搜档网
当前位置:搜档网 › 数值分析第5章习题

数值分析第5章习题

数值分析第5章习题
数值分析第5章习题

1. 过点),(),...,,(),,(551100y x y x y x 的插值多项式P(x)是()次的多项式 A. 6 B. 5 C. 4 D. 3 考查知识点:插值多项式的基本概念 答案:B

2. 通过点),(),,(1100y x y x 的拉格朗日插值基函数)(),(10x l x l 满足() A. 0)(,0)(1100==x l x l B. 1)(,0)(1100==x l x l C. 0)(,1)(1100==x l x l D. 1)(,1)(1100==x l x l 考查知识点:拉格朗日插值基函数的性质 答案:D

3. 设)(x L 和)(x N 分别是)(x f 满足同一插值条件的n 次拉格朗日和牛顿插值多项式,它们的插值余项分别是)(x r 和)(x e ,则(B.) 考查知识点:插值多项式的存在唯一性 A.)()(),()(x e x r x N x L =≠ B.)()(),()(x e x r x N x L == C.)()(),()(x e x r x N x L ≠=

D.)()(),()(x e x r x N x L ≠≠

解析:插值多项式存在唯一性定理可知,满足同一插值条件的拉格朗日插值多项式和牛顿插值实际上是同一个多项式,故,余项也相同。

4. =?+?k k y y _______ 考查知识点:差分的概念 答案:11-+-k k y y

5. ]2,,2,2[]2,,2,2[,13)(8

1

7

1

4

7

f f x x x x f 和则+++=为 与

[]

[

]

!

80!8)(22221!7!

7!7)(222)8(8

710)7(7

10===??===??ξξf f f f ,,,,,,,根据差商和导数关系

6. 的二次插值多项式为则时当)(4,3,0)(2,1,1x f ,x ,f x -=-= (拉格朗日插值) 解: 4,3,2,1,110210=-===-=y y x x x ,Lagrange 这里插值公式利用二次

得,42=y

)()()()(2211002x l y x l y x l y x L ++=

3723653

)

1)(1(406)2)(1(32-+=-+?

++--?

-=x x x x x x

7. 设

2)(x x f =,则)(x f 关于节点2,1,0210===x x x 的二阶向前差分为_2_。

考查知识点:各阶前向差分的应用

解析:由节点210,,x x x 可求出对应的函数值,如下表:

8. 已知)(x f y =中有1)2(,1)1(,2)1(===-f f f ,求)(x f 的拉格朗日插值多项式。(拉格朗日插值)

解法一(待定系数法):设c bx ax x L ++=2)(,由插值条件,有

??

?

??=++=++=+-12412c b a c b a c b a 解得:3/4,2/1,6/1=-==c b a 。 故 3

42161)(2+-=

x x x L 。 解法二(基函数法):由插值条件,有

1)

12)(12()

1)(1(1)21)((11()2)(1(2)21)(11()2)(1()(?-+-++?-+-++?------=

x x x x x x x L

)1)(1(31

)2)(1(21)2)(1(31-++-+---=x x x x x x 3

421612+-=x x

9.设1)(3

5++=x x x f ,取,1,5.0,0,8.0,143210===-=-=x x x x x 作出)(x f 关于

43210,,,,x x x x x 的差商表,给出)(x f 关于3210,,,x x x x 的Newton 插值多项式,并给出插值误

差。

考查知识点:牛顿插值公式

Newton 插值多项式:

))()(())(()()(21031020103x x x x x x a x x x x a x x a a x N ---+--+-+=

x x x x x x )8.0)(1(79.2)8.0)(1(752.4)1(8016.51+++++-++-=

)5.0()8.0)(1](,

5.0,0,8.0,1[)()()(33-++--=-=x x x x x f x N x f x R

10. 已知函数)(x f y =的函数表如图所示,试列出向后差分表,并写出牛顿的向后差值公

式,用其估计出)45.0(f 。 考查知识点:各阶后向差分的运用

1.0=h

)1.05.0()()(5555t N th X N X N +=+==2)1+(04.0+48.0+3t t t

=2

02.0+5.0+3t t 由x=0.45得t=5.0-

755.2)45.0(5≈N

11. 的近似值求用线性插值及二次插值的数值表如下给出54.0ln ln )(,x x f = 解: 得线性插值多项式代入选取,Lagrange x x x 54.0,6.0,5.010===

620219

.0)

510826.0(50

.060.050

.054.0)693147.0(60.050.060.054.0)54.0(54.0ln 1-≈-?--+-?--=

≈L 得二次插值多项式代入又选取,Lagrange x x x x 54.0,6.0,5.0,4.0210====

6153209

.0)510826.0()

5.06.0)(4.06.0()5.054.0)(4.054.0()

693147.0()6.05.0)(4.05.0()

6.054.0)(4.054.0()916291.0()6.04.0)(5.04.0()6.054.0)(5.054.0()54.0(54.0ln 2-≈-?----+-?----+-?----=

≈L

12.设4/9,1,4/1,)(2102

3====x x x x x f 。(1)试求)(x f 在[]4/9,4/1上的三次埃尔米特插值多项式)(x H ,使得)()(,2,1,0),()(11x f x H j x f x H j j '='==,)(x H 以升幂形式给出。(2)写出余项)()()(x H x f x R -=的表达式。(埃尔米特插值及其余项的计算)。

解:81)41(=f ,1)1(=f ,827)49(=f ,21

23)(x x f =',2

3

)1(='f

设d cx bx ax x H +++=23)(,c bx ax x H ++='23)(2

???

