搜档网
当前位置:搜档网 › 实验12分子结构和晶体结构模型

实验12分子结构和晶体结构模型

实验12分子结构和晶体结构模型
实验12分子结构和晶体结构模型

实验12 分子结构和晶体结构模型

[实验目的]

1、 熟悉一些典型无机分子(离子)的空间结构。

2、 了解金属晶体三种紧密堆积的排列方式。

[实验原理]

用价电子对互斥理论解释、判断。(斥力大小:孤—孤>孤—成>成—成) 3、 几种晶体结构模型

组成晶体的质点在空间的排列一般服从最紧密堆积原理,在化合物中,常把大的原子看作球的密堆积,小的看作处于大的原子密堆积的空隙中。

(面心立方密堆积)

(体心立方密堆积)

(六方密堆积)

晶体结构模型图

4、 二元离子化合物空间结构

AB 型化合物离子半径比、配位数、晶体结构 [注意事项]

1、 看清各模型中成键的方向,离子的位置。

2、 保护好模型,不要损坏。

实验13 晶体的生长和鉴定

[实验目的]

1、了解显微镜的基本构造,学会运用显微镜观察沉淀晶形。

2、学会通过观察物质晶形鉴定物质的方法。

3、培养审美观,增强对无机实验的兴趣。

[实验原理]

1、沉淀的制备方法:

1)PbI2:Pb(NO3)2+KI→

2)SrCrO4: SrCl+K2CrO4→

3)CaC2O4:CaCl2+H2C2O4→

4)BaSO4: BaCl2+Na2SO4→

5)HgNH2Cl:Hg2Cl2+NH3→HgNH2Cl↓+Hg↓+NH4Cl

CH3—C=NOH

6)丁二肟镍:NiSO4+ 鲜红色↓

CH3—C=NOH

7)K2Na[Co(NO2)6]:CoCl+NaNO2+HAc→Na3[Co(NO2)6] →亮黄色

8)MgNH4PO4:MgCl2+Na2HPO4+NH3·H2O→

9)(NH4)3[P(M012O40)]6H2O:Na3PO4+(NH4)2M0O4+H+→

[注意事项]

1、制晶体时,沉淀量不宜多。

2、适当加热沉淀物,便于观察。

3、放在载玻片上的沉淀宜铺平,选出完整的晶形。

实验14 氧化还原反应与电化学

[实验目的]

1、掌握电极电势与氧化还原反应的关系。

2、加深对介质酸、碱度和反应物浓度对电极电势及氧化还原反应的影响的认识。

3、了解原电池的构成和端电压的测定方法。

4、了解电解、电化学腐蚀的原理及防止方法。

[实验原理]

氧化还原反应的本质:氧化剂和还原剂间发生电子的转移。

物质得失电子能力衡量标准:氧化还原电对的电极电势E。对于还原电势(相对于标准氢电极)来说,若一个电对的电极电势代数值越大,则其氧化态的氧化能力越强,还原态的还原能力越弱;反之亦然。因此E值大的电对的氧化态物质可与E值小的电对的还原态物质发生自发的氧化还原反应。

1、介质酸碱度及离子浓度的影响

介质酸碱度对一些氧化还原反应的方向、速度和产物有很大影响,特别是有H+或OH-

离子参加的反应。当氧化还原反应的两个电对的标准电极电势相差不大时,离子浓度

的变化或溶液酸度的改变有可能引起反应方向的逆转。

如:H3AsO4+2I-+2H+= H3AsO3+I2+H2O (14-1)

(E0H3AsO4/H3AsO3=0.58v , E0I2/I-=0.5355v)

根据能斯特方程,在酸性介质中,对于E H3AsO4/H3AsO3电对

E=0.58-0.0592/2lg[H3AsO3]/{[H3AsO4][H+]2},可见,在强酸性溶液中,反应(14-1)正向进行,碱性质中,反应可逆向进行。

又如:在T=298K时,由Cu2+-Cu,Zn2+-Zn组成的原电池,其电动势可表示为:

Cu2++Zn=Cu+Zn2+ (14-2)。

E=E-+0.0592/2lg[Cu2+]/[Zn2+],若向Cu2+-Cu半电池溶液中加配位剂(如NH3)或沉淀剂(如S2-)会使Cu2+浓度显著减小,从而导致ECu2+/Cu下降,E下降;若使Czn2+减小,则E Zn2+/zn 下降,E上升。

2、原电池

化学能转化为电能的装置(理论上说,任何一个氧化还原反应都能组成一个原电池),负极给出e →(氧化反应)e 外电路正极(还原反应)。在外电路中接伏特计,可测得

原电池两极的端电压U。端电压U与电池电动势ε接近。ε=E正-E负,ε用补偿法测定(测定过程中无电流通过)。

3、电解池

电能转化为化学能的装置。电解时,阴极发生还原反应(接电源负极,得电子),阳极(接正级,失电子)发生氧化反应。两极上的产物取决于:电解时电极电势的大小,离子浓度大小,

电极材料和超电势等因素(一定电流密度下的电动势E 不可逆与平衡E 平间的差值称超电势)。

如电解食盐水(以C 为阳极):OH -在阳极放电生氧有很大的超电势,而Cl -比OH -更易失去电子而被氧化。

阳极(C 棒):2Cl-2e=Cl

2↑ E Cl 2

/Cl - =1.3583v

阴极(Fe 棒):2H 2O+2e=H 2↑+2OH -

E H2O/H2 =1.229v 4、 电化学腐蚀

金属在介质中发生类似于原电池的电化学过程(微电池),而引起的一种腐蚀作用。若在腐蚀性介质中加入少量某些物质,能防止或延缓腐蚀过程,该类物质称缓蚀剂(牺牲阳极保护阴极也是为了防腐)。

[注意事项]

1、 盐桥不能省略,可用滤纸条卷成小棒形,滴加KCl 等溶液自制。

2、 六次甲基四胺[(CH 2)6N 4,K 6=1.4×10-9]为有机缓蚀剂。

高中化学选修三_晶体结构与性质

晶体结构与性质 一、晶体的常识 1.晶体与非晶体 得到晶体的途径:熔融态物质凝固;凝华;溶质从溶液中析出 特性:①自范性;②各向异性(强度、导热性、光学性质等) ③固定的熔点;④能使X-射线产生衍射(区分晶体和非晶体最可靠的科学方法) 2.晶胞--描述晶体结构的基本单元.即晶体中无限重复的部分 一个晶胞平均占有的原子数=1 8×晶胞顶角上的原子数+1 4×晶胞棱上的原子+1 2×晶胞面上的粒子数+1×晶胞体心内的原子数 思考:下图依次是金属钠(Na)、金属锌(Zn)、碘(I 2)、金刚石(C)晶胞的示意图.它们分别平均含几个原子? eg :1.晶体具有各向异性。如蓝晶(Al 2O 3·SiO 2)在不同方向上的硬度不同;又如石墨与层垂直方向上的电导率和与层平行方向上的电导率之比为1:1000。晶体的各向异性主要表现在( ) ①硬度 ②导热性 ③导电性 ④光学性质 A.①③ B.②④ C.①②③ D.①②③④ 2.下列关于晶体与非晶体的说法正确的是( ) A.晶体一定比非晶体的熔点高 B.晶体一定是无色透明的固体 C.非晶体无自范性而且排列无序 D.固体SiO 2一定是晶体 3.下图是CO 2分子晶体的晶胞结构示意图.其中有多少个原子?

