搜档网
当前位置:搜档网 › 正态分布习题与详解(非常有用,必考点)

正态分布习题与详解(非常有用,必考点)

正态分布习题与详解(非常有用,必考点)
正态分布习题与详解(非常有用,必考点)

1. 若x ~N (0,1),求(l)P (-

2.322). 解:(1)P (-2.32

=Φ(1.2)-[1-Φ(2.32)]=0.8849-(1-0.9898)=0.8747.

(2)P (x >2)=1-P (x <2)=1-Φ(2)=l-0.9772=0.0228. 2利用标准正态分布表,求标准正态总体

(1)在N(1,4)下,求)3(F (2)在N (μ,σ2

)下,求F(μ-σ,μ+σ); 解:(1))3(F =)2

1

3(

-Φ=Φ(1)=0.8413 (2)F(μ+σ)=)(σ

μ

σμ-+Φ=Φ(1)=0.8413

F(μ-σ)=)(

σ

μ

σμ--Φ=Φ(-1)=1-Φ(1)=1-0.8413=0.1587 F(μ-σ,μ+σ)=F(μ+σ)-F(μ-σ)=0.8413-0.1587=0.6826 3某正态总体函数的概率密度函数是偶函数,而且该函数的最大值为

π

21,求总体落入区

间(-1.2,0.2)之间的概率 Φ(0.2)=0.5793, Φ(1.2)=0.8848]

解:正态分布的概率密度函数是),(,21)(2

22)(+∞-∞∈=

--

x e

x f x σμσ

π,它是偶函数,

说明μ=0,)(x f 的最大值为)(μf =σ

π21,所以σ=1,这个正态分布就是标准正态分

布 ( 1.20.2)(0.2)( 1.2)(0.2)[1(1.2)](0.2)(1.2)1

P x -<<=Φ-Φ-=Φ--Φ=Φ+Φ-

0.57930.884810.4642=+-=

4.某县农民年平均收入服从μ=500元,σ=200元的正态分布 1)求此县农民年平均收入在500520元间人数的百分比;(2)如果要使此县农民年平均收入在(a a +-μμ,)

内的概率不少于0.95,则a 至少有多大?[Φ(0.1)=0.5398, Φ(1.96)=0.975] 解:设ξ表示此县农民年平均收入,则)200,500(~2

N ξ 520500500500

(500520)(

)()(0.1)(0)0.53980.50.0398200200

P ξ--<<=Φ-Φ=Φ-Φ=-=(2)∵()()()2()10.95200200200

a a a

P a a μξμ-<<+=Φ-Φ-=Φ-≥,

()0.975200

a ∴Φ≥ 查表知: 1.96392200a

a ≥?≥

奎屯王新敞新疆

1设随机变量

(3,1),若,,则P(2

( B)l —p

C .l-2p

D .

【答案】 C 因为,所以

P(2

,选 C .

2.(2010·新课标全国理)某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( )

A .100

B .200

C .300

D .400[答案] B

[解析] 记“不发芽的种子数为ξ”,则ξ~B (1 000,0.1),所以E (ξ)=1 000×0.1=100,而X =2ξ,故E (X )=E (2ξ)=2E (ξ)=200,故选B.

3.设随机变量ξ的分布列如下:

其中a ,b ,c 成等差数列,若E (ξ)=1

3,则D (ξ)=( )

A.49 B .-19 C.23 D.59 [答案] D

[解析] 由条件a ,b ,c 成等差数列知,2b =a +c ,由分布列的性质知a +b +c =1,又E (ξ)=-a +c =13,解得a =16,b =13,c =12,∴D (ξ)=16×?

???-1-132+13????0-132+12????1-132=5

9. 4.(2010·上海松江区模考)设口袋中有黑球、白球共7个,从中任取2个球,已知取到白球个数的数学期望值为6

7

,则口袋中白球的个数为( )A .3 B .4 C .5 D .2

[答案] A

[解析] 设白球x 个,则黑球7-x 个,取出的2个球中所含白球个数为ξ,则ξ取值0,1,2, P (ξ=0)=C 7-x 2C 72=(7-x )(6-x )42,

P (ξ=1)=x ·(7-x )C 72=x (7-x )

21,

P (ξ=2)=C x 2C 72=x (x -1)

42

∴0×(7-x )(6-x )42+1×x (7-x )21+2×x (x -1)42=6

7,

∴x =3.

5.小明每次射击的命中率都为p ,他连续射击n 次,各次是否命中相互独立,已知命中次数ξ的期望值为4,方差为2,则p (ξ>1)=( )

A.255256

B.9256

C.247256

D.764 [答案] C

[解析] 由条件知ξ~B (n ,P ),

∵????? E (ξ)=4,D (ξ)=2,∴?????

np =4np (1-p )=2

, 解之得,p =1

2

,n =8,

∴P (ξ=0)=C 80×????120×????128=????128

, P (ξ=1)=C 81×????121×????127=????125, ∴P (ξ>1)=1-P (ξ=0)-P (ξ=1) =1-????128-????125=247256.

5已知三个正态分布密度函数φi (x )=12πσi

e -(x -μi )22σi 2(x ∈R ,i =1,2,3)的图象如图所示,

则( )

A .μ1<μ2=μ3,σ1=σ2>σ3

B .μ1>μ2=μ3,σ1=σ2<σ3

C .μ1=μ2<μ3,σ1<σ2=σ3

D .μ1<μ2=μ3,σ1=σ2<σ3 [答案] D

[解析] 正态分布密度函数φ2(x )和φ3(x )的图象都是关于同一条直线对称,所以其平均数相同,故μ2=μ3,又φ2(x )的对称轴的横坐标值比φ1(x )的对称轴的横坐标值大,故有μ1<μ2=μ3.又σ越大,曲线越“矮胖”,σ越小,曲线越“瘦高”,由图象可知,正态分布密度函数φ1(x )和φ2(x )的图象一样“瘦高”,φ3(x )明显“矮胖”,从而可知σ1=σ2<σ3.

6①命题“”的否定是:“”;

②若

,则的最大值为4;

③定义在R 上的奇函数

满足

,则

的值为0;

④已知随机变量服从正态分布,则;

其中真命题的序号是________(请把所有真命题的序号都填上).

