搜档网
当前位置:搜档网 › 分散手册及分散剂资料讲解

分散手册及分散剂资料讲解

分散手册及分散剂资料讲解
分散手册及分散剂资料讲解

分散手册

介绍

获得涂膜高亮度和高着色力的关键因素有颜料能否极好的分散、颜料粒子尺寸是否最优化以及微粒分散后在配方中能否持久稳定性这几个方面。

在涂料、油漆和油墨形成稳定悬浮液的过程中,颜料的分散可以分为以下三个步骤:

图 1 : 分散加工过程

?颜料的润湿:在颜料凝聚和团聚(群聚态)的粒子表面间,空气和水气被树脂溶液所替换。

固/气两相(颜料/空气)被转换成固/液两相(颜料/树脂溶液)。

?研磨级别:在机械能作用下(冲击和剪切力),颜料的团聚态被打碎成较小的微粒,成为分散状态(均匀分布)

?颜料悬浮液的稳定性:分散剂用于保持颜料分散状态的稳定,阻止失控的絮凝。并依据颜料表面所吸附的粘接剂种类和分子结构,促使悬浮液获得稳定状态。

在选择更高效的分散剂时,颜料的化学性质和树脂溶液的特性是其依赖的关键因素(对于油漆制造者,区分有机和无机种类是本质要求。)。该主题在调配最优的分散剂里有更多的讨论。

颜料润湿

润湿阶段包括在颜料表面和团聚体内部(水、氧、空气和/或处理介质)用树脂溶液替代被吸附的物质。

初始尺寸的颜料微粒在完全润湿后,能增强液体涂料的性能,这些性能强烈依赖于颜料微粒和粘接剂体系间的相互作用。分散剂吸附于颜料表面,促进液体/固体界面的相互作用,并使空气/固体界面被液体/固体界面代替。

图 1 : 空气和水被树脂置换

润湿效率主要依赖于颜料和介质的相对表面张力,也就是混合物的粘度。吸附

机理取决于颜料的化学特性和所用的分散剂类型。(请浏览分散剂家族)

热力学的考虑:

自发的润湿作用(润湿固体表面)由最小化的表面自由能引起。强制的润湿作用(非润湿环境中)需要外部作用,当外部作用消除后则自发的反润湿过程将产生。

润湿的热力学条件是液/固间的粘附力(Wa)尽可能高,对于无约束的润湿,至少需要高于内聚力(Wk)的一半:Wa> Wk。

液体向粉末的渗透速率可以用Washburn方程式(1921)来解释:

图 2 :Washburn方程式

h是经过时间t的渗透深度(或高度),- 是润湿液体的表面张力,-粘度,- 润湿角,r-毛细管半径,C- 结构系数,与多孔结构参数有关,W-润湿能量(热量)。

使用润湿剂和/或低粘度及表面张力的粘接剂,可加强分散过程的润湿作用。另一方面,在溶解或研磨前,颜料/粘接剂的预混将有助于完成润湿作用,并始终促使分散容易进行,加速分散进程。

颜料悬浮液的稳定

总结

稳定作用的目的是在最后一步保持颜料粒子的分离性,并且通过添加和填充作用、储存及涂膜形成过程控制颜料粒子尺寸程度。

产生絮凝的颜料悬浮液可从粒子无规律的空间排布方面进行识别,这种现象致使相邻粒子的结合。并使涂料流变性变差(体系粘度,涂料流动性),储存性能下降(油漆中),光学和颜色性能降低(涂料中)。

众所周知,即使是研磨很好的颜料也不能避免丧失稳定性,当添加在不合适的油漆基础中时,即使是具有精细微粒尺寸的颜料悬浮液的稳定也很容易遭到破坏:当施加剪切作用时絮凝被打破,而一旦卸除剪切力则絮凝将从头开始。

因而,经过研磨的颜料悬浮液形成后必需立即加入添加剂以维持稳定,不论是打算添加使用还是做为颜料备用(染料)。

图 1 :避免絮凝的分散剂

颜料表面处于稳定状态的分子,其吸附作用增进了体系的稳定,使得排斥力足够,以阻止微粒通过范德华吸引力接近并引起团聚,欲了解更多影响稳定性的因素,请浏览胶体的稳定。

在颜料分散作用的稳定方面有两种重要机理:

?静电稳定:当颜料表面具有相同电荷的微粒相互接触时会产生静电稳定作用。具有相同电荷的两微粒有相互排斥效果。带电微粒在库仑排斥力作用下维持了体系的稳定。

?位阻稳定当颜料固体微粒表面完全覆盖着聚合物时,一个颜料可以说具有位阻稳定性质,使微粒间的接触不可能发生。聚合物与溶剂(有机溶剂和水)之间的强烈作用可以阻止颜料粒子相互过分接近(絮凝作用)。

胶体的稳定性

分散系统的稳定性是微粒热能运动的结果,在相邻的粒子间持续存在着吸引力和排斥力。

因拥有动能(热能)使得粒子做布朗运动,胶体微粒间不断相互接近并发生碰撞。若该因素不加限制,微粒间将非常接近,导致近程范德华力足够强并使微粒不可逆转地粘结,破坏分散体

系。另一方面,微粒间存在着排斥力能阻止微粒接近,分散性将长期保持稳定,且粒径和性能没有明显地变化。

图 1 : 两微粒间的吸引/排斥作用

具有胶体尺寸的微粒,相邻间存在的足够排斥力导致了分散体系的存在和消亡。当冷冻干燥相邻微粒层时,排斥力会上升并阻碍:相邻含水层与层外无水区之间持续的分子内水份的交换,类似于渗透压的变化,产生排斥力(见图 1)。排斥力有不同的来源:

?压缩围绕在微粒周围的两带电荷层:详细内容见D.L.V.O.理论,

?非离子稳定体系中的渗透压(Derjagin, Fischer),

?在聚合物表面活性剂作用下稳定的分散体系,其分子内链段的弹性,即熵排斥力(Mackor),

?在聚合物分散剂下阻碍稳定的形态。

实际上,仅三种稳定的涂料体系能在水介质中应用:

1. 使用离子表面活性剂或化学冷冻干燥器,生成羧基、铵离子等等,详见静电稳定作用

2. 非离子稳定作用,非离子聚合物相(或仅表面)的亲液碎片与非离子表面活性剂或类似的

化学改性剂一起,所拥有的吸附作用,详见空间稳定性

3. 离子与非离子联合的稳定作用,能广泛应用于乳胶、乳液和油漆科技,并针对不同的

非稳定因素,能明显增进高分散体系的稳定性。

因为我们能够计算微粒间力,所以能通过"电势曲线"(图2)描述其分散稳定性,微粒间吸引和排斥力所具有的势能及综合作用,表现在对微粒间距离的控制上,仅靠热能是不可能克服微粒间的"势垒"作用而破坏其距离的平衡,并因此可保持分散系统的稳定。

图 2 : 两微粒间的势能曲线

静电稳定作用

在液体涂料中颜料微粒表面带有电荷。在做为添加剂使用时,可能会使电荷量增加,并且导致所有的颜料微粒带上相同的电荷。

经典的胶体科学在解释静电稳定作用时,将其描述为一种双层静电结构。当颜料表面形成一种电荷后,相反电荷的带电离子云将围绕在其周围。当两个微粒靠近时,电荷作用阻止其相互吸引。在这样厚厚的电荷层的作用下,颜料微粒获得了稳定的状态。

图 1 : 静电稳定作用

从化学角度看来,这类体系中用于分散作用的添加剂可以称作高分子电解质-高分子量导致了大量带电荷的支链。

涂料工业中,除了多磷酸盐外,大量多元羧酸常做为高分子电解质使用。高分子电解质吸附在颜料表面,改变了颜料微粒所带的电荷。带有相同电荷的颜料微粒间作用着静电斥力,使絮凝趋势戏剧性地降低,促使分散状态得以稳定。

在以水为主的高电介质媒介中,静电稳定作用是有效的;甚至在水基涂料系统中,在空间稳定作用下,或两种作用相结合,能够提供更佳的总体性能。

位阻稳定作用

电荷稳定作用在电荷量低的介质中没有效果(对于大多数有机溶剂和增塑剂),需要位阻稳定作用来维持分散微粒在非絮凝状态的稳定。

位阻稳定作用依赖于颜料表面的一层树脂或聚合物链段所拥有的吸附作用。当颜料微粒接近时,具有吸附作用的聚合物链段相互混合,失去一定的自由度。从热力学的角度来描述就是一种熵减,具有不利影响,导致进一步的吸引。从另一方面考虑,随着链段的混合,溶剂被排出粒子间。这会导致溶剂浓度不均衡,溶剂浓度均衡由渗透压维持,渗透压目的是迫使溶剂返回微粒间以维持微粒的分离状态。

图 1 : 位阻稳定作用

位阻稳定作用的基本要求是链段完全溶解在介质中。这一点十分重要,因为这意味着链段在介质中能自由地伸展,而拥有上述提及的自由度。这一要求常被描述为介质性能超越θ的溶剂(例如一个性能相对较好的溶剂) ,以适应聚合物链段需求。若链段未被很好地溶解,则会在颜料表面相互连接,对粒子间的吸引力所形成的阻碍非常弱。

在电位能量曲线中,聚合物分散剂产生的位阻斥力越大曲线下降越多,并降低总体粘度。

图 2 :

在含有可溶性树脂的溶剂型和水剂系统中,稳定机理产生作用。由颜料亲和基团(极性)和树脂相容链段(非极性)组成的特殊分散剂表现出特定的表面活性。换句话说,它不仅稳定颜料的分散性,还能作为润湿剂使用。

研磨进程

经过润湿阶段,必须将颜料微粒的凝聚态及团聚态分散开来。通常是利用高效研磨设备的机械作用来完成。

在研磨过程中,团聚颜料内附着力需要克服。随着施加能量的提高,形成了更小的微粒(在树脂溶液中接触面积更大)。这种微粒间长久接触状态的破坏,使颜料的团聚结构被打破,这一过程可通过溶解器、研磨机等来完成。

图 1 : 颜料的分散

颜料粉末在机械剪切作用下被破碎成了单独的微粒,因此在介质中其表面积变得更大,同时新形成的表面使更多的添加剂需要润湿。

一旦被分散,原生颗粒就有重新团聚的趋势。这一过程称作絮凝。从结构的观点看,絮凝非常类似于团聚;只不过是用树脂溶液代替空气填充了颜料之间的空隙。

研磨的过程也可以看作抗絮凝过程。若缺乏稳定剂,则会出现着色力下降、光泽减弱和流变性变化等问题。

影响稳定的因素

分散作用的丧失和中断

胶体动态和凝聚态的稳定性在运动状态和自然形态下有所不同,为了能长期保持性能,同时具有动态和凝聚态的稳定性十分必要。

动态稳定性

失去动态稳定性意味着分散的微粒丧失其流动性,但仍然能保持能量以阻碍微粒相互接近,避免粒子间在短时间内形成不可逆转的接触。

丧失动态稳定性主要表现为微粒的沉积、凝结和絮凝现象。这些变化通常是可逆的,但是随着时间增长,这些沉积、凝结和絮凝作用将逐步导致凝固现象。

凝结作用如下(分散作用的分离性遵循斯托克斯定律(很大程度上会削减分散作用)):