二、分子晶体与原子晶体 1.分子晶体--分子间以分子间作用力(范德华力、氢键)相结合的晶体 注意:a.构成分子晶体的粒子是分子 b.分子晶体中.分子内的原子间以共价键结合.相邻分子间以分子间作用力结合 ①物理性质 a.较低的熔、沸点 b.较小的硬度 c.一般都是绝缘体.熔融状态也不导电 d.“相似相溶原理”:非极性分子一般能溶于非极性溶剂.极性分子一般能溶于极性溶剂 ②典型的分子晶体 a.非金属氢化物:H 2O、H 2 S、NH 3 、CH 4 、HX等 b.酸:H 2SO 4 、HNO 3 、H 3 PO 4 等 c.部分非金属单质::X 2、O 2 、H 2 、S 8 、P 4 、C 60 d.部分非金属氧化物:CO 2、SO 2 、NO 2 、N 2 O 4 、P 4 O 6 、P 4 O 10 等 f.大多数有机物:乙醇.冰醋酸.蔗糖等 ③结构特征 a.只有范德华力--分子密堆积(每个分子周围有12个紧邻的分子) CO 2 晶体结构图 b.有分子间氢键--分子的非密堆积以冰的结构为例.可说明氢键具有方向性 ④笼状化合物--天然气水合物

晶体缺陷习题与答案

晶体缺陷习题与答案 1 解释以下基本概念 肖脱基空位、弗仑克尔空位、刃型位错、螺型位错、混合位错、柏氏矢量、位错密度、位错的滑移、位错的攀移、弗兰克—瑞德源、派—纳力、单位位错、不全位错、堆垛层错、汤普森四面体、位错反应、扩展位错、表面能、界面能、对称倾侧晶界、重合位置点阵、共格界面、失配度、非共格界面、内吸附。 2 指出图中各段位错的性质,并说明刃型位错部分的多余半原子面。 3 如图,某晶体的滑移面上有一柏氏矢量为b 的位错环,并受到一均匀切应力τ。(1)分析该位错环各段位错的结构类型。(2)求各段位错线所受的力的大小及方向。(3)在τ的作用下,该位错环将如何运动?(4)在τ的作用下,若使此位错环在晶体中稳定不动,其最小半径应为多大? 4 面心立方晶体中,在(111)面上的单位位错]101[2a b =,在(111)面上分解为两个肖克莱不全位错,请写出该位错反应,并证明所形成的扩展位错的宽度由下式给出πγ242Gb s d ≈ (G 切变 模量,γ层错能)。 5 已知单位位错]011[2a 能与肖克莱不全位错]112[6 a 相结合形成弗兰克不全位错,试说明:(1)新生成的弗兰克不全位错的柏氏矢量。(2)判定此位错反应能否进行?(3)这个位错为什么称固定位错? 6 判定下列位错反应能否进行?若能进行,试在晶胞上作出矢量图。 (1)]001[]111[]111[2 2a a a →+ (2)]211[]112[]110[662a a a +→ (3)]111[]111[]112[263a a a →+ 7 试分析在(111)面上运动的柏氏矢量为]101[2a b =的螺位错受阻时,能否通过交滑移转移

高中化学选修三选修物质结构与性质第三章第章常见晶体结构晶胞分析归纳整理总结

个六元环共有。每个六元环实际拥有的碳原子数为 ______个。C-C键夹角:_______。C原子的杂化方式是______ SiO2晶体中,每个Si原子与个O原子以共价键相结合,每个O原子与个Si 原子以共价键相结合,晶体中Si原子与O原子个数比为。晶体中Si原子与Si—O键数目之比为。最小环由个原子构成,即有个O,个Si,含有个Si-O键,每个Si原子被个十二元环,每个O被个十二元环共有,每个Si-O键被__个十二元环共有;所以每个十二元环实际拥有的Si原子数为_____个,O原子数为____个,Si-O键为____个。硅原子的杂化方式是______,氧原子的杂化方式是_________. 知该晶胞中实际拥有的Na+数为____个 Cl-数为______个,则次晶胞中含有_______个NaCl结构单元。 3. CaF2型晶胞中,含:___个Ca2+和____个F- Ca2+的配位数: F-的配位数: Ca2+周围有______个距离最近且相等的Ca2+ F- 周围有_______个距离最近且相等的F——。 4.如图为干冰晶胞(面心立方堆积),CO2分子在晶胞中的位置为;每个晶胞含二氧化碳分子的个数为;与每个二氧化碳分子等距离且最近的二氧化

碳分子有个。 5.如图为石墨晶体结构示意图, 每层内C原子以键与周围的个C原子结合,层间作用力为;层内最小环有 _____个C原子组成;每个C原子被个最小环所共用;每个最小环含有个C原子,个C—C键;所以C原子数和C-C键数之比是_________。C原子的杂化方式是__________. 6.冰晶体结构示意如图,冰晶体中位于中心的一个水分子 周围有______个位于四面体顶角方向的水分子,每个水分子通过 ______条氢键与四面体顶点上的水分子相连。每个氢键被_____个 水分子共有,所以平均每个水分子有______条氢键。 7.金属的简单立方堆积是_________层通过_________对 _________堆积方式形成的,晶胞如图所示:每个金属阳离子的 配位数是_____,代表物质是________________________。 8.金属的体心立方堆积是__________层通过 ________对________堆积方式形成的,晶胞如图: 每个阳离子的配位数是__________.代表物质是 _____________________。

