搜档网
当前位置:搜档网 › 马来酰肼的合成

马来酰肼的合成

马来酰肼的合成
马来酰肼的合成

 万方数据

 万方数据

马来酰肼的合成

作者:陈恕华

作者单位:镇江师范专科学校,化学系,江苏,镇江,212003

刊名:

化学工程师

英文刊名:CHEMICAL ENGINEER

年,卷(期):2001(4)

参考文献(1条)

1.化学工业部科学技术情报研究所化工产品手册(有机化工原料分册和无机化工产品分册) 1992本文链接:https://www.sodocs.net/doc/af8942532.html,/Periodical_hxgcs200104004.aspx

酮连氮法水合肼生产工艺中废盐水综合利用

酮连氮法水合肼生产中废盐水综合利用 摘要对酮连氮法生产水合肼过程中产生的废液进行回收利用,重点阐述了废盐水处理后回用于氯碱生产,既降低了氯碱、水合肼生产成本,又解决了废盐水排出带来的环境污染,实现清洁生产。 关键词氯碱生产酮连氮水合肼废盐水处理循环利用 水合肼(又称水合联氨)是重要的化工原料,为强还原剂,是医药、农药、染料、发泡剂、显影剂、抗氧化剂的原料;用于锅炉水去氧、高纯金属制取、有机化合物合成及还原、稀有元素分离,还用作火箭燃料及炸药的制造,随着技术的进步,社会的发展,近年来水合肼的应用领域在不断拓宽。 水合肼的生产方法主要有拉西法、尿素法、酮连氮法、双氧水法以及空气氧化法等。拉西法由于环境污染严重,设备投资大,产品收率低,目前在国外已经基本上被淘汰[2]。目前国内的水合肼生产方法主要有:尿素氧化法和酮连氮法。尿素法工艺成熟,技术易掌握,我国绝大部分水合肼生产企业采用主要采用此种方法,但该法能耗物耗较高。酮连氮法是国外七十年代发展起来的新技术,该法优点是收率高,可达95%左右,能耗低。酮连氮法的缺点是其排放废液除含有氯化钠外,还有一些有机副产品,并消耗丙酮。双氧水法是酮连氮法的改进,空气氧化法还没有实现工业化[2]。 酮连氮法生产水合肼中废盐水处理后综合利用,使得水合肼生产排出的氯化钠水溶液回用于氯碱生产系统,可形成盐的循环利用,达到清洁生

产,节能减排的效果。 1 酮连氮法水合肼生产工艺 在酮存在下,将次氯酸钠与氨反应,生成的酮连氮中间物在高压下水解生成水合肼。采用丙酮、氧化剂或次氯酸钠与氨反应生成中间体-酮连氮。合成液经加压脱氨塔脱去未反应的氨,氨被水吸收后再返回酮连氮反应器,脱氨塔釜底液送入酮连氮塔进行蒸馏,从塔顶蒸出的是丙酮连氮与水的低沸共混物(沸点95℃,质量分数为55.5%的丙酮连氮),塔釜为盐水,塔顶馏出的丙酮连氮在加压水解塔内于1MPa的压力下水解,生成丙酮和水合肼。生成的丙酮由塔顶馏出,返回到酮连氮反应器中,釜液为10%-12%的肼水溶液,经浓缩得到80%水合肼。其化学反应如下[5]: 2NaOH+Cl2→NaCl+NaClO+H2O 2NH3+NaClO+2(CH3)2C=O→(CH3)2=N-N=(CH3)2+NaCl+H2O (CH3)2=N-N=(CH3)2+2H2O→2(CH3)2CO+ N2H2 酮连氮法水合肼生产工艺流程见图1

水解聚马来酸酐(HPMA)的合成工艺

水解聚马来酸酐(HPMA)的合成工艺 摘要:水解聚马来酸酐(HPMA)对CaCO3和Ca3(P04)2的阻垢效果好,是非常适合工业循环冷却水的阻垢剂;本工艺合成水解聚马来酸酐(HPMA)反应时间短、操作简单、成本低、绿色无污染;所用催化剂及引发剂价兼易得、用量少、活性高;该工艺工序较为简单,安全系数较高,生产周期较短,能耗较低,产量较高,有利于批量生产;原材料利用率高、无污染环境的废物产生。 关键词:水解聚马来酸酐;阻垢;水处理; 1、理论依据 以《应用化工》、《21世纪水处理剂发展战略[J ]环境工程》为依据。 2、反应原理 反应式:见右式。 其合成原理是:在引发剂、催化剂作用下将马来酸酐分子内不饱和双键断裂,从而自身发生聚合反应生成水解聚马来酸酐。 3、生产工艺简介 由于马来酸酐碳碳双健的电子云密度低、空间位阻大,难以均聚,是合成反应的瓶颈。目前主要有三种方法可以生产聚马来酸酐:1、辐射聚合法,它需要一个辐射源设备,条件高,多用于科学研究,在工业上应用基本没有。2、有机溶剂聚合法,该法采用偶氮二异丁腈、过氧化苯甲酰等为引发剂,用苯、甲苯、二甲苯等为有机溶剂,早期合成聚马来酸酐的工业化生产,多采用此法,此法的缺点是由于有机溶剂的使用和回收,能耗大且易燃易爆,工艺复杂,引发剂价格昂贵且用量较大,造成生产成本高。3、水溶液聚合法,该法以水代替有机溶剂,优点是消除了苯类有机溶剂潜在的危险,安全卫生,工艺简化,但缺点是引发剂用量大,需要合适的催化剂,目前已经有一些工业化的生产。通过实验研究,找到一类廉价易得的有效催化剂,通过实验室合成和工业试生产证明了水溶液聚合法工艺已经成熟,能够合成出符合国家标准的产品。 4、产品合成实验过程 本实验主要是温度及回流时间的控制,这两项因素控制得成功与否决定了产品的质量: 4.1温度控制 将顺酐、水、硫酸铁铵加入四口瓶后开始升温,保持其他条件不变,反应1小时,将温度分别取80、90、100、110、120℃,实验中发现,当温度到达105℃