【答案】①③④ ①命题“”的否定是:“”;所以

①正确.

②若,则,即.所以

,即,解得,则的最小值为4;

所以②错误.③定义在R上的奇函数满足,则,且,即函数的周期是4.所以;所以③正确.

④已知随机变量服从正态分布,则

,所以;所以

④正确,所以真命题的序号是①③④.

7、在区间上任取两数m和n,则关于x的方程有两不相等实根的概

率为___________.

【答案】由题意知要使方程有两不相等实根,则,即.作出对应的可行域,如图直线,,当时,,所以

,所以方程有两不相等实根的概率为

.

8、下列命题:

` (1);

(2)不等式恒成立,则;

(3)随机变量X服从正态分布N(1,2),则

(4)已知则.其中正确命题的序号为____________.

【答案】(2)(3) (1),所以(1)错误.(2)不等式

的最小值为4,所以要使不等式成立,则,所以(2)正确.(3)正确.(4)

,所以(4)错误,所以正确的为(2)(3).

2已知某篮球运动员2012年度参加了40场比赛,现从中抽取5场,用茎叶图统计该运动员5场中的得分如图所示,则该样本的方差为

()A.26 B.25 C.23 D.18

【答案】D样本的平均数为23,所以样本方差为

,选D.

3有一个容量为的样本,其频率分布直方图如图所示,据图估计,样本数据在内的频数为

( )

A .

B .

C .

D .

【答案】C 样本数据在

之外的频率为

,

所以样本数据在内的频率为

,所以样本数据在的频数为

,选 C .

4.(2013年临沂市高三教学质量检测考试理科数学)如图所示,在边长为l 的正方形OABC 中

任取一点P,则点P 恰好取自阴影部分的概率为 ( )

A .

B .

C .

D .

【答案】 【答案】B 根据积分的应用可知所求阴影部分的面积为

,所以由几何概型公式可得点P 恰好取自阴影部分

的概率为

,选

B .

5从集合{}1,2,3,4,5中随机选取3个不同的数,这个数可以构成等差数列的概率为______.

【答案】

2

5

从集合{}1,2,3,4,5中随机选取3个不同的数有3

510C =种.则3个数能构成等差数列的

有,1,2,3;2,3,4;3,4,5;1,3,5;有4种,所以这个数可以构成等差数列的概率为

42

105

=.

正态分布及其经典习题和答案

正态分布讲义 【知识网络】 1、取有限值的离散型随机变量均值、方差的概念; 2、能计算简单离散型随机变量的均值、方差,并能解决一些实际问题; 3、通过实际问题,借助直观(如实际问题的直观图),认识正态分布、曲线的特点及曲线所表示的意义。 【典型例题】 例1:(1)已知随机变量X 服从二项分布,且E (X )=2.4,V (X )=1.44,则二项分布的参数n ,p 的值为 ( ) A .n=4,p=0.6 B .n=6,p=0.4 C .n=8,p=0.3 D .n=24,p=0.1 答案:B 。解析:()4.2==np X E ,()44.1)1(=-=p np X V 。 (2)正态曲线下、横轴上,从均数到∞+的面积为( )。 A .95% B .50% C .97.5% D .不能确定(与标准差的大小有关) 答案:B 。解析:由正态曲线的特点知。 (3)某班有48名同学,一次考试后的数学成绩服从正态分布,平均分为80,标准差为10,理论上说在80分到90分的人数是 ( ) A 32 B 16 C 8 D 20 答案:B 。解析:数学成绩是X —N(80,102 ), 8080 9080(8090)(01)0.3413,480.3413161010P X P Z P Z --??≤≤=≤≤=≤≤≈?≈ ??? 。 (4)从1,2,3,4,5这五个数中任取两个数,这两个数之积的数学期望为___________ 。 答案:8.5。解析:设两数之积为X , ∴E(X)=8.5. (5)如图,两个正态分布曲线图: 1为)(1 ,1x σμ?,2为)(22x σμ? , 则1μ 2μ,1σ 2σ(填大于,小于) 答案:<,>。解析:由正态密度曲线图象的特征知。 例2:甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格. (Ⅰ)求甲答对试题数ξ的概率分布及数学期望; (Ⅱ)求甲、乙两人至少有一人考试合格的概率. 答案:解:(Ⅰ)依题意,甲答对试题数ξ的概率分布如下: 甲答对试题数ξ的数学期望 E ξ=5 9 61321210313010=?+?+?+? . (Ⅱ)设甲、乙两人考试合格的事件分别为A 、B ,则

高二数学 正态分布练习题

正态分布 ㈠ 知识点回顾: 1、正态分布概念:若连续型随机变量ξ的概率密度函数为 ),(,21)(2 22)(∞+-∞∈= --x e x f x σμσ π, 其中,σμ为常数,且0σ>,则称ξ服从正态分布,简记为ξ~()2,N μσ。 ()f x 的图象称为正态曲线。 2、正态分布的期望与方差 若ξ~()2,N μσ,则2,E D ξμξσ== 3、正态曲线的性质: ①曲线在x 轴的上方,与x 轴不相交. ②曲线关于直线x=μ对称. ③曲线在x=μ时位于最高点. ④当x<μ时,曲线上升;当x>μ时,曲线下降.并且当曲线向左、右两边无限延伸时,以 x 轴为渐进线,向它无限靠近. ⑤当μ一定时,曲线的形状由σ确定.σ越大,曲线越“矮胖”,表示总体的分布越分散;σ 越小,曲线越“瘦高”,表示总体的分布越集中. 4、在标准正态分布表中相应于0x 的值()0x Φ是指总体取值小于0x 的概率即 ()()00x P x x Φ=< 00≥x 时,则)(0x Φ的值可在标准正态 分布表中查到 00