图1: V-微粒下降速率,d-微粒直径,Dp-外相与内相的不同密度,g-重力常数,-外相的粘度。

其结果表明动态稳定性会在以下过程中得到提高:

?降低粒子尺寸(通过添加更好或更多的分散剂,更强的剪切,等等)。

?增加外相粘度(通过使用恰当的流变改性剂),

?最小化两相的密度差异(当密度相同时,凝结现象则不会出现)。

图 2 : 在分散过程中由不稳定因素可能引起的变化

温度

升高温度能加速研磨效率,但对于当前使用的环境友好水剂型涂料树脂,更高的稳定将导致起稳定树脂作用的中性胺失效。另外,温度升高会使聚合物微粒熔化并破坏乳液中的粘接剂成分。

分散剂家族

介绍

涂料和油墨工业中分散剂的选择是一个关键因素。配方设计师必须选择最合适的分散剂品种以适应产品用途,满足涂料、涂料体系(水基、溶剂基等)及其它添加剂的需求。

分散剂的作用是增进分散过程,确保获得精细的粒径,并提高颜料在树脂溶液中的稳定性。根据较早的研究,一个高效的分散剂具有三种主要功能:颜料的润湿、分散及稳定。用于水基和溶剂基涂料的分散剂通常是不同的。

根据其化学结构,分散剂分为两种类型:

?聚合物分散剂

?表面活性剂

这两种分散剂主要的区别在于分子量、稳定机理及降低稳定性方面。

一、聚合物分散剂

1、描述

先前已介绍了聚合物分散剂通过位阻稳定作用对油漆、涂料和油墨体系产生影响。结合以下两种要求提出了两类结构:

1. 必须能强力吸附在微粒表面,拥有特殊的锚固基团

2. 分子中必须含有高分子链段,在溶剂或树脂溶液体系中具有位阻稳定作用。

有多种共聚物/功能高分子的结构可能对聚合物分散剂产生影响。图1给出了六种可能的排列:

图 1 : 与微粒表面的锚固作用即可通过功能基团(b和c)又可通过高分

子链段(a和d-f)而产生。产生位阻稳定作用的聚合物链段即可在一端

(b, d,和f)又可在两端(a,c,和e)与微粒表面发生锚固反应。

聚合物分散剂与其它类型分散剂的区别在于具有相当高的分子量。聚合物分散剂结构特殊,并同时受到极大的位阻限制,在大量的颜料微粒表面可形成稳定的吸附层。当高分子链段很好的溶解和适当的展开时,位阻稳定作用得到加强,因此它们必须与周围的树脂溶液很好地相容。若相容性不好,则高分子链段会折叠,产生位阻效应并使稳定性丧失。

为了保证添加剂的功效,颜料表面的吸附作用必须是稳定和持久的。因此颜料微粒表面的性能对于添加剂的效力十分关键:

?颜料表面拥有高的极性,比如无机颜料具有离子的结构,与任何分散剂产生吸附作用相对容易。

?然而,对于具有非极性表面的颜料,比如由单独非极性分子组成的有机颜料晶体,与常规添加剂很难产生吸附作用。聚合物分散剂能提供的种类繁多的锚固基团,在与颜

料的非极性表面发生锚固反应后,能产生有效的吸附作用。

从传统的观点看来,颜料在水中的稳定性通常会因为污染问题而受到干扰,比如不同的离子、或存在不同zeta-电位的其它颜料,可引起排斥力下降并失去稳定性。位阻稳定作用能够避免这些问题,使聚合物分散剂在分散所有类型的颜料时都有很好的效果,甚至是有机颜料,而使用传统的润湿和分散剂时有机颜料的抗絮凝作用很差。

2、锚固基团

先前所讨论的由分散剂分子聚合的链段,不论是包含了单个的链段还是成百上千的链段,并不是问题的关键方面,重要的是这些分子链能成功的象铁锚一样固着在颜料表面,使颜料表面覆盖足够密度的链段,将粒子间的相互作用降至最低。

如下图所示能够产生锚固作用的聚和物分散剂,可以是一个单独的功能基团,也可是一低聚物,或者是聚合的链段:

图 1 : 分散剂分子结构图解

研究表明,立体稳定的链段仅在一端通过锚固作用连接基团时,其效率最高。在无水状态下,使空间稳定结构的熵值增加,这是预料中的状况。很明显,连接于聚合物链段两端的锚固基团会降低链段运动的自由度,甚至导致该立体稳定的链段与邻近的粒子混合在一起。

锚固作用过程

由于颜料表面自然状态不同,依其化学结构,可有多种不同基团做为高聚物分散剂与其产生锚固作用。这种锚固作用广泛存在,促使高聚物分散剂与无机颜料作用,如同与具有极性表面的颜料相互作用一样。锚固作用能通过不同的过程产生:

通过离子或酸性/碱性基团产生锚固作用,

当颜料微粒表面活性较低(例如:无机颜料)时,微粒表面带电荷位能与分散剂的相反电荷位或功能基团形成离子键。如图2a所示,因为有机溶剂通常电荷量较低,所有该作用极易发生,而电荷则不易分离。