果蔬中常用植物生长调节剂分析方法研究进展

果蔬中常用植物生长调节剂分析方法研究进展 摘要:植物生长调节剂是一类具有植物激素活性的人工合成农药,可用于调节 果蔬的生长和贮藏。近年来,植物生长调节剂在果蔬生产中的使用越来越多,而 产生的安全事件不断增多。果蔬中植物生长调节剂的残留问题已经引起社会的广 泛关注,痕量植物生长调节剂残留的分析技术也在不断发展。文中概述了国内外 检测果蔬中植物生长调节剂残留的主要分析方法及其优缺点,包括气相色谱(GC)、高效液相色(HPLC)、质谱联用技术、酶联免疫吸附测定(ELISA)、 毛细管电泳(CE)及其他分析法,并对其发展趋势进行了展望。 关键词:水果蔬菜;植物生长调节剂;分析方法 一、果蔬中常用的调节剂 调节剂按其功能可分为五类:生长素类、细胞分裂类、赤霉素类、催熟剂类 以及生长抑制剂类。当前,在果蔬生产中使用比较多的有:赤霉素、氯吡脲、乙 烯利、矮壮素、多效唑等,它们大多属低毒类农药,也有少数微毒或者无毒,然 而某些调节剂或其水解产物具有潜在的致癌、致畸或者导致突变作用(例如:丁 酰肼的水解产物不对称二甲基肼具有致畸作用)也应得到应有的重视。 二、果蔬中常用调节剂的分析方法 2.1气相色谱(GC)分析法 目前GC 技术主要应用于乙烯利的检测,也可用于丁酰肼等调节剂的分析, 但需要进行衍生化反应,前面的处理过程较为繁琐。由于大部分的调节剂相对分 子质量较大、极性较强、不易气化或者受热易分解,所以,GC 技术在调节剂的残留分析中应用不多,虽然衍生化处理后可以采用GC 分析某些调节剂,但衍生化 过程通常都会耗时费力,不符合实际检测中简单、快速的要求,更不适用于大批 量样品的分析。而乙烯利等少数调节剂虽然其特殊性质采用GC 分析操作比较简便,但是灵敏度还有待进一步提高。 2.2高效液相色谱(HPLC)分析法 与GC 相比,HPLC 可用于检测果蔬中大多数调节剂的残留,正常情况下无需 衍生化反应,前面处理过程比较简单,可是,在分析基质比较复杂的样品时,其 选择性与灵敏度不及GC。Newsome 等采用高压离子交换液相色谱法分析了马来 酰肼及其β-D- 葡糖苷。样品采用甲醇提取,在马铃薯、大头菜、甜菜及胡萝卜中 的平均加标回收率为87%。而Kobayashi 等改用水提取,建立了测定农产品中马 来酰肼残留的HPLC法,方法的回收率为92.6%~104.9%,LOD 为0.5μg/g。虽然HPLC分析马来酰肼与美国官方分析化学师协会(AOAC)采用的蒸馏-分光光度法 相比更加快速、灵敏、准确,但样品中干扰杂质的分离相对困难。所以潘广文等 建立了马铃薯、洋葱、大蒜中马来酰肼的高效离子排斥色谱(HPIEC)法,该方法不但样品处理步骤简单,分析周期短并且不受杂质干扰。固相萃取(SPE)是HPLC 分析中最常用的前处理技术:Hu Jiye 等采用酸化乙腈提取、氨基柱净化、丙酮洗脱后以HPLC-UV(紫外检测器)分析了西瓜中氯吡脲的残留;而Kobayashi 等改用丙酮提取,Chem Elut柱和Oasis HLB 以及Bond Elut PSA 迷你柱双柱净化后,也用HPLC 分析了农产品中氯吡脲的残留;Zhang Hua等又以乙酸乙酯提取,ENVI-18 柱净化后采用反相高效液相色谱法(RP-HPLC)分析了果蔬中氯吡脲的残留。 虽然SPE 技术对微量以及痕量目标化合物的提取、分离能力较为强,但其操作比 较繁琐、耗时,并且成本较高,不适合大批量样品的快速筛查。所以,胡江涛等 以分散固相萃取-高效液相色谱(DSPE-HPLC)快速分析了猕猴桃中氯吡脲残的残

水合肼特性及生产工艺比较

水合肼特性 一、成分、组成信息: 中文名称:水合肼英文名称:Hydrazine hydrate 分子式:N2H4?H2O 分子量:50.06 C A S 号:10217-52-4 含量:≥80% 二、危险性概述: 健康危害:吸入本品蒸气,刺激鼻和上呼吸道。此外,尚可出现头晕、恶心和中枢神经系统兴奋。液体或蒸气对眼有刺激作用,可致眼的永久性损害。对皮肤有刺激性;长时间皮肤反复接触,可经皮肤吸收引起中毒;某些接触者可发生皮炎。口服引起头晕、恶心。 燃烧(分解)产物:氧化氮。 环境标准 中国:饮用水源中有害物质的最高允许浓度0.01mg/L。 三、急救措施: 皮肤接触:立即脱去污染的衣着,立即用流动清水彻底冲洗。 眼睛接触:立即提起眼睑,用流动清水或生理盐水冲洗至少15分钟。就医。 吸入:迅速脱离现场至空气新鲜处。呼吸困难时给输氧。呼吸停止时,立即进行人工呼吸。就医。 食入:误服者给饮牛奶或蛋清。立即就医。 四、消防措施: 危险特性:遇明火、高热可燃。具有强还原性。与氧化剂能发生强烈反应。引起燃烧或爆炸。 燃烧(分解)产物:氧化氮。 烟雾灭火方法:雾状水、二氧化碳、干粉、泡沫。 五、泄漏应急处理: 应急处理:疏散泄漏污染区人员至安全区,禁止无关人员进入污染区,建议应急处理人员戴自给式呼吸器,穿化学防护服。不要直接接触泄漏物,在确保安全情况下堵漏。喷雾状水,减少蒸发。用沙土或其它不燃性吸附剂混合吸收,然后收集运至废物处理场所处置。也可以用大量水冲洗,经稀释的洗水放入废水系统。如大量泄漏,利用围堤收容,然后收集、转移、回收或无害处理后废弃。