??

???

???=++=+++=+++=+++23238274916816472918141161641c b a d c b a d c b a d c b a

解得:22514-

=a ,450263=b ,450233=c ,25

1

-=d 。

故 25

1

45023345026322514)(23-

++-=x x x x H 。 )49()1)(41(1283)(225

---=-x x x x R ξ,其中,4

9

41≤≤ξ。

12. 设f(x)在各点处的数据,求f(x)在x=0.36,0.98处的近似值。(用分段插值)

考查知识点:分段插值

解:分段线性Lagrange 插值的公式为

)

()(1x L k 11++--=k k k k

x x x x y k k k

k x x x x y --+++11

1,,1,0-=n k

≈)36.0(f )36.0()

0(1

L 4.03.04.036.030163

.0--=3.04.03

.036.041075

.0--+ 36711.0=

≈)98.0(f )98.0()

4(1

L 10051.1= 14. 已知()shx x f =的函数表

求出三次Newton 均差插值多项式,计算f(0.23)的近似值并用均差的余项表达式估计误差. 解:根据给定函数表构造均差表

由式(5.14)当n=3时得Newton 均差插值多项式

N3(x)=1.0067x+0.08367x(x-0.2)+0.17400x(x-0.2)(x-0.3) 由此可得

f(0.23) N3(0.23)=0.23203 由余项表达式(5.15)可得

()[]()23.023.0,,,,23.0432103w x x x x f R =

由于[][]033133

.023.0,,,,3210≈x x x x f

()631032.427.007.003.023.0033133.023.0-?≤????≤R

15. 已知x y cos =在)1.0,4,1,0(===h k kh x k 处的函数值,求048.0cos 及35.0cos 的近似值并估计误差。

考查知识点:等距节点插值公式

24

/)3)(2)(1(00012.06/)2)(1(00013.02/)1(00993.0005.01)(04---?+--?+-?-?-=+t t t t t t t t t t th x N

24

/)3)(2)(1(00012.06/)2)(1(00025.02/)1(00955.003428.092106.0)(4+++?+++?++?-?-=+t t t t t t t t t t th x N n

(1)用牛顿前插公式计算048.0cos 的近似值 前插公式:)1()1(!

1

)1(!21)(002000+--?++-?+

?+=+n t t t y n t t y t y y th x N n n 取48.0/)0(,1.0,048.0=-===h x t h x ,代入公式得

+-??-?-=≈2/)148.0(48.000993.048.0005.01)048.0(048.0cos 4N

+-?-??6/)248.0()148.0(48.000013.0

24/)348.0()248.0()148.0(48.00012.0-?-?-?? 99884.0≈

误差估计

75

54100921.1)4)(3)(2)(1(!

5)048.0(-?≈----≤

t t t t t h M R 其中 3894.04.0sin 5≈=M 。

(2)用牛顿后插公式计算35.0cos 的近似值 后插公式:)1()1(!

1

)1(!21)(2-++?+++?+

?+=+n t t t y n t t y t y y th x N n n n n n n n 取5.0/)4.0(,1.0,35.0-=-===h x t h x ,代入公式得

++-?-?--?-=≈2/)15.0()5.0(00955.0)5.0(03428.092106.0)35.0(35.0cos 4N

6/)25.0()15.0()5.0(00025.0+-?+-?-?

24/)35.0()25.0()15.0()5.0(00012.0+-?+-?+-?-? 93937.0≈ 误差估计

75

54100648.1)4)(3)(2)(1(!

5)35.0(-?≈++++≤

t t t t t h M R 其中 3894.04.0sin 5≈=M 。

出题情况(电信) 张楠 2 张爽 13 李锋 15 陆亚男 3,7,9 张云雪 10 宋剑 1,4

出题情况(营销) 8陈飞 11李欣雨 6周莹舒 5张明晓 12张慧

14李墩芝、王雪松

数值分析课后题答案

数值分析 第二章 2.当1,1,2x =-时,()0,3,4f x =-,求()f x 的二次插值多项式。 解: 0120121200102021101201220211,1,2, ()0,()3,()4;()()1 ()(1)(2)()()2()()1 ()(1)(2) ()()6 ()()1 ()(1)(1) ()()3 x x x f x f x f x x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x ==-===-=--==-+-----==------= =-+-- 则二次拉格朗日插值多项式为 2 20 ()()k k k L x y l x ==∑ 0223()4() 14 (1)(2)(1)(1)23 537623 l x l x x x x x x x =-+=---+ -+= +- 6.设,0,1,,j x j n =L 为互异节点,求证: (1) 0()n k k j j j x l x x =≡∑ (0,1,,);k n =L (2)0 ()()0n k j j j x x l x =-≡∑ (0,1,,);k n =L 证明 (1) 令()k f x x = 若插值节点为,0,1,,j x j n =L ,则函数()f x 的n 次插值多项式为0 ()()n k n j j j L x x l x == ∑。 插值余项为(1)1() ()()()()(1)! n n n n f R x f x L x x n ξω++=-= + 又,k n ≤Q