图 2: 通过离子或酸性/碱性基团产生锚固作用

事实上,许多无机颜料微粒表面十分复杂,既有正电荷位又有负电荷位。因而颜料被分散剂分散时,既有带负电荷又有带正电荷的基团与其发生锚固作用,通常情况也是如此,如图2b和2c所示。

能在带电荷或酸性/碱性表面产生锚固作用的功能基团有:胺;铵和季铵基;羧酸、磺酸和磷酸基及其盐;还有硫酸酯与磷酸酯。

通过氢键的锚固作用,

尽管有机颜料微粒比无机的惰性强,比如石英,但是氢键的供体和受体是有可能存在的,比如酯、甲酮和chers.因此在微粒和高聚物分散剂的锚固基团间也许能形成氢键。单独的氢键有可能较弱。而聚合物分散剂内包含了众多具有氢键供体和受体的锚固链段,因此在颜料微粒与分散剂间的相互作用可大大增强,见图3

图 3: 聚合物基团通过氢键产生的锚

固作用

多胺和多羟基化合物既有供体又有受体,可通过氢键产生锚固作用。聚醚能通过氢键受体产生锚固作用。

通过极性基团产生锚固作用

有机颜料微粒表面具有极性或可极性化的基团,类似地在高聚物分散剂中也有极性或可极性化

的锚固基团,因而锚固作用也可发生。同样,这种相互作用通常相对较弱,但是在聚合物分散剂中,当由多个这样的基团组合成一个锚固的链段时,则会加强这种相互的作用。

图 4 : 通过极性基团产生的锚固作用

聚氨酯常做为极性的锚固基团。

通过不溶性高分子链段形成锚固作用

不需离子键、氢键或极性作用,仅依靠范德华力就可以使颜料微粒表面与聚合物分散剂通过锚固作用相结合。分散剂内的聚合链段仅要求在介质中不溶,见图5。

图 5 : 通过不溶性高分子链段形成锚

固作用

聚氨酯锚固基团据说是通过该方式形成的。事实上,在实践中很难区分这种与先前的两种吸附过程。多数的高分子链段很可能是通过混合的静电力(氢键和/或极性作用)和范德华力产生锚固作用。这些作用过程也许有一种是占主导地位,但大多数高效的聚合物分散剂可能会产生所有这三种过程,并使其影响最大化。

分散剂微粒的衍生物

某些有机颜料(酞青蓝和二?f嗪紫是典型的例子)不会产生上述任何一种锚固作用。除了在较低颜料浓度的分散体系中,它们很难产生任何作用,该分散体系还具有缓解絮凝的趋向。解决此问题的唯一办法是改变粒子本身的化学结构,使其象锚固基团一样具有活性。二维结构越大,分子量越高则该体系作用效果越强,因为锚固基团能非常密集地吸附在颜料微粒表面,促使微粒与锚固基团间的范德华力达到最大。

通过特别高效分散剂的作用,在铜酞青颜料分子上引入聚合物链段进行改性。具有离子基团的衍生物使颜料粒子表面有选择地被活化,使其能与聚合物分散剂中带电荷的锚固基团产生作用。这一过程如下图6所示。

图 6 : 增效剂

3、聚合物链段

聚合物链段在自然态下对聚合物分散剂的性能要求很苛刻。如果链段未被有效地溶解,颜料粒子表面将相互重叠,导致微粒的凝聚或絮凝。同介质保持相容的要求体现在任何一种涂料的整个干燥过程。若相容性被破坏,絮凝现象将会出现,并导致表面性能下降,例如失去光泽及着色力下降,等等。

图 1 :

聚合物分散剂的分子量必须足够,能提供聚合物链段最佳的长度,以克服颜料微粒间的范德华引力:

?若链段太短,则不能产生足够厚度的屏障来阻止凝聚。这意味者太低的分子量将使分散体系缺乏稳定性并使粘度上升,着色性能下降。

?若链段太长,则会导致自身的"折叠"。太高的分子量同样会降低性能。

理论上链段在分散剂介质中应能够自由运动。就如先前所提到的:锚固基团仅吸附在链段的一端,则立体结构的稳定性表现最佳。

最后,为获得极佳的涂料表面特性及涂层性能,该聚合物必需与涂料树脂完全相容,这样在溶剂挥发后树脂就能形成交联结构。

立体稳定链段的化学性质

为了满足良好的相容性要求,在聚合物分散剂系列中可以利用几种不同的聚合物链段,有效地

覆盖了多种不同的溶剂。

例如,小范围的溶剂从非极性的脂肪族碳氢化合物到酒精/水溶剂,包括了:?聚异丁烯

?聚酯

?聚甲基丙烯酸甲酯

?聚环氧乙烷

聚合物分散剂的用量是需要考虑的重要参数。许多表面涂料体系能适应低剂量的添加剂,但添加量过多时会有问题出现。某些体系特别能适应聚合物分散剂的使用。空气干燥的长油醇酸树脂涂料以及在凹版印刷和平版印刷油墨中使用的树脂在这些方面的表现均良好。同样,纸张和木质基材不会有粘接方面的问题。高质量的烤漆或双组分漆及许多包装油墨体系有更多的要求。