六、接触控制/个体防护: 中国:饮用水源中有害物质的最高允许浓度0.01mg/L。 工程控制:严加密闭,提供局部排风和全面通风,提供安全淋浴和吸烟设备。 监测方法: 检测管法。 呼吸系统防护:可能接触其蒸气或烟雾时,应该佩带防毒面具。紧急事态抢救或逃生时,佩带自给式呼吸器。 眼睛防护:戴化学安全防护眼镜。 防护服:穿工作服(防腐材料制作)。 手防护:戴橡皮手套。 其它:工作后,淋浴更衣。单独存放被毒物污染的衣服,洗后再用。注意个人清洁卫生。七:理化特性: 外观与性状:无色透明的油状发烟液体,微有特殊的氨臭味,在湿空气中冒烟,具有强碱性和吸湿性。 溶解性:水合肼液体以二聚物形式存在,与水和乙醇混溶,不溶于乙醚和氯仿。 熔点:-40℃沸点:118.5℃ 相对密度(水=1):1.032(21/4℃,指21℃的水合肼与4℃的水的密度比)。 八、毒理学资料: 急性毒性:LD50129mg/kg(大鼠经口) 九、废弃处置: 废弃处置方法:用沙土或其它不燃性吸附剂混合吸收,然后收集运至废物处理场所处置。也可以用大量水冲洗,经稀释的洗水放入废水系统。如大量泄漏,利用围堤收容,然后收集、转移、回收或无害处理后废弃。

水解聚马来酸酐(HPMA)的合成方法

水解聚马来酸酐(HPMA)的合成方法 山东鑫泰水处理剂2015.8 摘要:水解聚马来酸酐(HPMA)对CaCO3和Ca3(P04)2的阻垢效果好,是非常适合工业循环冷却水的阻垢剂;本工艺合成水解聚马来酸酐(HPMA)反应时间短、操作简单、成本低、绿色无污染;所用催化剂及引发剂价兼易得、用量少、活性高;该工艺工序较为简单,安全系数较高,生产周期较短,能耗较低,产量较高,有利于批量生产;原材料利用率高、无污染环境的废物产生。 HPMA(水解聚马来酸酐)适用于碱性环境。在高温(<350℃)和高PH下有明显的溶限效应。适用于碱性水质或同其它药物复配使用。在300℃以下对碳酸盐仍有良好的阻垢分散效果,阻垢时间可达100h。由于HPMA(水解聚马来酸酐)阻垢性能和耐高温性能优异,因此在海水淡化的闪蒸装置中和低压锅炉及工业循环冷却水中得到广泛使用。另外HPMA(水解聚马来酸酐)有一定的缓蚀作用,与锌盐复配缓蚀效果更好。 关键词:水解聚马来酸酐;阻垢分散剂;水处理剂;HPMA 1、理论依据 以《应用化工》、《21世纪水处理剂发展战略[J ]环境工程》为依据。 2、反应原理 其合成原理是:在引发剂、催化剂作用下将马来酸酐分子内不饱和双键断裂,从而自身发生聚合反应生成水解聚马来酸酐。 3、生产工艺简介 由于马来酸酐碳碳双健的电子云密度低、空间位阻大,难以均聚,是合成反应的瓶颈。目前主要有三种方法可以生产聚马来酸酐: 1、辐射聚合法,它需要一个辐射源设备,条件高,多用于科学研究,在工业上应用基本没有。 2、有机溶剂聚合法,该法采用偶氮二异丁腈、过氧化苯甲酰等为引发剂,用苯、甲苯、二甲苯等为有机溶剂,早期合成聚马来酸酐的工业化生产,多采用此法,此法的缺点是由于有机溶剂的使用和回收,能耗大且易燃易爆,工艺复杂,引发剂价格昂贵且用量较大,造成生产成本高。 3、水溶液聚合法,该法以水代替有机溶剂,优点是消除了苯类有机溶剂潜在的危险,安全卫生,工艺简化,但缺点是引发剂用量大,需要合适的催化剂,目前已经有一些工业化的生产。通过实验研究,找到一类廉价易得的有效催化剂,通过实验室合成和工业试生产证明了水溶液聚合法工艺已经成熟,能够合成出符合国家标准的产品。 4、产品合成实验过程 本实验主要是温度及回流时间的控制,这两项因素控制得成功与否决定了产品的质量:

水合肼

f2b 水合肼的生产工艺研究 水合肼又称:水合联氨,化学式:N2H42H2O,分子量:50.06,水合肼无色透明的油状发烟液体,微有特殊的氨臭味,在湿空气中冒烟,具有强碱性和吸湿性,冰点:-51.7℃,熔点:-40℃,沸点:118.5℃,密度:相对密度(水=1)1.032,蒸汽压:72.8℃,表面张力(25℃):74.0mN/m,闪点(开杯法):72.8℃。水合肼液体以二聚物形式存在,与水和乙醇混溶,不溶于乙醚和氯仿,有腐蚀性,能侵蚀玻璃、橡胶、皮革、软木等。主要用途:水合肼用作还原剂、抗氧剂,用于制取医药、发泡剂等。健康危害:吸入水合肼蒸气,刺激鼻和上呼吸道。液体或蒸气对眼有刺激作用,可致眼的永久性损害。对皮肤有刺激性;长时间皮肤反复接触,可经皮肤吸收引起中毒;危险特性:水合肼遇明火、高热可燃。具有强还原性。与氧化剂能发生强烈反应。引起燃烧或爆炸。 目前,水合肼的生产方法主要有拉西法、尿素法、酮连氮法、双氧水法以及空气氧化法等。目前国内主要采用尿素法工艺。 1、拉西法(Raschig) 反应机理 总反应:2NH3+NaOCl→ N2H4+NaCl+ H2O 分两步进行:NH3+NaOC1→NH2Cl+Na0H NH2Cl+NH3+Na0H→N2H4+NaCL+H2O 副反应:N2H4 +2NH2Cl→2NH4Cl+N2 工艺流程: 拉西法是以氨为氮源,用次氯酸钠氧化氨气生成水合肼。此反应过程中有氯胺生成,故也称为氯胺法。用过量的浓度为8%的氢氧化钠与氯气反应生成次氯酸钠,用纯水吸收氨气成水溶液。氨与次氯酸钠溶液的混合比为20:1,控制反应温度为170℃,反应可在加压下进行并在数秒内完成。向反应系统内加入明胶,有助于提高产率。从反应塔内馏出的馏出物中除含有水合肼外,还含有氯化钠、氢氧化钠、未反应的氨以及少量的副产物。可在常压下闪蒸,经氨分离塔分出氨与塔底液。底液进入蒸发塔,分出氯化钠和氢氧化钠后,再经浓缩由塔顶排出水分,塔底获得水合肼。该法得到的肼是1%-2%的稀水溶液,最高浓度不超过4%。总收率约为67%,需要用相当多的热量来浓缩稀溶液的肼,每获1kg水合肼,需要蒸出40-110kg 的水。由于使用过量的氨,需要增设回收装置,副产大量的氯化钠和氯化铵等盐。该法由于环境污染严重,设备投资大,产品收率低,目前在国外已经基本上被淘汰。 2、尿素法 反应机理 NH2CONH2+ NaOCl+2 NaOH→N2H4+NaC1+Na2CO3+H2O 工艺流程图 此法以次氯酸钠为氧化剂,以尿素为氮源,合成水合肼。此法先将尿素溶解于水中形成尿素液,在硫酸镁存在下与次氯酸钠和烧碱混合溶液在管式氧化反应器中进行反应得到粗肼,即氧化液,肼含量大于2%。因为粗肼中含有大量的氯化钠、碳酸钠及氢氧化钠等杂质,所以将粗肼通过五层锅真空蒸馏除去这些杂质,并通过分馏釜制得含肼大于6%的淡肼水溶液,再通过蒸发器进一步浓缩制得40%的水合肼。此法工艺成熟,技术易掌握。由于副反应较多,因此必须维持很低的肼浓度(一般为2%-3%),因此副产大量的盐需要处理,同时蒸发提浓水合肼需要消耗大量的热能,因此该法能耗和物耗高、环保压力比较大。

水合肼还原法制备纳米银粒子的研究

水合肼还原法制备纳米银粒子的研究 应用化学杜运兴2080301 纳米银材料具有很稳定的物理化学性能,在电学、光学和催化等方面具有十分优异的性能,现已广泛应用于陶瓷和环保材料等领域[1].纳米银材料具有很稳定的物理化学性能,在电学、光学和催化等方面具有十分优异的性能,现已广 泛应用于陶瓷和环保材料等领域[2]. 联氨作为还原剂的最大优点是在碱性条件下还原能力非常强,其氧化产物是干净的N2,不会给反应产物引进金属杂质[4]。 本文对纳米银的性质进行简要说明,对目前采用水合肼在表面活性剂的保护下还原AgNO 3 ,制得粒径均一的纳米银粒子的实验原理及方法深入讨论,并对各影响因素分别论述,最后对纳米银粒子的应用前景进行展望。 1.纳米银粒子的性质 纳米银粒子具有量子效应、小尺寸效应和极大的比表面积,这使得其抗菌性能远大于传统的银离子杀菌剂。 纳米银由于具有很高的表面活性及催化性能而被广泛用作高效催化剂、非线性光学材料及超低温制冷机的稀释剂 纳米银溶液是纳米银的悬浊液,随浓度不同颜色也变化,随着浓度的增加颜色也逐步加深,从黄色至深红色。而液体中有颗粒,质地粗糙。2.纳米银粒子的制备 反应方程式 因为水合肼是弱电解质,在溶液中不能完全电离,在进行氧化还原反应时,只有较多过量才能使银离子的反应完全[3]。根据水合肼还原硝酸银的反应式: 2Ag++N 2H 4 +2H 2 O=2Ag+2NH 3 OH+ 等物质的量的反应物摩尔数之比为水合肼:硝酸银=1:4,按照过量的原则设计水合肼和硝酸银的摩尔比。 由于Ag+直接与水合肼反应过于激烈,所以有些实验中采用氨水作为络合剂,使Ag+与氨形成配合物,降低了Ag+的浓度,从而相应降低Ag+的氧化能力,使反

高含盐废水-水合肼废水处理工艺的研究

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 高含盐废水-水合肼废水处理工艺的研究独创?I'生声明本人声明所呈交的学位论文是本人在导师指导卜.进行的研究工作和取得的研究成果,除了文中特别加以标注利致谢之处外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得丞洼三E些太堂或其他教育机构的学位或证书而使用过的材料。 与我一同一J:作的同忠对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。 一’手位论文作者签名.\习列◇整签字目期:捌笋弓月弓曰学位论文版权使用授权书本学位论文作者完全了解丞洼王些太堂有关保留、使用学位论文的规定。 特授权丞皇塑型I丕堂可以将学位论文的全部或部分1人J容编入有关数据库进行检索,并采用影印、缩印或扫描等复制手段保存、汇编以供查阅和借阅。 同意学校向国家有关部I"J或机构送交论文的复印什和磁盘。 (保密的学位论文在解密后适用本授权说明)彳,f训{==文f储虢\刁水筮翮虢易妞硼/、签字日期:剜奔乡月弓日签字日期:别笋3月弓日 1/ 110

学位论文的主要创新点一、本试验采用了自行设计的高温多效蒸发系统对废水进行蒸发浓缩处理,效率更高。 在高温蒸汽的作用下,废水中的低沸点物质(水、丙酮等)被蒸出冷凝后可回用于水合肼生产系统,用于补给生产原料,可以降低水合肼的生产成本。 二、为更好地去除废水中的有机物,本试验采用了高温多效蒸发一混凝一氧化一蒸发结晶一洗涤精制的工艺,有机物去除率高,无二次污染。 采用混凝和氧化相结合的工艺,强化了有机物的去除效果。 三、由高温多效蒸发所得的粗氯化钠和氧化后蒸发结晶所得的氯化钠一起,用饱和氯化钠溶液洗涤精制,可以有效去除氯化钠中的有机物杂质,得到高纯度的工业氯化钠产品,使废水中的氯化钠得以高效回收。