(1)()0 ()0 n n f R x ξ+∴=∴= 0()n k k j j j x l x x =∴=∑ (0,1,,);k n =L 0 000 (2)()() (())()()(()) n k j j j n n j i k i k j j j i n n i k i i k j j i j x x l x C x x l x C x x l x =-==-==-=-=-∑∑∑∑∑ 0i n ≤≤Q 又 由上题结论可知 ()n k i j j j x l x x ==∑ ()()0 n i k i i k i k C x x x x -=∴=-=-=∑原式 ∴得证。 7设[]2 (),f x C a b ∈且()()0,f a f b ==求证: 21 max ()()max ().8 a x b a x b f x b a f x ≤≤≤≤''≤- 解:令01,x a x b ==,以此为插值节点,则线性插值多项式为 10 101010 ()() ()x x x x L x f x f x x x x x --=+-- =() () x b x a f a f b a b x a --=+-- 1()()0()0 f a f b L x ==∴=Q 又 插值余项为1011 ()()()()()()2 R x f x L x f x x x x x ''=-= -- 011 ()()()()2 f x f x x x x x ''∴= --

数值分析第4章答案

第四章 数值积分与数值微分 1.确定下列求积公式中的特定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度: 101210121 12120 (1)()()(0)(); (2)()()(0)(); (3)()[(1)2()3()]/3; (4)()[(0)()]/2[(0)()]; h h h h h f x dx A f h A f A f h f x dx A f h A f A f h f x dx f f x f x f x dx h f f h ah f f h -----≈-++≈-++≈-++''≈++-?? ?? 解: 求解求积公式的代数精度时,应根据代数精度的定义,即求积公式对于次数不超过m 的多项式均能准确地成立,但对于m+1次多项式就不准确成立,进行验证性求解。 (1)若101(1) ()()(0)()h h f x dx A f h A f A f h --≈-++? 令()1f x =,则 1012h A A A -=++ 令()f x x =,则 110A h Ah -=-+ 令2 ()f x x =,则 3 221123 h h A h A -=+ 从而解得 01 1431313A h A h A h -?=?? ?=?? ?=?? 令3 ()f x x =,则 3()0h h h h f x dx x dx --==? ? 101()(0)()0A f h A f A f h --++= 故 101()()(0)()h h f x dx A f h A f A f h --=-++? 成立。 令4 ()f x x =,则

数值分析第三版课本习题及答案

第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位 有效数字: *****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式求下列各近似值的误差限: ********12412324(),(),()/,i x x x ii x x x iii x x ++其中**** 1 234,,,x x x x 均为第3题所给的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设028,Y =按递推公式 1n n Y Y -=…) 计算到100Y . (五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字 . 8. 当N 充分大时,怎样求 2 11N dx x +∞ +? ? 9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2 ? 10. 设 2 12S gt = 假定g 是准确的,而对t 的测量有±秒的误差,证明当t 增加时S 的绝对误差增加,而相 对误差却减小. 11. 序列 {}n y 满足递推关系1101n n y y -=-(n=1,2,…), 若0 1.41y =≈(三位有效数字),计算到10 y 时误差有多大?这个计算过程稳定吗? 12. 计算61)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 -- 13. ()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一 等价公式 ln(ln(x x =- 计算,求对数时误差有多大? 14. 试用消元法解方程组 { 101012121010;2. x x x x +=+=假定只用三位数计算,问结果是否可靠?

数值分析第四章数值积分与数值微分习题答案

第四章 数值积分与数值微分 1.确定下列求积公式中的特定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度: 101210121 12120 (1)()()(0)(); (2)()()(0)(); (3)()[(1)2()3()]/3; (4)()[(0)()]/2[(0)()]; h h h h h f x dx A f h A f A f h f x dx A f h A f A f h f x dx f f x f x f x dx h f f h ah f f h -----≈-++≈-++≈-++''≈++-?? ?? 解: 求解求积公式的代数精度时,应根据代数精度的定义,即求积公式对于次数不超过m 的多项式均能准确地成立,但对于m+1次多项式就不准确成立,进行验证性求解。 (1)若101(1) ()()(0)()h h f x dx A f h A f A f h --≈-++? 令()1f x =,则 1012h A A A -=++ 令()f x x =,则 110A h Ah -=-+ 令2 ()f x x =,则 3 221123 h h A h A -=+ 从而解得 011431313A h A h A h -?=?? ? =?? ?=?? 令3 ()f x x =,则 3()0h h h h f x dx x dx --==? ? 101()(0)()0A f h A f A f h --++=