x y O (6)、()2,N μσ与()0,1N 的关系: ①若ξ~()2,N μσ,有()()000x P x F x μξσ-??<==Φ ??? ②若ξ~()2,N μσ,则()2112x x P x x x μμσσ--???? <<=Φ-Φ ? ????? (二)习题 一、选择题 1.某市组织一次高三调研考试,考试后统计的数学成绩服从正态分布,其密度函数为 )(10 21 )(200 )80(2R x e x f x ∈?= --π,则下列命题不正确的是 ( B ) A .该市这次考试的数学平均成绩为80分; B .分数在120分以上的人数与分数在60分以下的人数相同; C .分数在110分以上的人数与分数在50分以下的人数相同; D .该市这次考试的数学成绩标准差为10. 2.设随机变量ξ服从标准正态分布()0,1N ,若()1P p ξ>=,则()10P ξ-<<=(D ) A. 2 p B. 1p - C. 12p - D. 12p - 3.设随机变量),(~2σμξN ,且 )()(c P c P >=≤ξξ,则c 等于( D ) μμσ...0.D C B A - 4. 已知正态分布曲线关于y 轴对称,则μ值为( ) A .1 B .-1 C .0 D.不确定 5.正态分布N (0,1)在区间(-2,-1)和(1,2)上的取值的概率分别为12,p p ,则12,p p 的大小关系为( ) A .12p p < B .12p p > C .12p p = D.不确定 6.设随机变量),(~2σμξN ,且1,3==ξξD E ,则)11(≤<-ξP =( B ) 1)2(2.)4()2(.)2()4(.1)1(2.-ΦΦ-ΦΦ-Φ-ΦD C B A 7.已知随机变量ξ服从正态分布2(2)N σ,,(4)0.84P ξ=≤,则(0)P ξ=≤( A ) A .0.16 B .0.32 C .0.68 D ,0.84 8.设随机变量ξ服从正态分布(2,9)N ,若(1)(1)P c P c ξξ>+=<-,则c = ( B ) A.1 B.2 C.3 D.4 9.已知随机变量ζ服从正态分布N (3,a 2),则P (3)ζ<=( D ) (A)15 (B)14 (C)13 (D)12 1 x 2 x )(0x Φ) (10x -Φ-

正态分布及其经典习题和答案DOC

4 3 2 1 -1 -4 -2 2 4 2 1 (1)正态曲线下、横轴上,从均数到∞+的面积为( )。 A .95% B .50% C .97.5% D .不能确定 答案:B 。解析:由正态曲线的特点知。 (2)某班有48名同学,一次考试后的数学成绩服从正态分布,平均分为80,标准差为10,理论上说在80分到90分的人数是 ( ) A 32 B 16 C 8 D 20 答案:B 。解析:数学成绩是X —N(80,102), 8080 9080(8090)(01)0.3413,480.34131610 10P X P Z P Z --??≤≤=≤≤=≤≤≈?≈ ??? (3)如图,两个正态分布曲线图: 1为)(1,1x σμ?,2为)(22x σμ?, 则1μ 2μ,1σ 2σ) 答案:<,>。解析:由正态密度曲线图象的特征知。 例2:甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格. 求甲、乙两人至少有一人考试合格的概率. 答案:设甲、乙两人考试合格的事件分别为A 、B ,则

P (A )=3 1036 14 2 6 C C C C +=3 21202060=+,P (B )=1514120565631038 1228=+=+C C C C . 因为事件A 、B 相互独立, 方法一: ∴甲、乙两人考试均不合格的概率为 ()()() 45 1 15141321=??? ??-??? ??-=?=?B P A P B A P ∴甲、乙两人至少有一人考试合格的概率为 () 45 4445111=-=?-=B A P P 答:甲、乙两人至少有一人考试合格的概率为45 44 . 方法二: ∴甲、乙两人至少有一个考试合格的概率为 ()() ()4544 15143215143115132= ?+?+?=?+?+?=B A P B A P B A P P 答:甲、乙两人至少有一人考试合格的概率为 4544 . 1.标准正态分布的均数与标准差分别为( )。 A .0与1 B .1与0 C .0与0 D .1与1 答案:A 。解析:由标准正态分布的定义知。 2.正态分布有两个参数μ与σ,( )相应的正态曲线的形状越扁平。 A .μ越大 B .μ越小 C .σ越大 D .σ越小 答案: C 。解析:由正态密度曲线图象的特征知。

(完整版)正态分布习题与详解(非常有用-必考点)

1. 若x ~N (0,1),求(l)P (- 2.322). 解:(1)P (-2.322)=1-P (x <2)=1-Φ(2)=l-0.9772=0.0228. 2利用标准正态分布表,求标准正态总体 (1)在N(1,4)下,求)3(F (2)在N (μ,σ2 )下,求F(μ-σ,μ+σ); 解:(1))3(F =)2 1 3( -Φ=Φ(1)=0.8413 (2)F(μ+σ)=)(σ μ σμ-+Φ=Φ(1)=0.8413 F(μ-σ)=)( σ μ σμ--Φ=Φ(-1)=1-Φ(1)=1-0.8413=0.1587 F(μ-σ,μ+σ)=F(μ+σ)-F(μ-σ)=0.8413-0.1587=0.6826 3某正态总体函数的概率密度函数是偶函数,而且该函数的最大值为 π 21,求总体落入区 间(-1.2,0.2)之间的概率 Φ(0.2)=0.5793, Φ(1.2)=0.8848] 解:正态分布的概率密度函数是),(,21)(2 22)(+∞-∞∈= -- x e x f x σμσ π,它是偶函数, 说明μ=0,)(x f 的最大值为)(μf =σ π21,所以σ=1,这个正态分布就是标准正态分 布 ( 1.20.2)(0.2)( 1.2)(0.2)[1(1.2)](0.2)(1.2)1 P x -<<=Φ-Φ-=Φ--Φ=Φ+Φ- 0.57930.884810.4642=+-= 4.某县农民年平均收入服从μ=500元,σ=200元的正态分布 1)求此县农民年平均收入在500:520元间人数的百分比;(2)如果要使此县农民年平均收入在(a a +-μμ,) 内的概率不少于0.95,则a 至少有多大?[Φ(0.1)=0.5398, Φ(1.96)=0.975] 解:设ξ表示此县农民年平均收入,则)200,500(~2 N ξ 520500500500 (500520)( )()(0.1)(0)0.53980.50.0398200200 P ξ--<<=Φ-Φ=Φ-Φ=-=(2)∵()()()2()10.95200200200 a a a P a a μξμ-<<+=Φ-Φ-=Φ-≥, ()0.975200 a ∴Φ≥ 查表知: 1.96392200a a ≥?≥ 奎屯王新敞新疆

正态分布习题与详解(非常有用-必考点)