水合肼的生产方法介绍

水合肼的生产方法介绍 水合肼工业生产方法主要有拉西法、尿素法、酮连氮法和过氧化氢法4种,目前国内主要采用尿素法工艺。 1.尿素氧化法:将10%的次氯酸钠溶液和30%液碱混合,然后冷却,调整混合,然后冷却,调整混合液中氯和碱成1:1.8的重量比,放入反应锅内。再加入适量的高锰酸钾,搅拌下将尿素溶液加入反应锅,加热至约103-104℃料液沸腾为止。尿素加入量按有效氯计算,有效氯的重量比是76:75。将上述氧化生成物粗肼水加到蒸发器进行真空蒸了,肼气和水气经过盲风器导入接受釜,进行初次提浓。从接受釜,进行初次提浓。从接受釜得到的淡肼水送至筛板塔进行真空提浓,使水合肼含量达到规定值。当含量≥40%时尿素770次氯酸钠890030%液碱5200 2.次氯酸钠氨化法首先由氯气和烧碱配制成次氯酸钠,然后在 3.922×107Pa压力和130-150℃温度下进行合成,得水合肼反应液,经气提脱除多余的氨,再进行蒸发脱盐和精馏得成品水合肼。 2甲酮连氮法:甲酮连氮法是国外七十年代发展起来的新技术。该法是氨在过量丙酮存在下,用氯或次氯酸钠氧化,生成甲酮连氮,再加压水解得到肼。该法优点是收率高,可达95%左右,能耗低。缺点是丙酮的加入,使系统中有有机副产物生成,需要清除,且丙酮蒸汽需处理。

3.过氧化氢法:此法是法国于结纳-库尔曼化学公司开发成功的。于1979年建成年产5000吨(100%)水含肼装置。该法是氨和浓H2O2在甲乙酮、乙酰胺和磷酸氢二钠存在下互相作用,生成甲甲乙酮连氮和水,再加压水解得水合肼。肼的产率以H2O2计为75%左右,该法没有副产物氯化钠,对简化流程和环保有利,并且产品溶易分离,不必进行精馏。但甲乙酮的化学损耗高于甲酮连氮法的丙酮的损耗。

相容剂马来酸酐

相容剂又称增容剂,是指借助于分子间的键合力,促使不相容的两种聚合物结合在一体,进而得到稳定的共混物的助剂,这里是指高分子增容剂。 目前比较好的相容剂通常以马来酸酐接枝,马来酸酐单体和其它单体比较极性比较强, 相容效果比较好。 马来酸酐接枝相容剂 马来酸酐接枝相容剂通过引入强极性反应性基团,使材料具有高的极性和反应性,是一种高分子界面偶联剂、相容剂、分散促进剂。 中文名称顺丁烯二酸酐 英文名称Maleic anhydride 顺酐; 失水苹果酸酐; 马来酐; MA; 马来酸酐; 乙基钾黄药; 戊基中文别名 钠黄药; 戊基黄原酸钠; 顺丁烯二酸酐(顺酐); 顺丁烯二酸酐 2,5-Furandione; cis-Butenedioic anhydride; Sodium 英文别名 n-amylxanthate; MaleicAnhydride; MA CAS号108-31-6 EINECS号203-571-6 分子式C4H2O3 分子量98.06 InChI InChI=1/C4H2O3/c5-3-1-2-4(6)7-3/h1-2H 熔点52-55℃ 密度 1.48 沸点200℃ 闪点102℃

水融性 79 g/100 mL (25℃) 物化性质 性状 斜方晶系无色针状或片状结晶体。 熔点 52.8℃ 沸点 202℃ 相对密度 1.480 闪点 110℃ 溶解性 溶于水生成顺丁烯二酸。溶于乙醇并生成酯。 用途 用作生产1,4-丁二醇、γ-丁内酯、四氢呋喃、琥珀酸、不饱和聚 酯树脂、醇酸树脂等的原料,也用于医药和农药 安全术语 S22:; S26:; S36/37/39:; S45:; 风险术语 R22:; R34:; R42/43:; 危险品标志 C :Corrosive; 上游 苯、二甲苯、石油液化气 下游 十二烯基丁二酸、反丁烯二酸、酒石酸、丁二酸酐、N,N'-(亚甲基 二苯基)双马来酰亚胺、酒石酸钾钠、酒石酸氢钾、马来酰肼、γ- 丁内酯、马拉硫磷、水溶性环氧树脂、甲基丙烯酸环氧酯树脂MFE-3、 醇酸树脂、不饱和聚酯树脂、不饱和聚酯树脂(189型) 分子结构 产品用途 1.主要用于生产不饱和聚酯树脂、醇酸树脂、农药马拉硫磷、高效 低毒农药4049、长效碘胺的原料。也是涂料、马来松香、聚马来酐、 顺酐-苯乙烯共聚物。也是生产油墨助剂、造纸助剂、增塑剂和酒 石酸、富马酸、四氢呋喃等的有机化工原料;