聚合物分散剂引起的流变性和色彩/光泽的变化无法避免,其在对涂料表面性能的影响方面能用合适的测试方法进行检测。

二、表面活性剂

表面活性剂一般是低分子量分散剂。表面活性剂分子具有改性作用,特别是降低颜料和树脂溶液间表面张力。

表面活性剂结构上含有两种溶解性或极性相反的基团,使表面活性增加。在水性体系中,极性基团是一些亲水基,非极性的则是憎水基或亲油基。在非水性体系中,极性基团是憎油基,非极性的为亲油基。表面活性剂按其化学结构分类,特别是极性基团包括:阴离子、阳离子、电中性粒子和非离子(见图1)。

图 1 :

聚合物分散剂作用下效力由以下因素确定:

?颜料表面极性基团的吸附作用。锚固基团可以是氨基、羧酸、磺酸、磷酸及其盐。

?介质中围绕在微粒周围的非极性链段的行为。分子的一些部分(脂肪族或脂肪族-芳香族

片断)必须与粘接剂体系高度的相容。

类似表面活性剂的分散剂的稳定机理是静电稳定:围绕颜料粒子的极性基团形成了双层带电的结构。由于布朗运动,液体介质中颜料粒子时常碰撞在一起,因此在其减速进程中具有强烈的重絮凝趋势。

根据其化学结构(如:低的分子量)和静电稳定理论,表面活性剂有以下缺陷:

_ 水敏感性:表面活性剂通常使最终涂层产生水敏感性,不适于室外应用。

_ 易产生泡沫:许多表面改性剂会产生泡沫,在涂层上产生缺陷(如鱼眼、凹坑)。如果泡沫在研磨进程出现,则导致生产能力的下降。

_ 干扰涂层间的粘接。

经过多年发展,特殊的表面活性剂得到改进,使涂层缺陷最大程度地降低,并且某些还能使涂层具有一些别的优点,如消泡/抗腐蚀能力或使基材难以润湿。

用于颜料分散作用的最常用表面活性剂有如下品种:

?脂肪酸衍生物

?磷酸酯

?聚丙烯酸钠/聚丙烯酸

?乙炔二醇

?大豆卵磷脂

涂料专用流平剂

云清牌涂料专用流平剂 云清——功能化学品专家绿健化学品领航者 关键词水性涂料流平剂溶剂型涂料流平剂油漆用流平剂水性 油墨用流平剂油墨用流平剂 【理化指标】 1、外观(目测)浆状液体 2、固体份80% 3、比重约0.98 4、溶剂水 5、官能团硅烷醇 【突出优点】 1、降低摩擦系数,防粘连,显著提高抗摩损性能 2、优异的表面平滑度、不影响重涂 3、优异的流平及光泽度 4、水性和溶剂性涂料或油墨通用的助剂,在罩光清漆不影响能增加涂膜的 光泽度,相溶性极佳。 【适用领域】 云清牌专用流平剂应用于丙烯酸、醇酸树脂、环氧树脂、聚酯、聚氨酯、硝基纤维素、乙烯基。 【用法用量】 云清牌专用流平剂的建议添加量为0.05-3.0%(按总配方量计).建议使用前应试验以确定最佳用法和用量. 研磨阶段,在调漆阶段,慢速搅拌下加入或最后阶段加入。 ●水性油墨:0.05-0.2% ●溶剂型油墨:0.5-1.5% ●水性涂料:0.5-1.0% ●溶剂型涂料:0.5%以上 【包装规格】

25KG包装 【储存运输】 在常温下保持稳定 客户的难题就是云清的课题。 客户的需求就是云清的追求。 客户的抱怨就是最好的礼物。 客户的责骂就是最大的动力。联系人张小姐,王先生 联系电话 0631-5782732 5782735

云清牌UV涂料流平剂 云清——功能化学品专家绿健化学品领航者 关键词溶剂型流平剂UV流平剂UV光油流平剂油墨流平剂无溶剂型流平剂 一、理化指标 1、外观:无色至淡黄色透明液体 2、活性物: 100% 3、比重: 1.03 4、折光率: 1.44 5、粘度: 800-1200cs 二、突出特点 1. 云清牌 UV涂料流平剂提供良好的底材润湿,良好的防缩孔性能 2. 云清牌 UV涂料流平剂极大改善流平性和光泽度.表面滑爽性,有效增 加涂层硬度,可有效降低软刮伤 3. 云清牌 UV涂料流平剂赋予涂膜永久性的滑爽和抗刮伤性能,防止粘 连 4. 云清牌 UV涂料流平剂赋予漆膜优异的丰满度 5. 云清牌 UV涂料流平剂能有效提高颜料和填料的分散性,改善颜色的 均一性,不会在重涂时降低层间附着力 三、用法用量 对全量,为总配方的0.1-1.0%,使用前稀释至20%以下,可在生产时加入, 也可后添加 四、适用领域 云清牌UV涂料流平剂适用于溶剂型、无溶剂型、水性、UV涂料油墨,UV 光油,塑胶漆,木器漆,地板漆等 五、包装规格 200kg铁桶,50kg塑料桶 六、贮存及注意事项 密闭储存于阴凉通风干燥处,远离热源,火源,防止阳光直接照射。 保质期12个月 客户的难题就是云清的课题。 客户的需求就是云清的追求。 客户的抱怨就是最好的礼物。 客户的责骂就是最大的动力。