二晶体结构缺陷

1、说明下列符号的含义: V Na,V Na’,V Cl?,.(V Na’V Cl?),CaK?,CaCa,Cai?? 2、写出下列缺陷反应式: (1)NaCl溶入CaCl2中形成空位型固溶体; (2)CaCl2溶人NaC1中形成空位型固溶体; (3)NaCl形成肖脱基缺陷; (4)AgI形成弗仑克尔缺陷(Ag+进入间隙)。 3、MgO的密度是3.58克/厘米3,其晶格参数是0.42nm,计算单位晶胞MgO的肖脱基缺陷数。 4、(a)MgO晶体中,肖脱基缺陷的生成能为6eV,计算在25℃和1600℃时热缺陷的浓度。 (b)如果MgO晶体中,含有百万分之一摩尔的A12O3杂质,则在1600℃时,MgO晶体中是热缺陷占优势还是杂质缺陷占优势,说明原因。 5、MgO晶体的肖特基缺陷生成能为84kJ/mol,计算该晶体在1000K和1500K的缺陷浓度。 6、非化学计量化合物FexO中,Fe3+/Fe2+=0.1,求Fe x O中的空位浓度及x值。 7、非化学计量缺陷的浓度与周围气氛的性质、压力大小相关,如果增大周围氧气的分压,非化学计量化合物Fe1-X O及Zn1+X O的密度将发生怎么样的变化?增大还是减小?为什么? 8、对于刃位错和螺位错,区别其位错线方向、柏氏矢量和位错运动方向的特点。 9、图2.1是晶体二维图形,内含有一个正刃位错和一个负刃位错。 (a)围绕两个位错柏格斯回路,最后得柏格斯矢量若干? (b)围绕每个位错分别作柏氏回路,其结果又怎样? 10、有两个相同符号的刃位错,在同一滑移面上相遇,它们将是排斥还是吸引? 11、晶界对位错的运动将发生怎么样的影响?能预计吗? 12、晶界有小角度晶界与大角度晶界之分,大角度晶界能用位错的阵列来描述吗? 13、试述影响置换型固溶体的固溶度的条件。

分子模型晶体模型的制作

分子模型、晶体模型的制作 赤壁一中化学组 刘光利 二○○四年五月 制作目的: 1.充分利用分子模型等直观的教学用具,有利于培养学生的联想能力,通过各种模型可以提高教学速度和教学质量,解决书上难以表明的立体结构,从而达到突破难点的目的。 2.理解分子结构和晶体结构 培养用物质结构特点来认识物质的特性 制作材料:厚硬纸板、胶水或透明胶、铁丝、直尺、三角板、剪刀 制作方法: 1、正四面体的制作 在厚硬纸板上划好四个等边三角形如图1a 所示,然后沿实线剪下,再沿虚线划痕迹以便折叠,折叠后用粘合剂粘牢即成图1b 所示。 2、三角双锥分子模型的制作 在厚硬纸板上划好六个等腰三角形如图2a 所示,然后沿实线剪下,再沿虚线划痕迹以便折叠,折叠后用粘合剂粘牢即成图2b 所示。 图2a 图 2b 图1a 图 1b

3、正八面体分子模型的制作 在厚硬纸板上划好八个等边三角形如图3a所示,然后沿实线剪下,再沿虚线划痕迹以便折叠,折叠后用粘合剂粘牢即成图3b。 图3a 图3b 4、正二十面体分子模型的制作(B12) 在厚硬纸板上划好二十个等边三角形如图5a所示,然后沿实线剪下,再沿虚线划痕迹以便折叠,折叠后用粘合剂粘牢即成图5b所示。 图5a 图5b

使用说明 1.正四面体模型直接应用于白磷分子、甲烷分子、四氯化碳分子等正四面体分子结构的教学,也可应用于数学中立体几何的有关异面直线等方面的教学。利用正四面体还可以组合成其他形状的立体图形。例如,由一个正四面体可以切割成较小的正八面体,其方法是将正四面体的四个顶点从它的三条棱的中点切下,便可得到一个较小的正八面体。如果以一个正四面体为中心,另用四个与之全等的正四面体分别与它的四个面相連接,就可以得到一个十二个面全等的凹十二面体。 2.三角双锥模型直接应用于五氯化磷(PCl5)等具有三角双锥结构的分子结构的教学。也可用于数学教学。 3.正八面体应用于分子或离子组成为RX6、RX6n-型结构的教学。两个或两个以上的正八机体之间还可以进行不同方式的重叠就可以得到多种空间图形,对讲解超八面体等空间结构教学有很大的帮助。 4.正二十面体是专门用于B12分子结构的教学。在正二十面体中,每个顶点上有一个硼原子,每一条棱表示一根B—B键。有了这个模型,我们就可以清楚地算出在B12分子中所含有的B—B键数以及每一个硼原子跟周围的五个硼原子以五个B—B单键相结合。 在教学过程中,常常遇到有关C60的结构的教学难点,如果我们从硼12的结构开始讲起,就可以达到教学目的。因为B12是由12个硼原子构成的正二十面体,将正二十面体的每条棱三等分,然后将十二个硼原子等同地割下,因每个硼原子原有五条棱,所以割下后留下了一个正五边形的面,一个顶点就变成了五个顶点,原来的正三角形的面成变成了一个以原三角形边长的三分之一为边长的正六边形,这样新的图形就有5×12=60个顶点,有12个正五边形和20个正六边形。这种结构就是我们通常所说的C60的结构。 以上的使用说明只是一些典型的应用,其实它们应该还有很多的应用,这就得看看每个教学工作者在实际教学中如何发挥它们的用途。 赤壁一中化学组刘光利 二00四年五月二十八日

第二章 晶体结构与晶体缺陷

2-1 (a )MgO 具有NaCl 结构。根据O 2-半径为0.140nm 和Mg 2+半径为0.072nm ,计算球状离子所占有的空间分数(堆积系数)。 (b )计算MgO 的密度。 解:(a )MgO 具有NaCl 型结构,即属面心立方,每个晶胞中含有4个Mg 2+和4个O 2-,故Mg 所占有体积为: 2233MgO Mg O 334 4()34 4(0.0720.140) 3 0.0522nm V R R ππ+- ?+?+=== 因为Mg 2+和O 2-离子在面心立方的棱边上接触: 22Mg O 2()20.0720.1400.424nm a R R +-++==()=() 堆积系数=%=)(=5.68424.00522 .033 MgO a V (b ) 37233 )10424.0(1002.6) 0.163.24(4·0MgO -???+?= = a N M n D =3.51g/cm 3 2-2 Si 和Al 原子的相对质量非常接近(分别为28.09和26.98),但SiO 2和Al 2O 3的密度相差很大(分别为2.65g/cm 3和3.96g/cm 3)。试计算SiO 2和Al 2O 3的堆积密度,并用晶体结构及鲍林规则说明密度相差大的原因。 解: 首先计算SiO 2堆积系数。每cm 3中含SiO 2分子数为: 3223 22343223 2322223 2.65SiO /cm 2.6410/cm (28.0932.0)/(6.0310) Si /cm 2.6410/cm O /cm 2.64102 5.2810/cm +-?+?????= =个=个==个 每cm 3 中Si 4+ 和O 2- 所占体积为: 2-32273 Si432273 O 4 /cm 2.6410(0.02610)3 0.001954 /cm 5.2810(0.13810)3 0.5809V V ππ-+-????????==== Si 2O 3晶体中离子堆积系数=000195+0.5809=0.5829或58.29% Al 2O 3堆积系数计算如下:

高中化学选修三选修3物质结构与性质第三章第3章常见晶体结构晶胞分析归纳整理总结

1 1. 金刚石晶体结构(硅单质相同) 1mol 金刚石中含有 mol C —C 键, 最小环是 元环,(是、否) 共平面。 每个C-C 键被___个六元环共有,每个C 被_____ 个六元环共有。每个六元环实际拥有的碳原子数为 ______个。C-C 键夹角:_______。C 原子的杂化方式是______ SiO 2晶体中,每个Si 原子与 个O 原子以共价键相结合, 每个O 原子与 个Si 原子以共价键相结合,晶体中Si 原子与 O 原子个数比为 。 晶体中Si 原子与Si —O 键数目之比 为 。最小环由 个原子构成,即有 个O , 个Si ,含有 个Si-O 键,每个Si 原子被 个十二元环,每 个O 被 个十二元环共有,每个Si-O 键被__个十二元环共 有;所以每个十二元环实际拥有的Si 原子数为_____个,O 原子数为____个,Si-O 键为____个。硅原子的杂化方式是______,氧原子的杂化方式是_________. 2 . 在NaCl 晶体中,与每个Na +等距离且最近的Cl -有 个, 这些Cl -围成的几何构型是 ;与每个Na +等距离且最近的 Na +有 个。由均摊法可知该晶胞中实际拥有的Na +数为____个 Cl -数为______个,则次晶胞中含有_______个NaCl 结构单元。 3. CaF 2型晶胞中,含:___个Ca 2+和____个F - Ca 2+的配位数: F -的配位数: Ca 2+周围有______个距离最近且相等的Ca 2+ F - 周围有_______个距离最近且相等的F ——。

2 4.如图为干冰晶胞(面心立方堆积),CO 2分子在晶胞 中的位置为 ;每个晶胞含二氧化碳分子的 个数为 ;与每个二氧化碳分子等距离且最 近的二氧化碳分子有 个。 5.如图为石墨晶体结构示意图, 每层内C 原子以 键与周围的 个C 原子结合,层间作用力为 ; 层内最小环有 _____个C 原子组成;每个C 原子被 个最小环所共用;每个 最小环含有 个C 原子, 个C —C 键;所以C 原子数和C-C 键数之比是_________。C 原子的杂化方式 是__________. 6. 冰晶体结构示意如图 ,冰晶体中位于中心的一个水分子 周围有______个位于四面体顶角方向的水分子,每个水分子通过 ______条氢键与四面体顶点上的水分子相连。每个氢键被_____个 水分子共有,所以平均每个水分子有______条氢键。 7. 金属的简单立方堆积是_________层通过_________对 _________堆积方式形成的,晶胞如图所示:每个金属阳离子的 配位数是_____,代表物质是________________________。 8. 金属的体心立方堆积是__________层通过 ________对________堆积方式形成的,晶胞如图: 每个阳离子的配位数是__________.代表物质是 _____________________ 。

高中化学选修三——晶体结构与性质.doc

晶体结构与性质 一、晶体的常识1.晶体与非晶体 晶体与非晶体的本质差异 晶体非晶体 自范性 有(能自发呈现多面体外形)无(不能自发呈现多面体外形) 微观结构 原子在三维空间里呈周期性有序排列 原子排列相对无序 晶体呈现自范性的条件:晶体生长的速率适当 得到晶体的途径:熔融态物质凝固;凝华;溶质从溶液中析出特性:①自范性;②各向异性(强度、导热性、光学性质等)③固定的熔点;④能使X-射线产生衍射(区分晶体和非晶体最可靠的科学方法)2.晶胞--描述晶体结构的基本单元,即晶体中无限重复的部分 一个晶胞平均占有的原子数=8×晶胞顶角上的原子数+4×晶胞棱上的原子+2×晶胞面上的粒子数+1×晶胞体心内的原子数 思考:下图依次是金属钠(Na)、金属锌(Zn)、碘(I2)、金刚石(C)晶胞的示意图,它们分别平均含几个原子? 1 1 1

eg:1.晶体具有各向异性。如蓝晶(Al2O3·SiO2)在不同方向上的硬度不同;又如石墨与层垂直方向上的电导率和与层平行方向上的电导率之比为1:1000。晶体的各向异性主要表现在() ①硬度②导热性③导电性④光学性质 A.①③ B.②④ C.①②③ D.①②③④ 2.下列关于晶体与非晶体的说法正确的是() A.晶体一定比非晶体的熔点高 B.晶体一定是无色透明的固体 C.非晶体无自范性而且排列无序 D.固体SiO2一定是晶体 3.下图是CO2分子晶体的晶胞结构示意图,其中有多少个原子? 二、分子晶体与原子晶体 1.分子晶体--分子间以分子间作用力(范德华力、氢键)相结合的晶体注意:a.构成分子晶体的粒子是分子 b.分子晶体中,分子内的原子间以共价键结合,相邻分子间以分子间作用力结合 ①物理性质 a.较低的熔、沸点 b.较小的硬度 c.一般都是绝缘体,熔融状态也不导电 d.“相似相溶原理”:非极性分子一般能溶于非极性溶剂,极性分子一般能溶于极性溶剂 ②典型的分子晶体 a.非金属氢化物:H2O、H2S、NH3、CH4、HX等 b.酸:H2SO4 、HNO3、

专题08 分子结构与晶体结构

专题八分子结构与晶体结构 ★双基知识 1.几个基概念 化学键:相邻的两个或多个原子间强烈的相互作用 共价键:原子间通过共用电子对所形成的相互作用 离子键:阴、阳离子通过静电作用所形成的化学键 极性键:由不同元素的原子所形成的共价键 非极性键:由相同元素的原子所形成的共价键 金属键:金属阳离子与自由电子之间较强烈的作用叫金属键。 氢键: 范德华力(分子间作用力) 极性分子非极性分子 离子晶体分子晶体 原子晶体金属晶体 2.常见几种晶体的结构分析(点、线、面、体) (1)氯化钠晶体(2)氯化铯晶体(3)二氧化碳晶体(4)白磷分子的结构(5)C n的结构(6)金刚石晶体(7)二氧化硅晶体(8)石墨晶体 ★巧思巧解 (1)异类晶体:原子晶体(离子晶体)分别大于分子晶体