水合肼的性质及生产工艺

浅谈对水合肼及其工艺技术的认识偶氨二甲酰胺(ADC)是发泡剂的一种,盐湖海虹化工股份有限公司以水合肼和尿素为原料,经缩合、洗涤、氧化等一系列生产工序后制备ADC。大家对水合肼的了解都较为陌生。现通过学习对水合肼有了初步认知: 1 水合肼的物化性质 水合肼(Hydrazine hydrate),又名水合联氨,是肼的一水化物 (N2H4·H2O)。水合肼是无色透明具有发烟的强碱性液体,沸点118.5℃;着火点73 ℃;相对密度1.032;能与水、醇任意混合;不溶于乙醚和氯仿。有渗透性、腐蚀性,能浸蚀玻璃、橡胶、皮革和软木等。与氧化剂接触会引起自燃、自爆、有毒、有臭味。 水合肼脱去结合水则形成肼(Hydrazine)N2H4。肼为油状无色液体,有刺激性的臭味,相对密度1.013,沸点113.5℃,有吸湿性,在空气中发烟。溶于水、醇、氨、胺;与水能形成共沸物,在碱性溶液中呈现强的还原性。与卤素、液氨、过氧化氢及其他强氧化剂接触时均可自燃。长期暴露在空气中或短时期受高温作用,能以爆炸形式分解,贮存时应在氮气中密闭保存。比水合肼危险性大得多。水合肼的化学性质来自肼的结构,故肼的化学性质与水合肼的化学性质实质上无差异,其主要化学性质如下: 1.1 热分解 肼受热分解,产生N2、H2和NH3。 N2H4→N2+2H2 3N2H4→4NH3+N2 N2H4+H2→2NH3 金属,如铜、钴、钼及其氧化物,可催化肼的分解过程。铁锈也能催化分解,在这些催化剂存在下,肼的分解温度明显下降,因此高浓度的肼应贮存于洁净的环境中。 1.2 酸碱性反应 肼与水反应呈弱碱性:

N2H4+H2O→N2H5+ +OH- N2H4+2H2O→N2H62++2OH- 形成正一价肼离子N2H5+和正二价肼离子N2H62+;无水肼与碱金属或碱土金属反应形成肼的金属化物: 2Na+2N2H4→2NaN2H3+H2 这些肼的离子化物受热或与空气接触,均可引起爆炸。 1.3 还原性反应 作为还原剂,肼在碱性溶液中还原能力较亚硫酸强,而弱于亚氯酸;在酸性溶液中的还原能力在Sn3+和Ti2+之间。 2 水合肼的生产方法 2.1 水合肼的工业合成 水合肼的合成方法主要有拉希法、尿素法、酮连氮法和过氧化氢法。目前国外主要采用酮连氮法和过氧化氢法,我国主要采用尿素法。 2.1.1 拉希法(Raschig法) 由Raschig发明的制肼法于1906年问世。此法以氨为氮源,用次氯酸钠氧化氨气成水合肼。其反应原理为: NH3+NaClO→NH2Cl+NaOH NH2Cl+NH3+NaOH→N2H4·H2O+NaCl 总反应为: 2NH3+NaClO→N2H4·H2O+NaCl 反应过程有氯胺生成,故也称为氯胺法。由于肼比氨更易被氧化,故肼收率仅为65%,反应液中肼的质量分数仅为3%~4%,肼的浓缩和过量氨的回收,能耗高,设备投资和操作费用大。此法已被淘汰。 2.1.2 尿素法 此法以次氯酸钠为氧化剂,以尿素为氮源,合成水合肼。 NH2CONH2+NaClO+2NaOH→N2H4·H2O+NaCl+Na2CO3 反应在催化剂(如MgSO4)环境中进行。与拉希法相比,本法不存在原料过量

马来酰肼-植物生长调节剂

马来酰肼/青鲜素--植物组织培养 马来酰肼/青鲜素-植物生长调节剂 简称MH 别名抑芽丹, 抑芽素, 芽敌, 马来酰肼, MH30, Faiv2, De-Cut 化学名1,2-二氢哒嗪-3,6-二酮 英文名Maleic hydrazide, 1,2-dihydropyridazine-3,6-dione 分子式C4H4N2O2 分子量112.0868 CAS号123-33-1 名称:马来酰肼(MH)别名:青鲜素、抑芽丹 分子式:C4H4O2N2 CAS No.:123-33-1 纯度规格:BR 性状:纯品是无色晶体,难溶于水,溶于有机溶剂,易溶于二乙醇胺或三乙醇胺。 用途:选择性除草剂和暂时性植物生长抑制剂。药剂可通过叶面角质层进入植株,降低光合作用、渗透压和蒸发作用,能强烈的抑制芽的生长。用于防止马铃薯块茎、洋葱、大蒜、萝卜等贮藏期间的抽芽,并有抑制作物生长延长开花的作用。也可用作除草剂或用于烟草的化学摘心。一般制成二乙醇胺盐,配成易溶与水的溶液使用。 马来酰肼/青鲜素 青鲜素主要经由植株的叶片、嫩枝、芽、根吸收,然后经木质部、韧皮部传导到植株生长活跃的部位累积起来,进入到顶芽里,可抑制顶端优势,抑制顶部旺长,使光合产物向下输送;进入到腋芽、侧芽或块茎块根的芽里,可控制这些芽的萌发或延长这些芽的萌发期。其作用机理是抑制生长活跃部位中分生组织的细胞分裂。 马来酰肼/青鲜素 1.它可以控制土豆、洋葱、大蒜发芽,在收获前2周以2500毫克/升左右药液喷施叶面1次,可有效地控制发芽,延长储藏期,每亩用量大概50KG。 2.甜菜、甘薯在收前2-3周以2000毫克升药液喷洒1次,可有效地防止发芽或抽薹。烟草在摘心后,以2500毫克/升药液喷洒上部5-6叶,每株10-20毫升,能控制腋芽生长。 3.胡萝卜、萝卜等在抽薹前或采收前1-4周,以1000-2000毫克/升药液喷洒1次,可抑制抽薹或发芽。 4.柑橘在夏梢发生初以2000毫克/升全株喷洒2-3次,可控制夏梢,促进坐果。它还有杀雄作用,棉花第一次在现蕾后,第二次在接近开花初期,以800-1000毫克/升药液喷洒,可以杀死棉花雄蕊。 5.玉米在6-7叶,以500毫克/升每7天喷1次,共3次,可以杀死玉米的雄蕊。 6.西瓜在2叶1心,以50毫升/升药液全株喷洒1次,可诱导花芽形成。苹果苗期,以500毫克升药全株喷洒1次,可诱导花芽形成,矮化、早结果。 7.草莓在移栽后,以5000毫克/升喷洒2-3次,可使草莓明显增加。青鲜素1000毫克/升+乙烯利1500毫克/升,在麦、稻齐穗后(乳熟期)喷洒上部穗、叶片1次,每亩喷液量20-30