1. 若x ~N (0,1),求(l)P 2). 解:(1)P 2)=1-P (x <2)=1-(2)==. 奎屯王新敞新疆 2利用标准正态分布表,求标准正态总体 (1)在N(1,4)下,求)3(F (2)在N (μ,σ2)下,求F(μ-σ,μ+σ); 解:(1))3(F =)2 1 3( -Φ=Φ(1)= (2)F(μ+σ)=)(σ μ σμ-+Φ=Φ(1)= F(μ-σ)=)( σ μ σμ--Φ=Φ(-1)=1-Φ(1)=1-= F(μ-σ,μ+σ)=F(μ+σ)-F(μ-σ)=-= 3某正态总体函数的概率密度函数是偶函数,而且该函数的最大值为π 21,求总体落入区 间(-,)之间的概率 [Φ()=, Φ()=] 解:正态分布的概率密度函数是),(,21)(2 22)(+∞-∞∈= -- x e x f x σμσ π,它是偶函数, 说明μ=0,)(x f 的最大值为)(μf =σ π21,所以σ=1,这个正态分布就是标准正态分 布 ( 1.20.2)(0.2)( 1.2)(0.2)[1(1.2)](0.2)(1.2)1 P x -<<=Φ-Φ-=Φ--Φ=Φ+Φ- 0.57930.884810.4642=+-= 4.某县农民年平均收入服从μ=500元,σ=200元的正态分布 (1)求此县农民年平均收入在500:520元间人数的百分比;(2)如果要使此县农民年平均收入在(a a +-μμ,)内 的概率不少于,则a 至少有多大[Φ()=, Φ()=] 解:设ξ表示此县农民年平均收入,则)200,500(~2 N ξ 520500500500 (500520)( )()(0.1)(0)0.53980.50.0398200200 P ξ--<<=Φ-Φ=Φ-Φ=-=(2)∵()()()2()10.95200200200 a a a P a a μξμ-<<+=Φ-Φ-=Φ-≥, ()0.975200 a ∴Φ≥ 查表知: 1.96392200a a ≥?≥

正态分布习题

1.标准正态曲线下,中间95%的面积所对应的横轴范 围是。 A.-∞到+1.96 B.-1.96到+1.96 C.-∞到+2.58 D.-2.58到+2.58 E.-1.64到+1.64 2.正态分布的两个参数μ与σ,对应的正态曲线愈趋扁平。 A.μ愈大B.μ愈小C.σ愈大D.σ愈小E.μ愈小且σ愈小 3.正态分布的两个参数μ与σ,对应的正态曲线平行右移。 A.增大μB.减小μC.增大σD.减小σE.增大μ同时增大σ 4.观察某地100名12岁男孩身高,均数为138.00cm,标准差为 4.12cm,Z=(128.00-138.00)/4.12。φ(Z)是标准正态分布的分布函数,1-φ(Z)=1-φ(- 2.43)=0.9925,结论是。 A.理论上身高低于138.00cm的12岁男孩占99.25%。 B.理论上身高高于138.00cm的12岁男孩占99.25%。 C.理论上身高在128.00cm至138.00cm的12岁男孩占99.25%。

D.理论上身高低于128.00cm的12岁男孩占99.25%。 E.理论上身高高于128.00cm的12岁男孩占99.25%。5.正态曲线下、横轴上,从μ到μ+2.58σ的面积占曲线下总面积的。 A.99% B.95% C.47.5% D.49.5% E.90% 6.健康男子收缩压的正常值范围一般指。 A.所有健康成年男子收缩压的波动范围 B.绝大多数正常成年男子收缩压的波动范围 C.所有正常成年男子收缩压的波动范围 D.少部分正常成年男子收缩压的波动范围 E.所有正常人收缩压的波动范围 7.标准正态分布曲线下中间90%的面积所对应的横轴 尺度Z的范围是。 A.-1.645~1.645 B.-∞~1.645 C.-∞~1.282 D.-1.282~1.282 E.-1.96~1.96 8.在正态曲线,下列关于μ- 1.645σ的说法正确的是。 A.μ-1.645σ到曲线对称轴的面积为90% B.μ-1.645σ到曲线对称轴的面积为10%

正态分布习题

1.标准正态曲线下,中间95%的面积所对应的横轴范围是。 A.-∞到+1.96 B.-1.96到+1.96 C.-∞到+2.58 D.-2.58到+2.58 E.-1.64到+1.64 2.正态分布的两个参数μ与σ,对应的正态曲线愈趋扁平。 A.μ愈大B.μ愈小C.σ愈大D.σ愈小E.μ愈小且σ愈小 3.正态分布的两个参数μ与σ,对应的正态曲线平行右移。 A.增大μB.减小μC.增大σD.减小σE.增大μ同时增大σ 4.观察某地100名12岁男孩身高,均数为138.00cm,标准差为4.12cm,Z=(128.00-138.00)/4.12。φ(Z)是标准正态分布的分布函数,1-φ(Z)=1-φ(-2.43)=0.9925,结论是。 A.理论上身高低于138.00cm的12岁男孩占99.25%。 B.理论上身高高于138.00cm的12岁男孩占99.25%。 C.理论上身高在128.00cm至138.00cm的12岁男孩占99.25%。

D.理论上身高低于128.00cm的12岁男孩占99.25%。 E.理论上身高高于128.00cm的12岁男孩占99.25%。5.正态曲线下、横轴上,从μ到μ+2.58σ的面积占曲线下总面积的。 A.99% B.95% C.47.5% D.49.5% E.90% 6.健康男子收缩压的正常值范围一般指。 A.所有健康成年男子收缩压的波动范围 B.绝大多数正常成年男子收缩压的波动范围 C.所有正常成年男子收缩压的波动范围 D.少部分正常成年男子收缩压的波动范围 E.所有正常人收缩压的波动范围 7.标准正态分布曲线下中间90%的面积所对应的横轴尺度Z的范围是。 A.-1.645~1.645 B.-∞~1.645 C.-∞~1.282 D.-1.282~1.282 E.-1.96~1.96 8.在正态曲线,下列关于μ-1.645σ的说法正确的是。 A.μ-1.645σ到曲线对称轴的面积为90% B.μ-1.645σ到曲线对称轴的面积为10%

正态分布讲解(含标准表)