令4()f x x =,则 455 1012()5 2 ()(0)()3 h h h h f x dx x dx h A f h A f A f h h ---== -++=? ? 故此时, 101()()(0)()h h f x dx A f h A f A f h --≠-++? 故 101()()(0)()h h f x dx A f h A f A f h --≈-++? 具有3次代数精度。 (2)若 21012()()(0)()h h f x dx A f h A f A f h --≈-++? 令()1f x =,则 1014h A A A -=++ 令()f x x =,则 110A h Ah -=-+ 令2 ()f x x =,则 3 2211163 h h A h A -=+ 从而解得 1143 8383A h A h A h -?=-?? ? =?? ?=?? 令3 ()f x x =,则 22322()0h h h h f x dx x dx --==? ? 101()(0)()0A f h A f A f h --++=

数值分析第五版全答案chap1

第一章 绪 论 1.设0x >,x 的相对误差为δ,求ln x 的误差。 解:近似值*x 的相对误差为* **** r e x x e x x δ-=== 而ln x 的误差为()1ln *ln *ln **e x x x e x =-≈ 进而有(ln *)x εδ≈ 2.设x 的相对误差为2%,求n x 的相对误差。 解:设()n f x x =,则函数的条件数为'()||() p xf x C f x = 又1'()n f x nx -= , 1 ||n p x nx C n n -?∴== 又((*))(*)r p r x n C x εε≈? 且(*)r e x 为2 ((*))0.02n r x n ε∴≈ 3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字:*1 1.1021x =,*20.031x =, *3385.6x =, *456.430x =,*5 7 1.0.x =? 解:*1 1.1021x =是五位有效数字; *20.031x =是二位有效数字; *3385.6x =是四位有效数字; *456.430x =是五位有效数字; *57 1.0.x =?是二位有效数字。 4.利用公式(2.3)求下列各近似值的误差限:(1) *** 124x x x ++,(2) ***123x x x ,(3) **24 /x x . 其中****1234,,,x x x x 均为第3题所给的数。 解:

*4 1*3 2*13*3 4*1 51 ()102 1()102 1()102 1()102 1()102x x x x x εεεεε-----=?=?=?=?=? ***124***1244333 (1)() ()()() 111101010222 1.0510x x x x x x εεεε----++=++=?+?+?=? ***123*********123231132143 (2)() ()()() 1111.10210.031100.031385.610 1.1021385.610222 0.215 x x x x x x x x x x x x εεεε---=++=???+???+???≈ **24****24422 *4 33 5 (3)(/)()() 110.0311056.430102256.43056.430 10x x x x x x x εεε---+≈??+??=?= 5计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少? 解:球体体积为343V R π= 则何种函数的条件数为 2 3 '4343 p R V R R C V R ππ=== (*)(*)3(*)r p r r V C R R εεε∴≈= 又(*)1r V ε=

第五章习题解答_数值分析

第五章习题解答 1、给出数据点:0134 19156 i i x y =?? =? (1)用012,,x x x 构造二次Lagrange 插值多项式2()L x ,并计算15.x =的近似值215(.)L 。 (2)用123,,x x x 构造二次Newton 插值多项式2()N x ,并计算15.x =的近似值215(.)N 。 (3)用事后误差估计方法估计215(.)L 、215(.)N 的误差。 解: (1)利用012013,,x x x ===,0121915,,y y y ===作Lagrange 插值函数 2 20 2 1303011915 01031013303152933 ()()()()()() ()()()()()()()() i i i x x x x x x L x l x y x x =------== ?+?+?-------++= ∑ 代入可得2151175(.).L =。 (2)利用 134,,x x x ===,9156,,y y y ===构造如下差商表: 229314134196()()()()()N x x x x x x =+-+---=-+- 代入可得215135(.).N =。 (3)用事后误差估计的方法可得误差为 ()()()02222 03-x 150 x x x -=117513506563-04.()()()(..).x f L R L x N x x x --≈= -≈- ()()()3222203-154 x x -=1175135-1.0938-04 .()()()(..)x x f N R x L x N x x x --≈=-≈- 2、设Lagrange 插值基函数是 0012()(,,,,)n j i j i j j i x x l x i n x x =≠-==-∏ 试证明:①对x ?,有 1()n i i l x ==∑ ②00110001211()()(,,,)()()n k i i i n n k l x k n x x x k n =?=?==??-=+? ∑ 其中01,,,n x x x 为互异的插值节点。 证明: ①由Lagrange 插值多项式的误差表达式10 1()()()()()!n n i i f R x x x n ξ+==-+∏知,对于函数1()f x =进行

数值分析第四版习题及答案

第四版 数值分析习题 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: *****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式求下列各近似值的误差限: ********12412324(),(),()/,i x x x ii x x x iii x x ++其中**** 1234 ,,,x x x x 均为第3题所给的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设028,Y =按递推公式 1n n Y Y -=…) 计算到100Y .(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字. 8. 当N 充分大时,怎样求 2 11N dx x +∞ +? ? 9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2 ? 10. 设 212S gt = 假定g 是准确的,而对t 的测量有±秒的误差,证明当t 增加时S 的绝对误 差增加,而相对误差却减小. 11. 序列 {}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字), 计算到 10y 时误差有多大?这个计算过程稳定吗? 12. 计算61)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 -- 13. ()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式 ln(ln(x x =- 计算,求对数时误差有多大?