水合肼制作工艺种类

水合肼制作工艺种类 水合肼会侵蚀皮肤、粘膜,损害人体内的酶类,因此被认为是有毒的。水合肼液体是以二聚物存在,于水和乙醇混溶,不溶于乙醚和氯仿;有强的还原作用和腐蚀性,能侵蚀玻璃、橡胶、皮革、软木等,在高温加热时、分解成氮气、氨气于氢气。水合肼还原性极强,与卤素、硝酸、高猛酸甲等激烈反应,在空气中可吸收二氧化碳、发出烟雾。 1.酮连氮法 将次氯酸钠与氨反应,生成的酮连氮中间物在高压下水解生成水合肼。采用丙酮、氧化剂或者次氯酸钠与氨反应生成中间体酮连氮,在次氯酸钠、丙酮、氨的摩尔比例1:2:20的混合条件下,充分反应后其收率达到98%(以氯计)。稀和成液经加压脱氨塔脱去未反应的氨,氨被水吸收后再返回酮连氮反应器,脱氨塔釜底液由腙、酮连氮及盐水组成,将其送入酮连塔,从塔蒸出的是一丙酮连氮与水的低沸共混物(沸点95℃,质量分数为55.5%的丙酮连氮),塔釜为盐水,塔顶馏出的丙酮连氮在加水压解塔内与1MPa 的压力下水解,生成丙酮和水合肼。生成的丙酮由塔顶馏出,返回到并酮连氮反应器中,釜液位10%-12%的肼水溶液,经浓缩得到80%水合肼。 2.拉西法

用次氯酸钠氧化最终生成水合肼。反应所用的氢氧化钠浓度为8%,在通道入氯气生产次氯酸钠时,氨气化钠过剩,用纯水吸收氨气成水溶液。氨与次氯酸钠溶液的混合比为20:1,控制反应温度为170℃,反应可在加压下进行并在数秒内完成。 3.尿素法 以次氯酸钠为氧化剂,尿素为氮源,合成水合肼。将尿素溶解于水中形成尿素液,在硫酸镁存在下与次氯酸钠和烧碱混合液在管式氧化反应器中进行反应得到粗肼,既氧化液,肼含量大与2%。因为粗肼中含有大量的氯化钠、碳酸钠及氢氧化钠等杂质,所以将粗肼通过五层锅真空蒸馏除去这些杂质,并通过分馏釜制得含肼大于6%的淡肼水溶液,再通过蒸发器进一步浓缩得到40%的水合肼。这种技术容易掌握。副反应较多因此必须维持很低的肼浓度(一般为2%-3%),因此副产大量的盐需要处理,同时蒸发提浓水合肼需要消耗大量的热能,因此该法能耗和物耗高、环保压力比较大。

分子印迹固相萃取_化学发光法测定蔬菜中的马来酰肼

※分析检测 食品科学 2012, V ol.33, No.24 205分子印迹固相萃取-化学发光法测定蔬菜中的 马来酰肼 周 敏,米 娟,刘彩云 ,王树伦,马永钧 (西北师范大学化学化工学院,甘肃省生物电化学与环境分析重点实验室,甘肃省高分子材料重点实验室, 省部共建生态环境相关高分子材料教育部重点实验室,甘肃 兰州 730070) 摘 要:马来酰肼对高良姜素-高锰酸钾-多聚磷酸体系的化学发光具有增敏作用,据此结合分子印迹固相萃取技术建立测定蔬菜中马来酰肼含量的流动注射-化学发光分析方法。以马来酰肼为模板分子,甲基丙烯酸为功能单体,乙二醇二甲基丙烯酸酯为交联剂,偶氮二异丁腈为引发剂,用热聚合法合成了马来酰肼分子印迹聚合物,并以此分子印迹聚合物作为固相萃取填料制成固相萃取柱,对样品进行固相萃取后进行发光检测。在最优条件下,相对化学发光强度与马来酰肼的质量浓度在5.0×10-5~3.0×10-2mg/mL 范围内呈良好的线性关系,检出限2.6×10-5mg/mL(3σ),相对标准偏差2.7%(1.0×10-3mg/mL 马来酰肼,n =10)。将该法应用于马铃薯、洋葱及大蒜中马来酰肼含量的测定,加标回收率在95.2%~111.7%之间,相对标准偏差分别为1.8%、2.4%和2.1%。 关键词:马来酰肼;分子印迹;固相萃取;化学发光;流动注射;蔬菜 Determination of Maleic Hydrazide in Vegetables by Molecularly Imprinting Solid Phase Extraction-Chemiluminescence Method ZHOU Min ,MI Juan ,LIU Cai-yun ,WANG Shu-lun ,MA Yong-jun (Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, Key Laboratoryof Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 30070, China) Abstract :A ? ow injection-chemiluminescence (FI-CL) method based on molecular imprinting-solid phase extraction has been developed for the determination of maleic hydrazide (MH) in vegetables. This method was based on the enhancement effect of MH on chemiluminescence intensity of galangin-potassium permanganate-polyphosphoric acid system. A molecular imprinting polymer (MIP) was synthesized from the thermally initiated polymerization of MH as a template molecule, methacrylic acid as a functional monomer and ethylene glycol dimethacrylate (EGDMA) as a cross-linker and azodiisobutyronitrile (AIBN) as an initiator and used to prepare a solid phase extraction column. Samples were subjected to solid phase extraction before CL assay. Under optimized conditions, relative CL intensity showed good linear relationship with MH concentration in the range from 5.0 × 10-5 to 3.0 × 10-2 mg/mL. The limit of detection of this method was 2.6 × 10-5 mg/mL (3σ). The precision (RSD) for 10 replicate determinations of a known concentration of MH (1.0 × 10-3 mg/mL) was 2.7%. In the determination of potato, onion and garlic by this method, average spike recovers of MH were in the range from 95.2% to 111.7% with RSD 1.8% for potato, 2.4% for onion and 2.1% for garlic, respectively. Key words :maleic hydrazide (MH);molecular imprinting polymers (MIPs);solid phase extraction (SPE);flow injection (FI);chemiluminescence (CL);vegetables 中图分类号:O657.39;O658.2 文献标识码:A 文章编号:1002-6630(2012)24-0205-05 收稿日期:2011-09-19 基金项目:国家自然科学基金地区科学基金项目(21167015);甘肃省自然科学基金项目(1010RJZA017)作者简介:周敏(1978—),女,副教授,博士,研究方向为环境分析化学。E-mail :mzhou8367@https://www.sodocs.net/doc/af8942532.html, 固相萃取技术(solid phase extraction ,SPE)是样品前 处理的重要技术之一,主要通过固相填料对样品组分的 选择性吸附及解吸过程,实现对样品的分离、纯化和富 集,已在食品安全检测、环境分析等众多领域得到广泛应用[1]。固相萃取中选择合适的填料对于提高分离的选择性意义重大。分子印迹聚合物(molecular imprinting polymers ,MIPs)是一类具有良好分子识别能力的新型高分子仿生材料,具有预定性、识别性和实用性好等特