一般地,原子晶体>离子晶体>分子晶体 (2)同种类型晶体:构成晶体质点间的作用力大,则熔、沸点高,反之则小。 ①离子晶体:离子所带的电荷数越高,离子半径越小,离子键越强,则熔、沸点越高。 ②分子晶体:对于组成和结构相似的分子晶体,相对分子质量越大,分子间作用力越大,则熔、沸点越高。 在同分异构体中,一般地,支链越多,熔、沸点越低。 ③原子晶体:原子半径越小,键长越短、键能越大,则熔、沸点越高 ④金属晶体:金属阳离子半径越小,离子所带的电荷越多,则金属键越强,金属熔、沸点越高 ★例题精析 [例1]:下列性质中,可以证明某化合物内一定存在离子键的是:( ) A .可以溶于水 B.具有较高的熔点 C .水溶液能导电 D.熔融状态能导电 [例2]:下列化合物中阴离子半径和阳离子半径之比最大的是: A .LiI B. NaBr C. KCl D. CsF [例3]:食盐晶体如右下图所示。在晶体中●表示Na +,○表示Cl - ,已知食盐的密度为ρg/cm 3, NaCl 的摩尔质量为M g/mol ,阿佛加得罗常数为N ,则在食盐晶体是Na +离子和Cl - 离子的 间距大约是: A . B. 3 2N M C. D. [例4]:根据石墨晶体结构示意图及提供的数据计算(保留三位有效数值)。有关公式、数据见框图。⑴12 g 石墨中,正六边形的数目有多少? ⑵求石墨密度。 ⑶求12克石墨的体积。

VSEPR模型判别分子构型

1940年,西奇威克(Sidgwick)等在总结实验事实的基础上提出了一种简单的模型,用于预测简单分子或离子的立体结构。六十年代初,吉列斯比(RJ.Gillespie)和尼霍尔姆(Nyholm)等发展了这一模型。因该模型思想方法质朴浅显,在预见分子结构方面简单易行,而成为大学基础化学的基本教学内容,并于新一轮课程改革中引入高中化学教学。这就是价层电子对互斥模型(Valence Shell Electron Pair Repulsion),常以其英文的缩写形式VSEPR来表示。 1、来自生活中的一个游戏现象 吹气球是大家熟悉的生活游戏,如果将每个气球吹成一样大小,将其中的两个通过吹气口系在一起,你会发现这两个气球自然成一直线,再向其中加入一个气球并通过吹气口系在一起,你会发现这三个气球均匀地分开成正三角形分布。依次再向其中加入一个气球并通过吹气口系在一起,你会有什么预期?你会发现结果与你的预期如此地吻合:四个大小相同的气球成正四面体分布,五个大小相同的气球成三角双锥分布,六个大小相同的气球成正八面体分布。见图: 我们很容易从这一游戏现象受到启迪:当物体所占空间因素相同时,它们彼此趋向均匀分布。这一规律在自然界乃至人类社会生活中并不鲜见,我们不难找到类似的和接近的例子。 2、VSEPR模型要点 VSEPR模型认为,分子的几何构型总是采取电子对排斥作用最小的那种结构。因为这样可使体系的能量最低,中心原子价层的电子对总是按照最合适的空间方式进行分布。见下表。

电子对的空间分布 电子对数 空间分布几何构型 2 直线 3 在角形 4 四面体 5 三角双锥 6 八面体 VSEPR模型简朴通俗,应用简单易行,显现了它的独特魅力并引人入胜。 3、VSEPR模型判别分子构型的基本程序 中心原子的价层如果没有孤电子对,那么每一个电子对就代表一个共价键,此时电子对的空间分布就是分子的几何构型。例如,BeCl2分子中Be原子的两个价电子分别与两个Cl原子形成的两个共价键,没有孤电子对,故它是直线型结构。又如CH4分子中的C原子价层有四个电子对,这四个价电子对代表了四条C-H 健,C原子价层无孤电子对,故CH4属四面体结构。 如果中心原子的价层存在孤电子对时,则应先考虑不同电子对之间的斥力后,再确定分子的构型。不同电子对间斥力的大小的顺序是:孤电子对-孤电子对>孤电子对-键电子对>键电子对-键电子对。 价层电子对互斥模型是根据中心原子周围价层电子对的数目,确定价层电子对在中心原子周围的理想排布,然后再根据价层电子对间斥力的大小,以体系的排斥能最小为原则来确定分子的几何构型。

晶体的基本概念

第一章材料的结构 2006-09-16 11:50 第一章材料的结构 重点与难点: 在晶体结构中,最常见的面心立方结构(fcc)、体心立方结构(bcc)、密排六方结构(hcp)、金刚石型结构及氯化钠型结构。内容提要: 在所有固溶体中,原子是由键结合在一起。这些键提供了固体的强度和有关电和热的性质。例如,强键导致高熔点、高弹性系数、较短的原子间距及较低的热膨胀系数。由于原子间的结合键不同,我们经常将材料分为金属、聚合物和陶瓷3类。 在结晶固体中,材料的许多性能都与其内部原子排列有关。因此,必须了解晶体的特征及其描述方法。根据参考轴间夹角和阵点的周期性,可将晶体分为7种晶系,14种晶胞。本章重点介绍了在晶体结构中,最常见的面心立方结构(fcc)、体心立方结构(bcc)、密排六方结构(hcp)、金刚石型结构及氯化钠型结构。务必熟悉晶向、晶面的概念及其表示方法(指数),因为这些指数被用来建立晶体结构和材料性质及行为间的关系。在工程实际中得到广泛应用的是合金。合金是由金属和其它一种或多种元素通过化学键合而成的材料。它与纯金属不同,在一定的外界条件下,具有一定成分的合金其内部不同区域称为相。合金的组织就是由不同的相组成。在其它工程材料

中也有类似情形。尽管各种材料的组织有多种多样,但构成这些组织的相却仅有数种。本章的重点就是介绍这些相的结构类型、形成规律及性能特点,以便认识组织,进而控制和改进材料的性能。学习时应抓住典型例子,以便掌握重要相的结构中原子排列特点、异类原子间结合的基本规律。 按照结构特点,可以把固体中的相大致分为五类。 固溶体及金属化合物这两类相是金属材料中的主要组成相。它们是由金属元素与金属元素、金属元素与非金属元素间相互作用而形成。固溶体的特点是保持了溶剂组元的点阵类型不变。根据溶质原子的分布,固溶体可分为置换固溶体及间隙固溶体。一般来说,固溶体都有一定的成分范围。化合物则既不是溶剂的点阵,也不是溶质的点阵,而是构成了一个新的点阵。虽然化合物通常可以用一个化学式(如AxBy)表示,但有许多化合物,特别是金属与金属间形成的化合物往往或多或少由一定的成分范围。 材料的成分不同其性能也不同。对同一成分的材料也可通过改变内部结构和组织状态的方法,改变其性能,这促进了人们对材料内部结构的研究。组成材料的原子的结构决定了原子的结合方式,按结合方式可将固体材料分为金属、陶瓷和聚合物。根据其原子排列情况,又可将材料分为晶体与非品体两大类。本章首先介绍材料的晶体结构。基本要求: 1.认识材料的3大类别:金属、聚合物和陶瓷及其分类的基础。 2.建立原子结构的特征,了解影响原子大小的各种因素。

