数量受地址空间和总线的最大电容400pF的限制。 主端主要用来驱动SCL line; 从设备对主设备产生响应; 二者都可以传输数据,但是从设备不能发起传输,且传输是受到主设备控制的。 二、协议 1.空闲状态 I2C总线总线的SDA和SCL两条信号线同时处于高电平时,规定为总线的空闲状态。此时各个器件的输出级场效应管均处在截止状态,即释放总线,由两条信号线各自的上拉电阻把电平拉高。 2.起始位与停止位的定义: 起始信号:当SCL为高期间,SDA由高到低的跳变;启动信号是一种电平跳变时序信号,而不是一个电平信号。 停止信号:当SCL为高期间,SDA由低到高的跳变;停止信号也是一种电平跳变时序信号,而不是一个电平信号。 起始和终止信号都是由主机发出的,在起始信号产生后,总线就处于被占用的状态;在终止信号产生后,总线就处于空闲状态。

I2c总线协议

1.I2C协议 2条双向串行线,一条数据线SDA,一条时钟线SCL。 SDA传输数据是大端传输,每次传输8bit,即一字节。 支持多主控(multimastering),任何时间点只能有一个主控。 总线上每个设备都有自己的一个addr,共7个bit,广播地址全0. 系统中可能有多个同种芯片,为此addr分为固定部分和可编程部份,细节视芯片而定,看datasheet。 1.1 I2C位传输 数据传输:SCL为高电平时,SDA线若保持稳定,那么SDA上是在传输数据bit; 若SDA发生跳变,则用来表示一个会话的开始或结束(后面讲) 数据改变:SCL为低电平时,SDA线才能改变传输的bit 1.2 I2C开始和结束信号 开始信号:SCL为高电平时,SDA由高电平向低电平跳变,开始传送数据。结束信号:SCL为高电平时,SDA由低电平向高电平跳变,结束传送数据。

1.3 I2C应答信号 Master每发送完8bit数据后等待Slave的ACK。 即在第9个clock,若从IC发ACK,SDA会被拉低。 若没有ACK,SDA会被置高,这会引起Master发生RESTART或STOP流程,如下所示: 1.4 I2C写流程 写寄存器的标准流程为: 1. Master发起START 2. Master发送I2C addr(7bit)和w操作0(1bit),等待ACK 3. Slave发送ACK 4. Master发送regaddr(8bit),等待ACK 5. Slave发送ACK 6. Master发送data(8bit),即要写入寄存器中的数据,等待ACK 7. Slave发送ACK 8. 第6步和第7步可以重复多次,即顺序写多个寄存器

I2C总线协议程序

C程序代码]I2C总线协议程序 程序代码 2009-10-11 14:05 阅读48 评论0 /**************************************************************** I2C总线协议程序 ****************************************************************/ #define NOP {_nop_();_nop_();_nop_();_nop_();} sbit SDA=P1^2; /*模拟I2C数据传送位*/ sbit SCL=P1^3; /*模拟I2C时钟控制位*/ bit ack; /*应答标志位*/ void Start_I2c() { SDA=1; NOP; SCL=1; NOP; SDA=0; NOP; SCL=0; NOP; } void Stop_I2c() { SDA=0; NOP;

SCL=1; NOP; SDA=1; NOP; } void Senduchar(uchar c) { uchar i; for(i=0;i<8;i++) { c<<=1; SDA=CY; NOP; SCL=1; NOP; SCL=0; NOP; } SDA=1; NOP; SCL=1; NOP; if(SDA==1) ack=0; else ack=1; SCL=0; NOP; } uchar Rcvuchar() {

uchar i,x=0; SDA=1; for(i=0;i<8;i++) { SCL=0; NOP; SCL=1; NOP; x=x<<1; if(SDA) x=x+1; NOP; } SCL=0; NOP; return(x); } void Ack_I2c(bit a) { SDA=a; NOP; SCL=1; NOP; SCL=0; NOP; } bit ISendStr(uchar sla,uchar suba,uchar *s,uchar no) { uchar i;

相关主题