水合肼

水合肼。 英文名称:Hydrazine hydrate;Diamid hydrate 分子式:N2H4?H2O 冰点:-51.7℃;熔点:-40℃;沸点:118.5℃;相对密度(水=1):1.032(21/4℃,指21℃的水合肼与4℃的水的密度比);蒸汽压:72.8℃;比重:1.03(21℃);表面张力(25℃):74.0mN/m;折光指数:1.4284;生成热:-242.71kJ/mol;闪点(开杯法):72.8℃;溶解性:水合肼液体以二聚物形式存在,与水和乙醇混溶,不溶于乙醚和氯仿;腐蚀性:能侵蚀玻璃、橡胶、皮革、软木等;稳定性:稳定,在高温下(约100℃)分解成N2、NH3和H2; 危险标记:20(碱性腐蚀品) 化学反应:水合肼还原性极强,与卤素、HNO3、KMnO4等激烈反应,在空气中可吸收CO2,产生烟雾 外观与性状:无色透明的油状发烟液体,微有特殊的氨臭味,在湿空气中冒烟,具有强碱性和吸湿性。 用途:水合肼作为一种重要的精细化工原料,主要用于合成AC、D1PA、TSH等发泡剂;也用作锅炉和反应釜的脱氧和脱二氧化碳的清洗处理剂;在医药工业中用于生产抗结核、抗糖尿病的药物;在农药工业中用于生产除草剂、植物生长调和剂和杀菌、杀虫、杀鼠药;此外它还可用于生产火箭燃料、重氮燃料、橡胶助剂等。近年来,水合肼的应用领域还在不断拓展。 水合肼及其衍生物产品在许多工业应用中得到广泛的使用,如化学产品、医药产品、农化产品、水处理、照相及摄影产品等用作还原剂、抗氧剂,用于制取医药、发泡剂等。 水合肼可直接用作:1.热电厂和核电厂中用作循环水的防腐蚀添加剂。2.工业锅炉和高压蒸汽炉中用水的除氧剂。水合联氨是一种脱氧剂,它能使水中的溶解氧还原,被用于进一步去除锅炉给水经热力除氧后的残留微量溶解氧。因为给水中溶解氧会引起锅炉管壁的腐蚀。向锅炉给水加入水合肼,不但能脱氧,还能防止锅炉内铁垢和铜垢的生成。 水合肼是一种高效还原剂,可以合成以下产品:1.发泡剂:偶氮甲酰胺(偶氮碳酰胺)(如:用于生产内胎用的叠氮化钠产品)。2.农化产品和医药产品中生物活性中间体的合成,要先生成三唑。3.偶氮引发剂4.其它各种产品:在染料方面某些特定的有机颜料产品,照相方面用的试剂,氨基甲酸酯及丙烯酸酯类产品,以及氰溴酸产品。 水合肼还可以在以下领域得到应用:1.贵金属的清洗、精炼。2.酸洗液和表面处理液中回收金属。3.处理废液和废气。4.在电子市场中使用的各等级精制硫酸的提纯。5.塑料和金属(镍、钴、铁、铬等)的金属镶嵌。6.是火箭燃料的配方产品。7.在ACTIRED工艺过程中使用,该工艺主要应用于金矿选矿。 由于水合肼具有双官能基团和亲核基团,因此可以生产多种衍生物产品,如:1. LIOZAN:防腐蚀产品,能提供快速的除氧能力,并且可在较低温度下生效。2.肼盐:3种产品,主要用于合成中间体(尤其在医药工业中)。3.三唑产品:1,2,4-三唑/1,2,4-三唑钠盐/4-氨基-1,2,4-三唑/3-氨基-1,2,4-三唑。4.氨基胍碳酸氢盐。5.新型的聚合物引发剂,如公司产的液态偶氮化合物产品。 水合肼为强还原剂,是医药、农药、染料、发泡剂、显像剂、抗氧剂的原料;大量用作大型锅炉水的脱氧剂;还用于制造高纯度金属、合成纤维、稀有元素的分离。此外,还用来制造火箭料和炸药等。也用作分析试剂。用作发泡剂的肼衍生物大部分是偶氮二甲酰胺(AC),还有甲苯磺酸肼等。用作医药的衍生物,肼量较多的是异烟肼、芬基氨硫脲和苯磺酰氨硫脲,还有抗精神病药1-异烟酰基-2-异丙肼、抗癌药醛基肼衍生物、抗感染药5-硝基呋喃甲叉肼衍生物、抗生素唑啉头孢菌素、利尿降压药肼苯哒嗪、抗肿瘤药甲基苯肼等。用作农药的肼衍生物有植物生长调节剂马来酰肼衍生物、杀鼠剂二鼠剂硝基苯肼、杀虫钉菌剂

相关主题