2.4正态分布 复习引入: 总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线. 总体密度曲线 b 单位 O 频率/组距 a 它反映了总体在各个范围内取值的概率.根据这条曲线,可求出总体在区间(a,b)内取值的概率等于总体密度曲线,直线x=a,x=b及x轴所围图形的面积. 观察总体密度曲线的形状,它具有“两头低,中间高,左右对称”的特征,具有这种特征的总体密度曲线一般可用下面函数的图象来表示或近似表示: 2 2 () 2 , 1 (),(,) 2 x x e x μ σ μσ ? πσ - - =∈-∞+∞ 式中的实数μ、)0 (> σ σ是参数,分别表示总体的平均数与标准差,, ()x μσ ? 的图象为正态分布密度曲线,简称正态曲线. 讲解新课:

一般地,如果对于任何实数a b <,随机变量X 满足 ,()()b a P a X B x dx μσ?<≤=?, 则称 X 的分布为正态分布(normal distribution ) .正态分布完全由参数μ和σ确定,因此正态分布常记作),(2 σ μN .如果随机变量 X 服从正态分布,则记为X ~),(2σμN . 经验表明,一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.例如,高尔顿板试验中,小球在下落过程中要与众多小木块发生碰撞,每次碰撞的结果使得小球随机地向左或向右下落,因此小球第1次与高尔顿板底部接触时的坐标 X 是众多随机碰撞的结果,所以它近似服从正态分布.在现实生活中,很多随机变量都服从或近似地服从正态分布.例如长度测量误差;某一地区同年龄人群的身高、体重、肺活量等;一定条件下生长的小麦的株高、穗长、单位面积产量等;正常生产条件下各种产品的质量指标(如零件的尺寸、纤维的纤度、电容器的电容量、电子管的使用寿命等);某地每年七月份的平均气温、平均湿度、降雨量等;一般都服从正态分布.因此,正态分布广泛存在于自然现象、生产和生活实际之中.正态分布在概率和统计中占有重要的地位. 说明:1参数μ是反映随机变量取值的平均水平的特征数,可以用样本均值去佑计;σ是衡量随机变量总体波动大小的特征数,可以用样本标准差去估计. 2.早在 1733 年,法国数学家棣莫弗就用n !的近似公式得到了正态分布.之后,德国数学家高斯在研究测量误差时从另一个角度导出了它,并研究了它的性质,因此,人们也称正态分布为高斯分布. 2.正态分布),(2 σ μN )是由均值μ和标准差σ唯一决定的分布 通过固定其中一个值,讨论均值与标准差对于正态曲线的影响

正态分布练习题(含部分答案)

正 态分布练习题1 正态分布1.1正态函数及曲线特点 1.(对称性):已知随机变量ξN (2,32)。若P (ξ>C +1)=P (ξ

最新正态分布及其经典习题和答案

专题:正态分布 【知识网络】 1、取有限值的离散型随机变量均值、方差的概念; 2、能计算简单离散型随机变量的均值、方差,并能解决一些实际问题; 3、通过实际问题,借助直观(如实际问题的直观图),认识正态分布、曲线的特点及曲线所表示的意义。 【典型例题】 例1:(1)已知随机变量X 服从二项分布,且E (X )=2.4,V (X )=1.44,则二项分布的参数n ,p 的值为 ( ) A .n=4,p=0.6 B .n=6,p=0.4 C .n=8,p=0.3 D .n=24,p=0.1 答案:B 。解析:()4.2==np X E ,()44.1)1(=-=p np X V 。 (2)正态曲线下、横轴上,从均数到∞+的面积为( )。 A .95% B .50% C .97.5% D .不能确定(与标准差的大小有关) 答案:B 。解析:由正态曲线的特点知。 (3)某班有48名同学,一次考试后的数学成绩服从正态分布,平均分为80,标准差为10,理论上说在80分到90分的人数是 ( ) A 32 B 16 C 8 D 20 答案:B 。解析:数学成绩是X —N(80,102), 8080 9080(8090)(01)0.3413,480.34131610 10P X P Z P Z --??≤≤=≤≤=≤≤≈?≈ ???。 (4)从1,2,3,4,5这五个数中任取两个数,这两个数之积的数学期望为___________ 。 答案:8.5。解析:设两数之积为X , ∴E(X)=8.5. (5)如图,两个正态分布曲线图: 1为)(1 ,1x σμ?,2为)(22x σμ?, 则1μ 2μ,1σ 2σ答案:<,>。解析:由正态密度曲线图象的特征知。 例2:甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格. (Ⅰ)求甲答对试题数ξ的概率分布及数学期望; (Ⅱ)求甲、乙两人至少有一人考试合格的概率. 答案:解:(Ⅰ)依题意,甲答对试题数ξ的概率分布如下: 甲答对试题数ξ的数学期望 E ξ=5 9 61321210313010=?+?+?+? . (Ⅱ)设甲、乙两人考试合格的事件分别为A 、B ,则

正态分布及其经典习题和答案

25.3正态分布 【知识网络】 1、取有限值的离散型随机变量均值、方差的概念; 2、能计算简单离散型随机变量的均值、方差,并能解决一些实际问题; 3、通过实际问题,借助直观(如实际问题的直观图),认识正态分布、曲线的特点及曲线所表示的意义。 【典型例题】 例1:(1)已知随机变量X 服从二项分布,且E (X )=2.4,V (X )=1.44,则二项分布的参数n ,p 的值为 ( ) A .n=4,p=0.6 B .n=6,p=0.4 C .n=8,p=0.3 D .n=24,p=0.1 (2)正态曲线下、横轴上,从均数到∞+的面积为( )。 A .95% B .50% C .97.5% D .不能确定(与标准差的大小有关) (3)某班有48名同学,一次考试后的数学成绩服从正态分布,平均分为80,标准差为10,理论上说在80分到90分的人数是 ( ) A 32 B 16 C 8 D 20 (4)从1,2,3,4,5这五个数中任取两个数,这两个数之积的数学期望为___________ 。 (5)如图,两个正态分布曲线图: 1为)(1 ,1x σμ?,2为)(22x σμ?, 则1μ 2μ,1σ 2σ例2:甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格. (Ⅰ)求甲答对试题数ξ的概率分布及数学期望; (Ⅱ)求甲、乙两人至少有一人考试合格的概率. 例3:甲、乙两名射手在一次射击中得分为两个相互独立的随机变量X 和Y ,其分布列如下: (1)求a,b 的值; (2)比较两名射手的水平. 例4:一种赌博游戏:一个布袋内装有6个白球和6个红球,除颜色不同外,6个小球完全一样,每次从袋中取出6个球,输赢规则为:6个全红,赢得100元;5红1白,赢得50元;4红2白,赢得20元;3红3白,输掉100元;2红4白,赢得20元;1红5白,赢得50元;6全白,赢得100元.而且游戏是免费的.很多人认为这种游戏非常令人心动,现在,请利用我们学过的概率知识解释我们是否该“心动”.。