最新数值分析课程第五版课后习题答案(李庆扬等)1

第一章 绪论(12) 1、设0>x ,x 的相对误差为δ,求x ln 的误差。 [解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=* ****1)()(ln )(ln x x x x x , 相对误差为* * ** ln ln ) (ln )(ln x x x x r δ εε= = 。 2、设x 的相对误差为2%,求n x 的相对误差。 [解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而n x 的误差为n n x x n x n x x n x x x ** 1 *** %2%2) ()()()(ln * ?=='=-=εε, 相对误差为%2) () (ln )(ln *** n x x x n r == εε。 3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字: 1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5 ?=x 。 [解]1021.1*1 =x 有5位有效数字;0031.0* 2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56* 4 =x 有5位有效数字;0.17*5?=x 有2位有效数字。 4、利用公式(3.3)求下列各近似值的误差限,其中* 4*3*2*1,,,x x x x 均为第3题所给 的数。 (1)* 4*2*1x x x ++; [解]3 334* 4*2*11** *4*2*1*1005.1102 1 10211021)()()()()(----=?=?+?+?=++=? ??? ????=++∑x x x x x f x x x e n k k k εεεε; (2)* 3*2 *1x x x ;

数值计算第四章课后习题答案

()()()()()()()()()收敛较慢 代入上式得:将解: 收敛速度次并分析该迭代公式的迭代的根求方程 取试用迭代公式∴≠<<*'*+++-='∴+*+*=*∴=+?+?? ? ??===++= =∴++= ==-++=++=++014.01022220||10 2202613381013202132020 132010212010220. 2.0 20102110220 4.1222 222212012123021x x x x x x x x x x x x x x x x x x x x x x x x k k k k k k k ?????? )))()()()[]()()[])49998.0cos 215.0cos 2 1,022,00cos 2 102 12,0210,2,0.cos 2 10sin 2 11,cos 2 113cos 2 12; 1.0cos 2 12.4120101==== ==->-=<-=-=>+='-===-+x x x x x x x f f x x x f x x f x x x f x x x x k k 则 取上有一个根在所以上在为单调递增函数故则令解: 位有效数字求出这些根,精确到用迭代公式分析该方程有几个根给定方程ππππ

500 .0105.0102.0||3412≈*?

数值分析第四版习题和答案解析

第四版 数值分析习题 第一章绪论 1.设x>0,x的相对误差为δ,求的误差. 2.设x的相对误差为2%,求的相对误差. 3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: 4.利用公式求下列各近似值的误差限: 其中均为第3题所给的数. 5.计算球体积要使相对误差限为1%,问度量半径R时允许的相对误差限是多少 6.设按递推公式 ( n=1,2,…) 计算到.若取≈(五位有效数字),试问计算将有多大误差 7.求方程的两个根,使它至少具有四位有效数字(≈. 8.当N充分大时,怎样求 9.正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝ 10.设假定g是准确的,而对t的测量有±秒的误差,证明当t增加时S的绝对误差增加,而 相对误差却减小. 11.序列满足递推关系(n=1,2,…),若(三位有效数字),计算到时误差有多大这个计算过程 稳定吗 12.计算,取,利用下列等式计算,哪一个得到的结果最好 13.,求f(30)的值.若开平方用六位函数表,问求对数时误差有多大若改用另一等价公式 计算,求对数时误差有多大 14.试用消元法解方程组假定只用三位数计算,问结果是否可靠 15.已知三角形面积其中c为弧度,,且测量a ,b ,c的误差分别为证明面积的误差满足 第二章插值法 1.根据定义的范德蒙行列式,令 证明是n次多项式,它的根是,且 . 2.当x= 1 , -1 , 2 时, f(x)= 0 , -3 , 4 ,求f(x)的二次插值多项式. 3.

4.给出cos x,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数 字,研究用线性插值求cos x 近似值时的总误差界. 5.设,k=0,1,2,3,求. 6.设为互异节点(j=0,1,…,n),求证: i) ii) 7.设且,求证 8.在上给出的等距节点函数表,若用二次插值求的近似值,要使截断误差不超过,问使用函 数表的步长应取多少 9.若,求及. 10.如果是次多项式,记,证明的阶差分是次多项式,并且为正整数). 11.证明. 12.证明 13.证明 14.若有个不同实根,证明 15.证明阶均差有下列性质: i)若,则; ii)若,则. 16.,求及. 17.证明两点三次埃尔米特插值余项是 并由此求出分段三次埃尔米特插值的误差限. 18.求一个次数不高于4次的多项式,使它满足并由此求出分段三次埃尔米特插值的误差限. 19.试求出一个最高次数不高于4次的函数多项式,以便使它能够满足以下边界条件,,. 20.设,把分为等分,试构造一个台阶形的零次分段插值函数并证明当时,在上一致收敛到. 21.设,在上取,按等距节点求分段线性插值函数,计算各节点间中点处的与的值,并估计误 差. 22.求在上的分段线性插值函数,并估计误差. 23.求在上的分段埃尔米特插值,并估计误差. i) ii) 25.若,是三次样条函数,证明 i); ii)若,式中为插值节点,且,则. 26.编出计算三次样条函数系数及其在插值节点中点的值的程序框图(可用式的表达式). 第三章函数逼近与计算 1.(a)利用区间变换推出区间为的伯恩斯坦多项式. (b)对在上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误 差做比较. 2.求证: (a)当时,. (b)当时,. 3.在次数不超过6的多项式中,求在的最佳一致逼近多项式.