阻垢分散剂作用原理说明

阻垢分散剂作用原理说明 阻垢分散剂作用机理可分为鳌合、分散和晶格畸变三步。且在实验室评定试验中,分散作用是鳌合作用的补救措施,晶格畸变作用是分散作用的补救措施。 鳌合作用 由中心离子和某些合乎一定条件的同一多齿配位体的两个或两个以上配位原子键合而成的具有环状结构的配合物的过程称为鳌合作用。鳌合作用的结果是使得成垢阳离子(如ca2+,Mg2+等)与鳌合剂作用生成稳定的鳌合物,从而阻止其与成垢阴离子(如co32一,5042一,Po4,一和51032一等)的接触,使得成垢的几率大大下降。 分散作用 分散作用的结果是阻止成垢粒子间的相互接触和凝聚,从而可阻止垢的生长。成垢粒子可以是钙、镁离子,也可以是由千百个CaCO3和MgCO3分子组成的成垢颗粒,还可以是尘埃、泥沙或其他水不溶物。分散剂是具有一定相对分子质量(或聚合度)的聚合物,分散性能的高低与相对分子质量(或聚合度)的大小密切相关。聚合度过低,则被吸附分散的粒子数少,分散效率低;聚合度过高,则被吸附分散的粒子数过多,水体变浑浊,甚至形成絮体(此时的作用与絮凝剂相近)。与鳌合作用相比,分散作用是高效的。实验表明,1 mg分散剂可使10

一100 mg的成垢粒子稳定存在于循环水中,在中高硬度水中,阻垢分散剂的分散功能起主要作用。 1.3晶格畸变作用 当系统的硬度、碱度较高,所投人的鳌合剂、分散剂不足以完全阻止它们析出的时候,它们就不可避免地析出。如果没有分散剂的存在,垢的生长将服从晶体生长的一般规律,所形成的垢坚固地附着在热交换器表面上。如果有足量的分散剂的存在,由于成垢粒子(由成百上千个CaCO3分子组成)被分散剂吸附、包围,阻止了成垢粒子在其规则的晶格点阵上排列,从而使所生成的污垢松软、易被水流的冲刷而带走。 根据阻垢分散剂的作用机理,阻垢分散剂常被用在锅炉水处理、循环水处理等行业中。

粘合剂介绍

胶粘剂的定义和历史 定义:胶粘剂又称粘合剂,简称胶(bonding agent, adhesive),是使物体与另一物体紧密连接为一体的非金属媒介材料。在两个被粘物面之间胶粘剂只占很薄的一层体积,但使用胶粘剂完成胶接施工之后,所得胶接件在机械性能和物理化学性能方面,能满足实际需要的各项要求。能有效的将物料粘结在一起。 历史:考古学证据显示粘合剂的应用历史已经超过6000多年,我们可以看到在博物馆里展出的许多物体在经 过3000多年后依然由粘合剂固定在一起。进入20世纪,人类发明了应用高分子化学和石油化学制造的“合成粘结剂”,其种类繁多,粘结力强。产量也有了飞跃发展。 胶粘剂的应用和分类 应用:电子,汽车,工业,化工,建筑业等各个领域都有用到胶粘剂。 分类:胶粘剂种类繁多,组分各异,有不同的分类方法。 1 按化学类型分类 无机胶粘剂(sauereisen的高温水泥) 有机胶粘剂:分为天然胶粘剂和合成胶粘剂 合成胶粘剂按化学成分主要分为:Epoxy, PU, Silicone, Acrylic, etc. 2 按物理形态分类 水基型:基料分散于水中形成水溶液或乳液,水挥发而固化。 溶液型:基料在可挥发溶剂中配成一定黏度的溶液,靠溶剂挥发而固化。 膏状和糊状:基料在可挥发溶剂中配成高黏度的胶粘剂,用于密封和嵌缝。 固体型:把热塑性合成树脂制成粒状或块状,加热熔融,冷却时固化。 膜状:将胶粘剂涂于基材上,呈薄膜状胶带 3 按固化方式分类 热固化:通过加热的方式使粘合剂发生聚合反应而固化,温度和时间根据不同的产品有很大区别。 湿气固化:与空气中的水汽发生聚合反应达到固化。 UV固化:光引发剂紫外光照射下,形成自由基或阳离子从而引发粘合剂的聚合反应而固化。 厌氧固化:在隔绝空气的条件下,发生自由基聚合反应,空气存在会阻碍聚合反应。 催化固化:在催化剂作用下使粘合剂发生聚合反应达到固化。 4 按工艺分类 粘合剂(Adhesive):特殊有导电胶,导热胶,芯片的粘结。 密封剂(Sealant) 灌封胶(Potting & Encapsulation) 敷形涂敷(Conformal Coating) 底部填充胶(Underfill) 顶部包封(Glob Top) 5 按受力情况 (1)结构胶(2)非结构胶 常见胶粘剂的固化机理 1 环氧树脂(Epoxy)