正态分布练习习题.docx

1.标准正态曲线下,中间95% 的面积所对应的横轴范 围是。 A .-∞到 +1.96 B .- 1.96 到 +1.96 C .-∞到 +2.58 D.- 2.58 到 +2.58E.- 1.64 到 +1.64 2.正态分布的两个参数μ与σ,对应的正态曲线愈趋扁平。 A .μ愈大B.μ愈小 C .σ愈大D.σ愈小E.μ愈小且σ愈小 3.正态分布的两个参数μ与σ,对应的正态曲线平行右移。 A .增大μB.减小μC.增大σ D .减小σE.增大μ同时增大σ 4.观察某地100 名 12 岁男孩身高,均数为138.00cm ,标准差为 4.12cm, Z= ( 128.00- 138.00) /4.12。φ( Z)是标准正态分布的分布函数,1-φ( Z ) =1 -φ(- 2.43)=0.9925,结论是。 A .理论上身高低于138.00cm 的 12 岁男孩占99.25% 。 B.理论上身高高于138.00cm 的 12 岁男孩占99.25% 。 C.理论上身高在128.00cm 至 138.00cm 的 12 岁男孩占99.25% 。

D.理论上身高低于128.00cm 的 12 岁男孩占99.25% 。 E.理论上身高高于128.00cm 的 12 岁男孩占99.25% 。5.正态曲线下、横轴上,从μ到μ+2.58σ的面积占曲线下总面积的。 A .99%B.95%C.47.5% D .49.5% E. 90% 6.健康男子收缩压的正常值范围一般指。 A.所有健康成年男子收缩压的波动范围 B.绝大多数正常成年男子收缩压的波动范围 C.所有正常成年男子收缩压的波动范围 D.少部分正常成年男子收缩压的波动范围 E.所有正常人收缩压的波动范围 7.标准正态分布曲线下中间90% 的面积所对应的横轴 尺度 Z 的范围是。 A .- 1.645~1.645B.-∞~ 1.645C.-∞~ 1.282 D.- 1.282~1.282E.- 1.96~ 1.96 8.在正态曲线,下列关于μ- 1.645 σ的说法正确的是。 A .μ- 1.645σ到曲线对称轴的面积为90% B.μ-1.645σ到曲线对称轴的面积为10%

正态分布练习题

参考数据:若ξ~N (μ,σ2),P (μ-σ<ξ≤μ+σ)=0.6826,P (μ-2σ<ξ≤μ+2σ)=0.9544, P (μ-3σ<ξ≤μ+3σ)=0.9974.) 1.某省2015年全省高中男生身高统计调查数据显示:全省100000名男生的身高服从正态分布N (170.5,16).现从某校高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于157.5cm 和187.5cm 之间,将测量结果按如下方式分成6组:第一组[157.5,16 2.5),第二组[162.5,167.5),…,第6组[182.5,187.5),图是按上述分组方法得到的频率分布直方图. (1)试评估我校高三年级男生在全省高中男生中的平均身高状况; (2)求这50名男生身高在177.5cm 以上(177.5cm )的人数; (3)在这50名男生身高在177.5cm 以上(含177.5cm )的人中任意抽取2人,该2人中身高排名(以高到低)在全省前130名的人数记为ξ,求ξ的数学期望. 2.从某市统考的学生数学考试卷中随机抽查100份数学试卷作为样本,分别统计出这些试卷总分,由总分得到如下的频率分布直方图. (1)求这100 份数学试卷的样本平均分和样本方差s 2(同一组中的数据用该组区间的中点值作代表) (2)由直方图可以认为,这批学生的数学总分Z 服从正态分布N (μ,σ2),其中μ 近似为样本平均数,σ2近似为样本方差s 2. ①利用该正态分布,求P (81<z <119); ②记X 表示2400名学生的数学总分位于区间(81,119)的人数,利用①的结果,求EX (用样本的分布区估计总体的分布).附: ≈19 ,≈18, 3.在某学校的一次选 拔性考试中,随机抽取了100名考生的成绩(单位:分),并 把所得数据列成了如下表所示的频数分布表: ()1求抽取的样本平均数x 和样本方差2s (同一组中的数据用该组区间的中点值作代表); ()2已知这次考试共有2000名考生参加, 如果近似地认为这次成绩z 服从正态分布()2,μσN (其中μ近似为样本平均数x ,2 σ近似为样本方差2 s ),且规定82.7分是复试线,那么在这2000名 考生中,能进入复试的有多少人?(附: 16112.7 ≈,若 () 2,z μσN ,则 () 0.6826z μ σμσP -< <+=,()220.9544z μσμσP -<<+=) ()3已知样本中成绩在[]90,100中的6名考生中,有 4名男生,2名女生,现从中选3人进行回访,记选出的男生人数为ξ,求ξ的分布列与期望()ξE . 4.从某企业生产的某种产品中抽取500件,测量这 些产品的一项质量指标值,由测量结果得如下图频率分布直方图: (I )求这500件产品质量指标值的样本平均值和样本方差(同一组的数据用该组区间的中点值作代表); (II )由直方图可以认为,这种产品的质量指标服从正态分布 ,其中 近似为样 本平均数, 近似为样本方差 . (i )利用该正态分布,求 ; (ii )某用户从该企业购买了100件这种产品,记 表示这100件产品中质量指标值位于区间的产品件数.利用(i )的结果,求 .附: 5.在一次全国高中生五省大联考中,有90万名学生参加,考后对所有学生成绩统计发现,应用 成绩服从正态分布()2 ,N μδ,右表用茎叶图列举了20名学 生的英语成绩,巧合的是这20个数据的平均数和方差恰好比所有90万个数据的平均数和方差都多0.9,且这20个数据的方差为49.9. (1)求,;μδ (2)给出正态分布的数据: (ⅰ)若从这90万名学生中随机抽取1名,求该生英语成绩在()82.1,103.1内的概率; (ⅱ)如从这90万名学生中随机抽取1万名,记X 为这1万名学生中英语成绩在()82.1,103.1内的人数,求X 的数学期望. 18.从某企业的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率