《数值分析》第五章答案

习题5 1.导出如下3个求积公式,并给出截断误差的表达式。 (1) 左矩形公式:?-≈b a a b a f dx x f ))(()( (2) 右矩形公式:))(()(a b b f dx x f b a -≈? (3) 中矩形公式:?-+≈b a a b b a f dx x f ))(2 ( )( 解:(1) )()(a f x f ≈, )()()()(a b a f dx a f dx x f b a b a -=≈?? (2) )()(b f x f ≈,??-=≈b a b a a b a f dx b f dx x f ))(()()( )()(2 1)()()()(2 ηηξf a b dx b x f dx b x f b a b a '--=-'=-'=??,),(,b a ∈ηξ (3) 法1 )2 ( )(b a f x f +≈ , 法2 可以验证所给公式具有1次代数精度。作一次多项式 )(x H 满足 )2()2( b a f b a H +=+,)2 ()2(b a f b a H +'=+',则有 2 )2 )((!21)()(b a x f x H x f +-''= -ξ, ),(b a ∈ξ 于是 2.考察下列求积公式具有几次代数精度: (1) ?'+ ≈1 )1(2 1 )0()(f f dx x f ; (2) )3 1()31()(1 1f f dx x f +- ≈?-。 解: (1)当1)(=x f 时,左=1,右=1+0=1,左=右; 当x x f =)(时,左21= ,右=2 1 210=+,左=右; 当2 )(x x f =时,左=3 1 ,右=1,左≠右,代数精度为1。

数值分析第五版答案

第一章 绪论 p19 2.设x 的相对误差为2%,求n x 的相对误差。 解:设()n f x x =,则函数的条件数为'() | |() p xf x C f x = 又 1 '()n f x nx -=, 1 ||n p x nx C n n -?∴== 又 ((*))(*)r p r x n C x εε≈? 且(*)r e x 为2% ((*))0.02n r x n ε∴≈ 5计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少? 解:球体体积为343 V R π= 则何种函数的条件数为 2 3'4343 p R V R R C V R ππ=== (*)(*)3(*)r p r r V C R R εεε∴≈= 又 (*)1r V ε= 故度量半径R 时允许的相对误差限为1 (*)10.333 r R ε= ?≈ 7.求方程2 5610x x -+=的两个根,使它至少具有427.982 =)。 解:2 5610x x -+= , 故方程的根应为1,228x =故 128 2827.98255.982x = ≈+= 1x ∴具有5位有效数字 211 280.0178632827.98255.982 x =-= ≈ =≈+ 2x 具有5位有效数字

9.正方形的边长大约为了100cm ,应怎样测量才能使其面积误差不超过2 1cm ? 解:正方形的面积函数为2 ()A x x = p7 当*100x =时,若(*)1A ε≤, 则21 (*)102 x ε-≤ ? 故测量中边长误差限不超过0.005cm 时,才能使其面积误差不超过2 1cm 第二章 插值法p48 1.当1,1,2 x =-时,()0,3,4f x =-, 分别用单项式基底、拉格朗日基底、牛顿基底求() f x 的二次插值多项式。 解: 0120121200102021101201220211,1,2, ()0,()3,()4;()()1 ()(1)(2)()()2()()1 ()(1)(2) ()()6 ()()1 ()(1)(1) ()()3 x x x f x f x f x x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x ==-===-=--==-+-----==------= =-+-- 则二次拉格朗日插值多项式为 2 20 ()()k k k L x y l x ==∑ 0223()4() 14 (1)(2)(1)(1)23537623 l x l x x x x x x x =-+=---+-+=+- 2.给出()ln f x x =的数值表 用线性插值及二次插值计算的近似值。 解:由表格知,

数值分析作业答案(第5章)

5.1.设A 是对称矩阵且011≠a ,经过一步高斯消去法后,A 约化为 ?? ????21 110 A a a T 证明2A 是对称矩阵。 证明 由消元公式及A 的对称性,有 ,,,3,2,,)2(111 11111 )2(n j i a a a a a a a a a a ji i j ji j i ij ij ==-=- = 故2A 对称。 5.2.设n ij a A )(=是对称正定矩阵,经过高斯消去法一步后,A 约化为 ?? ????21 110 A a a T 其中1)2(2)(-=n ij a A 。证明: (1).A 的对角元素;,,2,1,0n i a ii => (2).2A 是对称正定矩阵。 证明 (1).因为A 对称正定,所以 n i e Ae a i i ii ,,2,1,0),( =>=, 其中T i e )0,,0,1,0,,0( =为第i 个单位向量。 (2).由A 的对称性及消元公式,有 ,,,3,2,,)2(111 11111 )2(n j i a a a a a a a a a a ji i j ji j i ij ij ==-=- = 故2A 也对称。 又由A L A a a T 121110=????? ?,其中