第一章 晶体结构与晶体中的缺陷

第一章晶体结构与晶体中的缺陷 一、名词解释 1.正尖晶石与反尖晶石;2.弗伦克尔缺陷与肖特基缺陷; 3.刃位错与螺位错;4.固溶体;5.非化学计量化合物: 二、填空与选择 2.在硅酸盐结构分类中,下列矿物Ca[Al2Si2O8];CaMg[Si2O6];β-Ca2SiO4和Mg3[Si4O10](OH)2,分别属于;;;和四类。 3.在负离子作立方密堆的晶体中,为获得稳定的晶体结构,正离子将所有八面体空隙位置填满的晶体有,所有四面体空隙均填满的晶体有,填满一半八面体空隙的晶体有,填满一半四面体空隙的晶体有。 4.在尖晶石(MgAl2O4)型晶体中,O2-作面心立方最紧密堆积,Mg2+填入了;金红石晶体中,所有O2-作稍有变形的六方密堆,Ti4+填充了。(A全部四面体空隙;B 全部八面体空隙;C四面体空隙的半数;D八面体空隙的半数;E四面体空隙的八分之一;F八面体空隙的八分之一) 5.构成层状硅酸盐的[Si2O5]片中的Si4+,通常被一定数量的Al3+所取代,为满足鲍林第二规则(静电价规则),在层状结构中结合有(OH)-离子和各种二价正离子或三价正离子。这种以Al3+取代Si4+的现象,称为。( A同质多晶(同质多象);B类质同晶;C有序-无序转化;D同晶置换(同晶取代)) 6.高岭石与蒙脱石属于层状硅酸盐结构,前者的结构特征是,后者的结构特征是。(A二层型三八面体结构;B三层型三八面体结构;C二层型二八面体结构;D 三层型二八面体结构) 7.在石英的相变中,属于重建型相变的是,属于位移式相变的是。(A α-石英→α-鳞石英;B α-石英→β-石英;C α-鳞石英→α-方石英;D α方石英→β-方石英) 8.晶体结构中的热缺陷有和二类。 9.CaO掺杂到ZrO2中,其中置换了。由于电中性的要求,在上述置换同时产生一个空位。以上置换过程可用方程式表示。10.由于的结果,必然会在晶体结构中产生"组分缺陷",组分缺陷的浓度主要取决于:和。 11.晶体线缺陷中,位错线与和垂直的是位错;位错线与二者平行的是位错。

分子结构与晶体结构完美版

第六章分子结构与晶体结构 教学内容: 1.掌握杂化轨道理论、 2.掌握两种类型的化学键(离子键、共价键)。 3.了解现代价键理论和分子轨道理论的初步知识,讨论分子间力和氢键对物质性质的影响。 教学时数:6学时 分子结构包括: 1.分子的化学组成。 2.分子的构型:即分子中原子的空间排布,键长,键角和几何形状等。 3.分子中原子间的化学键。 化学上把分子或晶体中相邻原子(或离子)之间强烈的相互吸引作用称为化学键。化学键可 分为:离子键、共价键、金属键。 第一节共价键理论 1916年,路易斯提出共价键理论。 靠共用电子对,形成化学键,得到稳定电子层结构。 定义:原子间借用共用电子对结合的化学键叫做共价键。 对共价键的形成的认识,发展提出了现代价键理论和分子轨道理论。 1.1共价键的形成 1.1.1 氢分子共价键的形成和本质(应用量子力学) 当两个氢原子(各有一个自旋方向相反的电子)相互靠近,到一定距离时,会发生相互作用。每个H原子核不仅吸引自己本身的1s电子还吸引另一个H原子的1s电子,平衡之前,引力>排斥力,到平衡距离d,能量最低:形成稳定的共价键。 H原子的玻尔半径:53pm,说明H2分子中两个H原子的1S轨道必然发生重叠,核间形成一个 电子出现的几率密度较大的区域。这样,增强了核间电子云对两核的吸引,削弱了两核间斥力,体系能量降低,更稳定。(核间电子在核间同时受两个核的吸引比单独时受核的吸引要小,即位能低,∴能量低)。

1.1.2 价键理论要点 ①要有自旋相反的未配对的电子 H↑+ H↓ -→ H↑↓H 表示:H:H或H-H ②电子配对后不能再配对即一个原子有几个未成对电子,只能和同数目的自旋方向相反的未成对电子成键。如:N:2s22p3,N≡N或NH3 这就是共价键的饱和性。 ③原子轨道的最大程度重叠 (重叠得越多,形成的共价键越牢固) 1.1.3 共价键的类型 ①σ键和π键(根据原子轨道重叠方式不同而分类) s-s :σ键,如:H-H s-p :σ键,如:H-Cl p-p :σ键,如:Cl-Cl π键, 单键:σ键 双键:一个σ键,一个π键 叁键:一个σ键,两个π键 例:N≡N σ键的重叠程度比π键大,∴π键不如σ键牢固。 σ键π键 原子轨道重叠方式头碰头肩并肩 能单独存在不能单独存在 沿轴转180O符号不变符号变 牢固程度牢固差 含共价双键和叁键的化合物的重键容易打开,参与反应。

高中化学选修三几种典型晶体晶胞结构模型总结

学生版:典型晶体模型 晶体晶体结构晶体详解 原子晶体 金 刚石 (1)每个碳与相邻个碳以共价键 结合, 形成体结构 (2)键角均为 (3)最小碳环由个C组成且六个原子不 在同一个平面内 (4)每个C参与条C—C键的形成,C 原子数与C—C键数之比为 S iO 2 (1)每个Si与个O以共价键结合,形成正 四面体结构 (2)每个正四面体占有1个Si,4个“ 1 2 O”,n(Si)∶n(O)= (3)最小环上有个原子,即个O,个 Si 分子晶体 干 冰 (1)8个CO 2 分子构成立方体且在6个面心 又各占据1个CO 2 分子 (2)每个CO 2 分子周围等距紧邻的 CO 2 分子 有个 冰 每个水分子与相邻的个水分子,以 相连接,含1 mol H 2 O的冰中,最多可形成 mol“氢键”。 N aCl(型) 离 子晶 体 (1)每个Na+(Cl-)周围等距且紧邻的 Cl-(Na+)有个。每个Na+周围等距且紧邻 的 Na+有个 (2)每个晶胞中含个Na+和个Cl-