水溶性高分子简介

水溶性高分子简介 摘要:本文介绍了水溶性高分子的分类,物理性能,制造以及未来的发展前景。关键词:水溶性高分子聚乙烯醇聚乙二醇 引言 水溶性高分子化合物又称为水溶性树脂或水溶性聚合物。是一种亲水性的高分子材料,在水中能够溶解或溶胀而形成溶液或分散液。在水溶性聚合物的分子结构中含有大量的亲水基团。亲水基团通常可分为三类:①阳离子基团,如叔胺基、季胺基等;②阴离子基团,如羧酸基、磺酸基、磷酸基、硫酸基等;③极性非离子基团,如羟基、醚基、胺基、酰胺基等。这些集团不但使得高分子有亲水性,而且还带来很多宝贵的性能,如粘合性,成膜性,润滑性,分散性,减磨性等等。 1水溶性高分子的分类 1.1天然水溶性高分子。 以天然动植物为原料,通过物理过程或者物理化学的方法提取而成。最常见的如淀粉类、纤维素、植物胶、动物胶等。天然高分子虽然受到合成高分子的不断冲击,产量逐渐下降,但是仍然有很大一部分市场被其牢牢统治着。 1.2改性天然高分子。 主要有改性纤维素和改性淀粉两大类。如羧甲基淀粉、醋酸淀粉、羟甲基纤维素、羧甲基纤维素等。这类高分子兼有天然高分子和合成高分子的优点,拥有广泛的市场,因此产量很大。 1.3合成高分子。 合成高分子材料分为聚合类和缩合类两类,如聚丙烯酰胺(PAM)、水解聚丙烯酰胺(HPAM))、聚乙烯吡咯烷酮(PVP)等。按大分子链连接的水化基团分为:非离子型和离子型。按荷电性质分为:非离子、阳离子、阴离子和两性离子高分子,其中后三类为聚电解质。按基团间是否存在较强的非共价键联结又分为缔合聚合物和非缔合聚合物。 2水溶性高分子的物理性能 2.1溶解性 溶解性是达到平衡的溶液便不能容纳更多的溶质,在特殊条件下,溶液中溶解的溶质会比正常情多,这时它便成为过饱和溶液。每份溶剂所能溶解的溶质的最大值就是“溶质在这种溶剂的溶解度”。 为了提高水溶性,一是在分子中引入足够的亲水基团到大分子上面变为水溶性高分子。二是降低聚合物的结晶度。三是利用聚电解质的反离子力作用促进溶解。

流平剂

简介 英文专业名称:Leveling agent. 流平剂是一种常用的涂料助剂,它能促使涂料在干燥成膜过程中形成一个平整、光滑、均匀的涂膜。流平剂种类很多,不同涂料所用的流平剂种类也不尽相同。 流平剂概述 涂料施工后,有一个流动及干燥成膜过程,然后逐步形成一个平整、光滑、均匀的涂膜。涂膜能否达到平整光滑的特性,称为流平性。缩孔是涂料在流平与成膜过程中产生的特性缺陷之一。在实际施工过程中,由于流平性不好,刷涂时出现刷痕,滚涂时产生滚痕、喷涂时出现桔皮,在干燥过程中相伴出现缩孔、针孔、流挂等现象、都称之为流平性不良,这些现象的产生降低了涂料的装饰和保护功能。 影响涂料流平性的因素很多,溶剂的挥发梯度和溶解性能、涂料的表面张力、湿膜厚度和表面张力梯度、涂料的流变性、施工工艺和环境等,其中最重要的因素是涂料的表面张力、成膜过程中湿膜产生的表面张力梯度和湿膜表层的表面张力均匀化能力。改善涂料的流平性需要考虑调整配方和加入合适的助剂,使涂料具有合适的表面张力和降低表面张力梯度的能力。 流平剂机理 涂料干燥成膜过常见的缺陷有缩孔、桔皮、刷痕、滚痕、流挂等。 缩孔是指涂膜上形成的不规则的,有如碗状的小凹陷,使涂膜失去平整性,常以一滴或一小块杂质为中心,周围形成一个环形的棱。从流平性的角度而言,它是一种特殊的“点式”的流不平,产生于涂膜表面,其形状从表现可分为平面式,火山口式,点式,露底式,气泡式等。 [编辑本段] 常用的防缩孔流平剂 溶剂类流平剂主要是高沸点溶剂混合物。溶剂型涂料仅借助增加溶剂以降低粘度来改善流平性,将使涂料固体分下降并导致流挂等弊病;或者保持溶剂含量,只加入高沸点溶剂以图调整挥发速度来改善流平,干燥时间也相应延长。故此两方案均不理想。只有加入高沸点溶剂混合物,显示各种递增特性(挥发指数、蒸馏曲线、溶解能力)较为理想。溶剂类流平剂主要成分是各种高沸点的混合溶剂,具有良好的溶解性,也是颜料良好的润湿剂。常温固化涂料由于溶剂挥发太快,涂料粘度提高过快妨碍流动而造成刷痕,溶剂挥发导致基料的溶解性变差而产生的缩孔,或在烘烤型涂料中产生沸痕、起泡等弊病采用这类助剂是很有效的。另外采用高沸点流平剂调整挥发速度,还可克服泛白弊病。