??? ?????- =? ????? ? ?????????--=-111 1 11111 21101 1011n n I a a a a a a L , 可见1L 非奇异,因而对任意0≠x ,由A 的正定性,有 ,0),(),(,011111>=≠x AL x L x AL L x x L T T T T 故T AL L 11正定。 由,000110211 111121111 1?? ? ?? ?=????????-??????=-A a I a a A a a AL L n T T T 而011>a ,故知2A 正定

数值分析习题第四章

第四章 习题 1.确定下列求积公式中的待定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度: (1)()()()()? --++-≈h h h f A f A h f A dx x f 1010; (2)()()()()? --++-≈h h h f A f A h f A dx x f 221010; (3)()()()()[]3/3211 121?-++-≈x f x f f dx x f ; (4)()()()[]()()[]h f f ah h f f h dx x f h '0'2/020 +++≈? 解:(1)求积公式中含有三个待定参数,即101A A A ,,-,将()21x x x f ,,=分别代入求积公式,并令其左右相等,得 ()()??? ???? =+=+-=++---3 1121 110132 02h A A h A A h h A A A 解得h A h A A 34 31011===-,。 所求公式至少具有2次代数精度。又由于 ()() ()() 4 4 4 3 33 3 3 33h h h h dx x h h h h dx x h h h h ? ?--+ -≠ +-≈ 故()()()()? --++-≈h h h f A f A h f A dx x f 1010具有三次代数精度。 (2)求积公式中含有三个待定系数:101A A A ,,-,故令公式对()2 1x x x f ,,=准确成立,得()()??? ???? =+=+-=++---3 1121110131604h A A h A A h h A A A ,解得h h h A h A h A A 34 316424381011-=- =-===-, 故()()()[]()03 43 822hf h f h f h dx x f h h - +-≈ ? - 因()?-=h h dx x f 220 而 ()() []03 83 3 =+-h h h 又[ ]4 45 5 6224 3 83 165 2h h h h h dx x h h += ≠= ? -

数值分析第五版全答案

第四章 数值积分与数值微分 1.确定下列求积公式中的特定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度: 101210121 12120 (1)()()(0)(); (2)()()(0)(); (3)()[(1)2()3()]/3; (4)()[(0)()]/2[(0)()]; h h h h h f x dx A f h A f A f h f x dx A f h A f A f h f x dx f f x f x f x dx h f f h ah f f h -----≈-++≈-++≈-++''≈++-?? ?? 解: 求解求积公式的代数精度时,应根据代数精度的定义,即求积公式对于次数不超过m 的多项式均能准确地成立,但对于m+1次多项式就不准确成立,进行验证性求解。 (1)若101(1) ()()(0)()h h f x dx A f h A f A f h --≈-++? 令()1f x =,则 1012h A A A -=++ 令()f x x =,则 110A h A h -=-+ 令2 ()f x x =,则 3 221123 h h A h A -=+ 从而解得 01 1431313A h A h A h -?=?? ?=?? ?=?? 令3 ()f x x =,则 3()0h h h h f x dx x dx --==? ? 101()(0)()0A f h A f A f h --++= 故 101()()(0)()h h f x dx A f h A f A f h --=-++? 成立。 令4 ()f x x =,则

数值分析第四章习题

第四章 习题 1. 采用数值计算方法,画出dt t t x y x ?= 0sin )(在]10 ,0[区间曲线,并计算)5.4(y 。 〖答案〗 1.6541 2. 求函数 x e x f 3sin )(=的数值积分?=π 0 )(dx x f s ,并请采用符号计算尝试复算。 〖答案〗 s = 5.1354 Warning: Explicit integral could not be found. > In sym.int at 58 s = int(exp(sin(x)^3),x = 0 .. pi) 3. 用quad 求取dx x e x sin 7.15? --ππ的数值积分,并保证积分的绝对精度为910-。 〖答案〗 1.08784943754779 4. 求函数 5.08.12cos 5.1)5(sin )(20 6.02++-=t t t e t t f t 在区间]5,5[-中的最小值点。 〖答案〗

最小值点是 -1.28498111480531 相应目标值是 -0.18604801006545 5. 设 0)0(,1)0(,1)(2)(3)(22===+-dt dy y t y dt t dy dt t y d ,用数值法和符号法求5.0)(=t t y 。 〖答案〗 数值解 y_05 = 0.78958020790127 符号解 ys = 1/2-1/2*exp(2*t)+exp(t) ys_05 = .78958035647060552916850705213780 6. 求矩阵b Ax =的解,A 为3阶魔方阵,b 是)13(?的全1列向量。 〖答案〗 x = 0.0667 0.0667 0.0667 7. 求矩阵b Ax =的解,A 为4阶魔方阵,b 是)14(?的全1列向量。 〖答案〗 解不唯一 x = -0.0074 -0.0809 0.1397 0.0662 0.0588 0.1176 -0.0588