C sCl (型) (1)每个Cs+周围等距且紧邻的Cl-有个,每个Cs+(Cl-)周围等距且紧邻的Cs+(Cl-) 有个 (2)如图为个晶胞,每个晶胞中含 个Cs+、个Cl- 金属晶体 简 单六 方堆 积 典型代表Po,配位数为,空间利用率 52% 面 心立 方 最 密堆 积 又称为A 1 型或铜型,典型代表, 配位数为,空间利用率74% 体 心立 方 堆 积 又称为A 2 型或钾型,典型代表, 配位数为,空间利用率68% 六 方最 密 堆 积 又称为A 3 型或镁型,典型代表, 配位数为,空间利用率74% 混合晶体石墨 (1)石墨层状晶体中, 层与层之间的作用是 (2)平均每个正六边形 拥有的碳原子个数是,C

晶体结构和晶体缺陷

第一部分晶体结构和晶体缺陷 1.原子的负电性的定义和物理意义是什么? 2.共价键的定义和特点是什么? 3.金刚石结构为什么要提出杂化轨道的概念? 4.V、VI、VII族元素仅靠共价键能否形成三维晶体? 5.晶体结构,空间点阵,基元,B格子、单式格子和复式格子之间的关系和区别。 6.W-S元胞的主要优点,缺点各是什么? 7.配位数的定义是什么? 8.晶体中有哪几种密堆积,密堆积的配位数是多少? 9.晶向指数,晶面指数是如何定义的? 10.点对称操作的基本操作是哪几个? 11.群的定义是什么?讨论晶体结构时引入群的目的是什么? 12.晶体结构、B格子、所属群之间的关系如何? 13.七种晶系和十四种B格子是根据什么划分的? 14.肖特基缺陷、费仑克尔缺陷、点缺陷、色心、F心是如何定义的? 15.棱(刃)位错和螺位错分别与位错线的关系如何? 16.位错线的定义和特征如何? 17.影响晶体中杂质替位几率的主要因素有哪些? 18.晶体中原子空位扩散系数D与哪些因素有关? 19.解理面是面指数低的晶面还是面指数高的晶面?为什么? 20.为什么要提出布拉菲格子的概念? 21.对六角晶系的晶面指数和晶向指数使用四指标表示有什么利弊? 第二部分倒格子 1.倒格子基矢是如何定义的? 2. 正、倒格子之间有哪些关系? 3.原子散射因子是如何表示的,它的物理意义如何? 4. 几何结构因子是如何表示的,它的物理意义如何? 5. 几何结构因子S h与哪些元素有关? 6.衍射极大的必要条件如何? 7.什么叫消光条件? 8.反射球是在哪个空间画的,反射球能起到什么作用,如何画反射球? 9.常用的X光衍射方法有哪几种,各有什么基本特点? 10.为什么要使用“倒空间”的概念?

晶体结构及缺陷

晶体结构与晶体中的缺陷 17、Li 2O 的结构是O2-作面心立方堆积,Li +占据所有四面体空隙位置,氧离子半径为0.132nm 。求: (1)计算负离子彼此接触时,四面体空隙所能容纳的最大阳离子半径,并与书末附表Li +半径比较,说明此时O 2-能否互相接触。 (2)根据离子半径数据求晶胞参数。 (3)求Li 2O 的密度。 解:(1)如图2-2是一个四面体空隙,O 为四面体中心位置。 -++=r r AO ,-=r BC 2, -=r CE 3, 3/323/2-==r CE CG 3/62-=r AG , OGC ?∽EFC ?,CF EF CG OG //=,6/6/-=?=r CG CF EF OG 2/6-=-=r OG AG AO ,301.0)12/6(=-=-=--+r r AO r 查表知Li r + +=0.68>0.301,∴O 2-不能互相接触; (2)体对角线=a 3=4(r ++r -),a=4.665;(3)ρ=m/V=1.963g/cm 3 图2-2 四面体空隙 28、下列硅酸盐矿物各属何种结构类型: Mg 2[SiO 4],K[AISi 3O 8],CaMg[Si 2O 6], Mg 3[Si 4O 10](OH)2,Ca 2Al[AlSiO 7]。 解:岛状;架状;单链;层状(复网);组群(双四面体)。 23、石棉矿如透闪石Ca 2Mg 5[Si 4O 11](OH)2具有纤维状结晶习性,而滑石Mg 2[Si 4O 10](OH)2却具有片状结晶习性,试解释之。 解:透闪石双链结构,链内的Si-O 键要比链5的Ca-O 、Mg-O 键强很多,所以很容易沿链间结合力较弱处劈裂成为纤维状;滑石复网层结构,复网层由两个 [SiO4]层和中间的水镁石层结构构成,复网层与复网层之间靠教弱的分之间作用力联系,因分子间力弱,所以易沿分子间力联系处解理成片状。 24、石墨、滑石和高岭石具有层状结构,说明它们结构的区别及由此引起的性质上的差异。

第三章 晶体结构缺陷

第三章晶体结构缺陷 【例3-1】写出MgO形成肖特基缺陷的反应方程式。 【解】MgO形成肖特基缺陷时,表面的Mg2+和O2-离子迁到表面新位置上,在晶体内部留下空位,用方程式表示为: 该方程式中的表面位置与新表面位置无本质区别,故可以从方程两边消掉,以零O(naught)代表无缺陷状态,则肖特基缺陷方程式可简化为: 【例3-2】写出AgBr形成弗伦克尔缺陷的反应方程式。 【解】AgBr中半径小的Ag+离子进入晶格间隙,在其格点上留下空位,方程式为: 【提示】一般规律:当晶体中剩余空隙比较小,如NaCl型结构,容易形成肖特基缺陷;当晶体中剩余空隙比较大时,如萤石CaF2型结构等,容易产生弗伦克尔缺陷。 【例3-3】写出NaF加入YF3中的缺陷反应方程式。 【解】首先以正离子为基准,Na+离子占据Y3+位置,该位置带有2个单位负电荷,同时,引入的1个F -离子位于基质晶体中F-离子的位置上。按照位置关系,基质YF3中正负离子格点数之比为1/3,现在只引入了1个F-离子,所以还有2个F-离子位置空着。反应方程式为: 可以验证该方程式符合上述3个原则。 再以负离子为基准,假设引入3个F-离子位于基质中的F-离子位置上,与此同时,引入了3个Na+离子。根据基质晶体中的位置关系,只能有1个Na+离子占据Y3+离子位置,其余2个Na+位于晶格间隙,方程式为:

此方程亦满足上述3个原则。当然,也可以写出其他形式的缺陷反应方程式,但上述2个方程所代表的缺陷是最可能出现的。 【例3-4】写出CaCl2加入KCl中的缺陷反应方程式。 【解】以正离子为基准,缺陷反应方程式为: 以负离子为基准,则缺陷反应方程式为: 这也是2个典型的缺陷反应方程式,与后边将要介绍的固溶体类型相对应。 【提示】通过上述2个实例,可以得出2条基本规律: (1)低价正离子占据高价正离子位置时,该位置带有负电荷。为了保持电中性,会产生负离子空位或间隙正离子。 (2)高价正离子占据低价正离子位置时,该位置带有正电荷。为了保持电中性,会产生正离子空位或间隙负离子。 【例3-5】TiO2在还原气氛下失去部分氧,生成非化学计量化合物TiO2-x,写出缺陷反应方程式。 【解】非化学计量缺陷的形成与浓度取决于气氛性质及其分压大小,即在一定气氛性质和压力下到达平衡。该过程的缺陷反应可用 或 方程式表示,晶体中的氧以电中性的氧分子的形式从TiO2中逸出,同时在晶体中产生带正电荷的氧空位和与其符号相反的带负电荷的来保持电中性,方程两边总有效电荷都等于零。可以看成是Ti4+被还原为Ti3+,三价Ti占据了四价Ti的位置,因而带一个单位有效负电荷。而二个Ti3+替代了二个Ti4+,

探究活动2作分子结构模型

实验探究活动2 作分子结构模型 实验目的 1 制作氯化氢分子、水分子、氨分子、甲烷分子的球棍模型,了解这些分子的空间结构。 2 制作丁烷、异丁烷和乙醇、二甲醚的结构模型,对比它们的分子结构,了解有机化合物的同分异构现象。 3 认识模型在物质结构研究中的重要作用。 实验原理 物质中直接相邻的原子之间存在着强烈的相互作用叫做化学键。在氢分子、水分子、氨分子、甲烷分子内相邻的原子之间存在共价键,在金刚石中相邻的原子之间存在着共价键。在共价化合物中,原子按一定顺序和规则相互结合,形成具有一定结构的分子,用球棍模型可以表示共价分子的结构。 由碳原子组成的化合物种类繁多,这不仅与碳原子的成键特点有关,也与有机物的同分异构现象有关。在只含碳、氢元素的物质中,丁烷是具有同分异构现象的最简单的有机物,丁烷有两种同分异构体,一种有支链,一种没有支链。在含碳、氢、氧三种元素的物质中,乙醇和二甲醚互为同分异构体,其中氧原子和其他原子的连接方式不同。 仪器和药品 仪器:制作分子结构模型的教具 实验步骤 用不同颜色的小球代表不同的原子,用金属小棍表示价键,按一定的空间伸展方向将各原子连接成分子模型。 1 制作氯化氢分子、水分子、氨分子、甲烷分子的球棍模型。 制作规则:(1)氯原子、氢原子只能形成一个共价键,氧原子可以形成两个共价键,氮原子可以形成三个共价键,碳原子可以形成四个共价键;(2)各分子中价键在空间的伸展方向可参考教材中的分子结构模型。 对比氯原子、氢原子、氧原子、氮原子、碳原子的成键特点,比较分子的球棍模型和分子的结构式。

2 制作丁烷的球棍模型 取四个碳原子、十个氢原子小球,按照碳原子的成键特点先把碳原子连接成链状,碳链可以带有支链,碳链连接好后,再再各个碳原子上连接氢原子。 在不违背各原子成键个数的前提下将各原子重新连接,看看还能连接成几种结构。 3 根据乙醇、二甲醚的结构式制作他们的球棍模型。 对比乙醇和二甲醚分子的结构式和结构模型。 实验记录 1 对照你所制作的氯化氢分子、水分子、氨分子、甲烷分子的球棍模型,练习书写氯化氢、水、氨、甲烷的结构式和电子式。 2 写出正丁烷和异丁烷的分子式和结构式。对照你所制作的正丁烷和异丁烷的球棍模型,说明它们在结构上有什么不同。 3 写出乙醇和二甲醚的分子式和结构式。对照你所制作的乙醇和二甲醚的球棍模型,说明它们在结构上有什么不同。

分子结构与晶体结构

分子结构与晶体结构 ★双基知识 几个基概念 化学键:相邻的两个或多个原子间强烈的相互作用 共价键:原子间通过共用电子对所形成的相互作用 离子键:阴、阳离子通过静电作用所形成的化学键 极性键:由不同元素的原子所形成的共价键 非极性键:由相同元素的原子所形成的共价键 金属键:金属阳离子与自由电子之间较强烈的作用叫金属键。 氢键: 范德华力(分子间作用力) 极性分子非极性分子 离子晶体分子晶体 原子晶体金属晶体 2.常见几种晶体的结构分析(点、线、面、体) (1)氯化钠晶体(2)氯化铯晶体(3)二氧化碳晶体(4)白磷分子的结构 (5)Cn的结构(6)金刚石晶体(7)二氧化硅晶体(8)石墨晶体★巧思巧解 2.四种晶体的比较

晶体类型离子晶体原子晶体分子晶体金属晶体 存在粒子 粒子间作用 熔、沸点 硬度 溶解性 导电性 实例 3.晶体熔、沸点比较 (1)异类晶体:原子晶体(离子晶体)分不大于分子晶体 一样地,原子晶体>离子晶体>分子晶体 (2)同种类型晶体:构成晶体质点间的作用力大,则熔、沸点高,反之则小。 ①离子晶体:离子所带的电荷数越高,离子半径越小,离子键越强,则熔、沸点越高。 ②分子晶体:关于组成和结构相似的分子晶体,相对分子质量越大,分子间作用力越大,则熔、沸点越高。 在同分异构体中,一样地,支链越多,熔、沸点越低。 ③原子晶体:原子半径越小,键长越短、键能越大,则熔、沸点越高 ④金属晶体:金属阳离子半径越小,离子所带的电荷越多,则金属键越强,金属熔、沸点越高 ★例题精析 [例1]:下列性质中,能够证明某化合物内一定存在离子键的是:()A.能够溶于水 B.具有较高的熔点 C.水溶液能导电 D.熔融状态能导电 [例2]:下列化合物中阴离子半径和阳离子半径之比最大的是: A.LiI B. NaBr C. KCl D. CsF [例3]:食盐晶体如右下图所示。在晶体中●表示Na+,○表示Cl-,已知食盐的密度为ρg/cm3,NaCl的摩尔质量为M g/mol,阿佛加得罗常数为N,则在食盐晶体是Na+离子和Cl-离子的间距大约是:

相关主题