河北省张家口一中选修2-3 2.4 正态分布 教案

教学目标: 知识与技能:掌握正态分布在实际生活中的意义和作用 。 过程与方法:结合正态曲线,加深对正态密度函数的理理。 情感、态度与价值观:通过正态分布的图形特征,归纳正态曲线的性质 。 教学重点:正态分布曲线的性质、标准正态曲线N(0,1) 。 教学难点:通过正态分布的图形特征,归纳正态曲线的性质。 复习引入: 总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线. 它反映了总体在各个范围内取值的概率.根据这条曲线,可求出总体在区间(a ,b )内取值的概率等于总体密度曲线,直线x =a ,x =b 及x 轴所围图形的面积.即总体密度曲线在区间(a ,b )上得定积分。 观察总体密度曲线的形状,它具有“两头低,中间高,左右对称”的特征,具有这种特征的总体密度曲线一般可用下面函数的图象来表示或近似表示: 22()2,(),(,)2x x x μσμσ?πσ--=∈-∞+∞ 式中的实数μ、)0(>σσ是参数,分别表示总体的平均数与标准差,,()x μσ?的图象为正态分布密度曲线,简称正态曲线. 讲解新课:

1.一般地,如果对于任何实数a b <,随机变量X 满足 ,()()b a P a X b x dx μσ?<≤=?, 则称 X 的分布为正态分布(normal distribution ) .正态分布完全由参数μ和σ确定,因此正态分布常记作),(2σμN .如果随机变量 X 服从正态分布,则记为X ~),(2 σμN . 说明:1参数μ是反映随机变量取值的平均水平的特征数,可以用样本均值去佑计;σ是衡量随机变量总体波动大小的特征数,可以用样本标准差去估计. 2.早在 1733 年,法国数学家棣莫弗就用n !的近似公式得到了正态分布.之后,德国数学家高斯在研究测量误差时从另一个角度导出了它,并研究了它的性质,因此,人们也称正态分布为高斯分布. 2.正态分布),(2σμN )是由均值μ和标准差σ唯一决定的分布 通过固定其中一个值,讨论均值与标准差对于正态曲线的影响

正态分布练习题

正态分布 1.设随机变量ξ服从标准正态分布()0,1N ,若()1P p ξ>=,则()10P ξ-<<=() A. 2 p B. 1p - C. 12p - D. 12p - 2.设随机变量),(~2 σμξN ,且 )()(c P c P >=≤ξξ,则c 等于( ) 3.设ξ的概率密度函数为2 )1(2 21)(-- = x e x f π ,则下列结论错误的是( ) (A) )1()1(>=<ξξp p (B))11()11(<<-=≤≤-ξξp p (C))(x f 的渐近线是0=x (D) 1-=ξη~)1,0(N 4.设随机变量ξ服从正态分布()0,1N ,记()()<x P x ξΦ=,则下列结论不正确的是( ) A .()1 02 Φ= B .()()1x x Φ=-Φ- C .()()()<21>0P a a a ξ=Φ- D .()()()>1>0P a a a ξ=-Φ 5.设随机变量),(~2 σμξN ,且1,3==ξξD E ,则)11(≤<-ξP =( ) 6.如果随机变量)1,0(~N ξ,),(~2 σμηN ,那么 =η( ) 7.已知随机变量ξ服从正态分布2 (2)N σ,,(4)0.84P ξ=≤,则(0)P ξ=≤( ) A .0.16 B .0.32 C .0.68 D ,0.84 8.设随机变量ξ服从正态分布(2,9)N ,若(1)(1)P c P c ξξ>+=<-,则c = ( ) B.2 9.已知随机变量ζ服从正态分布N (3,a 2 ),则P (3)ζ<=( ) (A) 15 (B) 14 (C) 13 (D) 12 10.若φ(3)=,则标准正态总体在区间(-3,3)内取值的概率为 () A . B .0.9974 C . D . 11.下图是正态分布N ∽(0,1)的正态分布曲线图,下面4个式子中,能表示图中阴影部分面积的有( )个 ① 1()2a φ-- ② ()a φ- ③1()2a φ-

正态分布讲解含标准表

正态分布讲解含标准表 Revised by Jack on December 14,2020

2.4正态分布 复习引入: 总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线. 它反映了总体在各个范围内取值的概率.根据这条曲线,可求出总体在区间(a ,b )内取值的概率等于总体密度曲线,直线x =a ,x =b 及x 轴所围图形的面积. 观察总体密度曲线的形状,它具有“两头低,中间高,左右对称”的特征,具有这种特征的总体密度曲线一般可用下面函数的图象来表示或近似表示: 式中的实数 μ、)0(>σσ是参数,分别表示总体的平均数与标准差,,()x μσ ?的图象为正态分布密度曲 线,简称正态曲线. 讲解新课: 一般地,如果对于任何实数a b <,随机变量X 满足 ,()()b a P a X B x dx μσ?<≤=?, 则称 X 的分布为正态分布(normal distribution ) .正态分布完全由参数μ和σ确定,因此正态分布常记作 ),(2σμN .如果随机变量 X 服从正态分布,则记为X ~),(2σμN . 经验表明,一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.例如,高尔顿板试验中,小球在下落过程中要与众多小木块发生碰撞,每次碰撞的结果使得小球随机地向左或向右下落,因此小球第1次与高尔顿板底部接触时的坐标 X 是众多随机碰撞的结果,所以它近似服从正态分布.在现实生活中,很多随机变量都服从或近似地服从正态分布.例如长度测量误差;某一地区同年龄人群的身高、体重、肺活量等;一定条件下生长的小麦的株高、穗长、单位面积产量等;正常生产条件下各种产品的质量指标(如零件的尺寸、纤维的纤度、电容器的电容量、电子管的使用寿命等);某地每年七月份的平均气温、平均湿度、降雨量等;一般都服从正态分布.因此,正态分布广泛存在于自然现象、生产和生活实际之中.正态分布在概率和统计中占有重要的地位. 说明:1参数μ是反映随机变量取值的平均水平的特征数,可以用样本均值去佑计;σ是衡量随机变量总体波动大小的特征数,可以用样本标准差去估计. 2.早在 1733 年,法国数学家棣莫弗就用n !的近似公式得到了正态分布.之后,德国数学家高斯在研究测量误差时从另一个角度导出了它,并研究了它的性质,因此,人们也称正态分布为高斯分布. 2.正态分布),(2 σ μN )是由均值μ和标准差σ唯一决定的分布 3.通过对三组正态曲线分析,得出正态曲线具有的基本特征是两头底、中间高、左右对称 正态曲线的作图,书 中没有做要求,教师也不必补上 讲课时教师可以应用几何画板,形象、美观地画出三条正态曲线的图形,结合前面 均值与标准差对图形的影响,引导学生观察总结正态曲线的性质 4.正态曲线的性质: (1)曲线在x 轴的上方,与x (2)曲线关于直线x=μ对称 (3)当x=μ时,曲线位于最高点