数值分析习题集及答案

数值分析习题集 (适合课程《数值方法A》和《数值方法B》) 长沙理工大学 第一章绪论 1.设x>0,x的相对误差为δ,求的误差. 2.设x的相对误差为2%,求的相对误差. 3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: 4.利用公式求下列各近似值的误差限: 其中均为第3题所给的数. 5.计算球体积要使相对误差限为1%,问度量半径R时允许的相对误差限是多少? 6.设按递推公式 ( n=1,2,…) 计算到.若取≈(五位有效数字),试问计算将有多大误差? 7.求方程的两个根,使它至少具有四位有效数字(≈. 8.当N充分大时,怎样求? 9.正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝? 10.设假定g是准确的,而对t的测量有±秒的误差,证明当t增加时S的绝对误差增加,而 相对误差却减小. 11.序列满足递推关系(n=1,2,…),若(三位有效数字),计算到时误差有多大?这个计算过程 稳定吗? 12.计算,取,利用下列等式计算,哪一个得到的结果最好? 13.,求f(30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式 计算,求对数时误差有多大? 14.试用消元法解方程组假定只用三位数计算,问结果是否可靠? 15.已知三角形面积其中c为弧度,,且测量a ,b ,c的误差分别为证明面积的误差满足 第二章插值法 1.根据定义的范德蒙行列式,令 证明是n次多项式,它的根是,且 .

2.当x= 1 , -1 , 2 时, f(x)= 0 , -3 , 4 ,求f(x)的二次插值多项式. 3. 4.给出cos x,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数 字,研究用线性插值求cos x 近似值时的总误差界. 5.设,k=0,1,2,3,求. 6.设为互异节点(j=0,1,…,n),求证: i) ii) 7.设且,求证 8.在上给出的等距节点函数表,若用二次插值求的近似值,要使截断误差不超过,问使用函 数表的步长应取多少? 9.若,求及. 10.如果是次多项式,记,证明的阶差分是次多项式,并且为正整数). 11.证明. 12.证明 13.证明 14.若有个不同实根,证明 15.证明阶均差有下列性质: i)若,则; ii)若,则. 16.,求及. 17.证明两点三次埃尔米特插值余项是 并由此求出分段三次埃尔米特插值的误差限. 18.求一个次数不高于4次的多项式,使它满足并由此求出分段三次埃尔米特插值的误差限. 19.试求出一个最高次数不高于4次的函数多项式,以便使它能够满足以下边界条件,,. 20.设,把分为等分,试构造一个台阶形的零次分段插值函数并证明当时,在上一致收敛到. 21.设,在上取,按等距节点求分段线性插值函数,计算各节点间中点处的与的值,并估计误 差. 22.求在上的分段线性插值函数,并估计误差. 23.求在上的分段埃尔米特插值,并估计误差. i) ii) 25.若,是三次样条函数,证明 i); ii)若,式中为插值节点,且,则. 26.编出计算三次样条函数系数及其在插值节点中点的值的程序框图(可用式的表达式). 第三章函数逼近与计算 1.(a)利用区间变换推出区间为的伯恩斯坦多项式. (b)对在上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误

数值分析第五版答案

第一章 绪论 3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字:*1 1.1021x =,*20.031x =, *3385.6x =, * 456.430x =,*57 1.0.x =? 解:*1 1.1021x =是五位有效数字; *20.031x =是二位有效数字; *3385.6x =是四位有效数字; *456.430x =是五位有效数字; *57 1.0.x =?是二位有效数字。 4.利用公式(2.3)求下列各近似值的误差限:(1) ***124x x x ++,(2) ***123x x x ,(3) **24/x x . 其中****1234 ,,,x x x x 均为第3题所给的数。 解: *4 1* 3 2* 13* 3 4* 1 51 ()1021()1021()1021()1021()102 x x x x x εεεεε-----=?=?=?=?=? *** 124***1244333 (1)()()()() 1111010102221.0510x x x x x x εεεε----++=++=?+?+?=? *** 123*********123231132143 (2)() ()()() 111 1.10210.031100.031385.610 1.1021385.610222 0.215 x x x x x x x x x x x x εεεε---=++=???+???+???≈

** 24**** 24422 * 4 33 5 (3)(/) ()() 11 0.0311056.430102256.43056.430 10x x x x x x x εεε---+≈ ??+??= ?= 5计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少? 解:球体体积为34 3 V R π= 则何种函数的条件数为 2 3'4343 p R V R R C V R ππ=== (*)(*)3(*)r p r r V C R R εεε∴≈= 又(*)1r V ε= 故度量半径R 时允许的相对误差限为1 (*)10.333 r R ε=?≈ 6.设028Y = ,按递推公式1n n Y Y -= (n=1,2,…) 计算到100Y 27.982≈(5位有效数字),试问计算100Y 将有多大误差? 解:1n n Y Y -=- 10099Y Y ∴=- 9998Y Y = 9897Y Y =-…… 10Y Y =- 依次代入后,有1000100Y Y =- 即1000Y Y = 27.982, 100027.982Y Y ∴=-

相关主题