高中正态分布经典练习题

正 态分布 一、选择题 1.已知随机变量ξ服从正态分布)9,2(N ,若)1()1(-<=+>c P c P ξξ,则c 等于() A.1 B.2 C.3 D.4 2.已知随机变量ξ服从正态分),2(2σN ,且8.0)4(=<ξP ,则)20(<<ξP 等于() A.0.6 B.0.4 C.0.3 D.0.2 3.已知随机变量ξ服从正态分布),2(2σN ,(4)0.84P ξ=≤,则(0)P ξ≤等于() A.0.16 B.0.32 C.0.68 D.0.84 4.已知随机变量X 服从正态分布),2(2σN ,8.0)40(=<X P 等于() A .0.1B.0.2C.0.4D.0.6 5.已知随机变量ξ服从正态分布),3(2σN ,且3.0)2(=<ξP ,则)42(<<ξP 等于() A.0.5 B.0.2 C.0.3 D.0.4 6.已知随机变量ξ服从正态分布),3(2σN ,(4)0.842P ξ=≤,则(2)P ξ≤等于() 7.已知随机变量X 服从正态分布)1,3(N ,且6826.0)42(=<X P 等于() A.0.1588 B.0.158 C.0.1586 D.0.1585 8.已知随机变量X 服从正态分布),0(2σN ,若023.0)2(=>X P ,则(22)P X -≤≤等于() A.0.477 B.0.628 C.0.954 D.0.977 9.在某次联考数学测试中,学生成绩ξ服从正态分布2(100,)(0)σσ>,若ξ在(80,120)内的概率为0.8,则落在(0,80)内的概率为() A.0.05 B.0.1 C.0.15 D.0.2 10.已知随机变量X 服从正态分布2(,)N μσ,且(22)0.9544P X μσμσ-<<+=,()0.6826P X μσμσ-<<+=,若4,1μσ==,则(56)P X <<=() A.0.1358 B.0.1359 C.0.2716 D.0.2718 11.某商场经营的一种袋装的大米的质量服从正态分布)1.0,10(2N (单位kg ),任选一袋这种大米,其质量在9.8~10.2kg 的概率为() A.0.0456 B.0.6826 C.0.9544 D.0.9974 12.一批电池的使用时间X (单位:小时)服从正态分布)4,36(2N ,在这批灯泡中任取一个“使用时间不小于40小时”的概率是() C.0.3174 D.0.1587 二、填空题

多维高斯分布讲解

多维高斯分布讲解 高斯分布 高斯分布:1维高斯分布公式: 多维高斯分布公式: 对于1维的来说是期望,是方差;对于多维来说D表示X的维数,表示D*D的协方差矩阵,定义为 ,为该协方差的行列式的值。 代码如下: m=[0 1]'; S=eye(2); x1=[0.2 1.3]'; x2=[2.2 -1.3]'; pg1=comp_gauss_dens_val(m,S,x1) pg2=comp_gauss_dens_val(m,S,x2) 其中comp_gauss_dens_val函数文件的代码如下: function [z]=comp_gauss_dens_val(m,S,x) [l,c]=size(m); z=(1/( (2*pi)^(l/2)*det(S)^0.5) )*exp(-0.5*(x-m)'*inv(S)*(x-m));

题目大致意思就是判断x是属于w1还是w2? 代码如下: P1=0.5; P2=0.5; m1=[1 1]'; m2=[3 3]'; S=eye(2); x=[1.8 1.8]'; p1=P1*comp_gauss_dens_val(m1,S,x) p2=P2*comp_gauss_dens_val(m2,S,x) 题目大致意思就是给出正态分布的期望和方差构造出一些服从这个分布的数据点代码如下:

% Generate the first dataset (case #1) randn('seed',0); m=[0 0]'; S=[1 0;0 1]; N=500; X = mvnrnd(m,S,N)'; % Plot the first dataset figure(1), plot(X(1,:),X(2,:),'.'); figure(1), axis equal figure(1), axis([-7 7 -7 7]) % Generate and plot the second dataset (case #2) m=[0 0]'; S=[0.2 0;0 0.2]; N=500; X = mvnrnd(m,S,N)'; figure(2), plot(X(1,:),X(2,:),'.'); figure(2), axis equal figure(2), axis([-7 7 -7 7]) % Generate and plot the third dataset (case #3) m=[0 0]'; S=[2 0;0 2]; N=500; X = mvnrnd(m,S,N)'; figure(3), plot(X(1,:),X(2,:),'.'); figure(3), axis equal figure(3), axis([-7 7 -7 7]) % Generate and plot the fourth dataset (case #4) m=[0 0]'; S=[0.2 0;0 2]; N=500; X = mvnrnd(m,S,N)'; figure(4), plot(X(1,:),X(2,:),'.'); figure(4), axis equal figure(4), axis([-7 7 -7 7]) % Generate and plot the fifth dataset (case #5) m=[0 0]'; S=[2 0;0 0.2]; N=500; X = mvnrnd(m,S,N)'; figure(5), plot(X(1,:),X(2,:),'.');

相关主题