什么是聚羧酸类阻垢分散剂,聚羧酸减水剂

什么是聚羧酸类阻垢分散剂、聚羧酸类减水剂 先说聚羧酸类阻垢分散剂,看这个关键词就能明白大概,是什么类?聚羧酸类,什么药剂?水处理阻垢分散剂,它是一种低分子聚电解质,”聚”指是聚合、凝聚这充分说明了他的特有性质是聚合在一起的,其阻垢分散性能与聚合物分子量有关,比较有代表性的聚丙烯酸钠按分子量200万-10000万絮凝剂;分子量10000-20000为分散剂型,分子量800-1000为阻垢剂,聚羧酸的阻垢分散性能,现分子国的羧基数目和间隔也存在着一定的关系,分子量相同时,羧基数目越多,阻垢分散性能越好。 大量的实验证明了,分子量在一定范围内的聚羧酸能有效地阻止水中碳酸钙、硫酸钙结垢,防止腐蚀产物沉积,而且对水中的泥土(砂)、粉尘等无定形不溶性物质起到的分散作用,使其呈分散状态悬浮在水中。聚羧酸具有溶限效应,少量的聚羧酸可抑制几百倍的钙镁离子成垢。 聚羧酸在与有机膦酸水处理剂复配使用时,效果更佳。聚羧酸型水处理剂在常规使用尝试下基本无毒,故对水体基本无污染。 水处理剂中最为神秘的就是阻垢缓蚀剂,一说水处理剂大家都会的到阻垢缓蚀剂、螯合分散剂、抑制钙垢的形成等等,那么这些水处理药剂的作用机是到底是什么,现在我在这里给大家介绍一下,明白了这些,就能间接明白阻垢分散剂和聚羧酸类减水剂的一些原原理。 1、应该提到的是晶格畸变作用 分子量低于10000的聚羧酸的表面电荷对无机物晶体具有影响。聚羧酸是阴离子型聚合物,在碳酸钙晶体形成的早期阶段,它被吸附在结晶表面,便晶体不能正常生长而发生晶格畸变,晶粒变得细小,从而阻止了垢的生成。 2、增溶作用 聚羧酸是阴离子型聚合物,在水溶液中,可离解生成带负电荷的分子键,可与钙离子形成能溶于水的稳定的络合物,增加了成垢物在水中的溶解度,另外,这种络合物混入晶格内,可使沉淀物变为流态化,具有高效分散作用。 3、静电斥力作用 聚羧酸在不中电离生成的带电荷的阴离子具有强烈的吸附作用,它会吸附到水中的一些泥砂、粉尘等杂质的粒子上,使其表面带有相同的负电荷。由于静电斥力作用,这些粒子就不会聚集,而是呈分散状态,成为稳定的悬浮液。 这些就是水处理剂最为神秘的阻垢缓蚀剂和螯合分散剂的作用原理。而聚羧酸类减水剂就是聚羧酸类阻垢分散剂的一个独立分支,他有聚合物的特性,大家都知道建筑使用的仝工车队来回来的混凝土料,里面是已经配比好的混凝土,但是配比地和使用地存在一定的距离,如果配比不添加减水剂直接运输,途中就会出现块状凝结影响施工质量,所以这个减水剂就被应用到开。减水剂主要能提高砂浆的强度,它的定义是在不影响混凝土施工和易性的条件下,具有减水和增强作用的外加剂称为减水剂。 找个简单的减水剂配方大家看一下:将丙烯酸、甲基丙烯磺酸钠、过硫酸铵、聚氧乙烯基烯丙酯大单体分别用去离子水配成浓度为20%的水溶液。这些里有些就是聚羧酸类阻垢分散剂使用配比在一起的效果。 水处理剂使用的方面很广,减水剂只是使用的一个创新的领域。水处理剂不单独的水处理的阻垢缓蚀剂螯合分散剂、纺织印染、钻井缓蚀、玻璃加工等等这些都会多多少作为添加剂使用进。这里只是简单的介绍一下,希望能大家能有所帮助。 以上内容仅代表人个看法,与其他无关。

涂料与粘合剂-四川大学高分子科学与工程学院

《四川大学本科课程简介》(中、英文版)格式 课程号:300043020 课程名称:涂料与粘合剂 总学时:32 学分:2 先修课程:高分子化学面向对象:本科生 考核方式:考试任课教师:凌红 课程简介(250-300字): 该课程主要是一门应用类课程。在该课程中对涂料分类、命名方法做了介绍。对主要涂料品种(如环氧类涂料、酚醛类涂料、聚氨酯类涂料、聚酯涂料)的制备方法进行了较为详细的讲解:包括所需要的化学原料,中间所发生的化学反应(包括聚合反应)的反应方程式、反应条件,同时发生的副反应,及各种影响因素,都进行了详细的分析。对于主要涂料品种进行了配方分析和配方计算。对主要的涂装方法进行了介绍。介绍了主要的粘合剂品种,对于主要的粘合剂品种进行了配方分析。作为一门应用类课程,在课本中还包含大量的生产实例。通过该课程的学习,使学生对于目前市场上主要的涂料和粘合剂有一定的认识。 推荐教材或主要参考书(含教材名,主编,出版社,出版年月):《涂料工艺》,陈士杰主编,化学工业出版社,1995年6月;《现代涂料与涂装工程》,郑天亮主编,北京航空航天大学出版社,2003年6月;《涂料工艺》,涂料工艺编委会编,化学工业出版社,1997年12月《新型粘合剂与涂料化学品》,汪多仁编,中国建材工业出版社,2000年5月;《常用粘合剂》,黄福堂编,中国石化出版社,1999年1月。 备注:理论课 Course Code: 300043020 Course Name: Coating and Adhesives Total Hours: 32 Credit: 2 Textbook name: (Press ,Author)《Coating Technology》Chenshijie, Chemical Industry Press, June 1995; 《Modern Coating and Painting Engineering》Zhengtianliang, Beijing University of Aeronautics and Astronautics Press, June 2003; 《Coating Technology》Coating Technology Editoral Board, Chemical Industry Press, December 1997; 《New Type of Adhesive and Coating Chemicals》Wangduoren, China Building Materials Industry Press, May 2000; 《Common Adhesive》Huangfutang, China Petrochemical Press, January 1999. Course Description: The course is mainly an application type. In the course the coating classification and nomenclature are introduced. The preparation methods of the main coating species (such as epoxy coating, phenolic coating, polyurethane paint, polyester paint) have been explained in more detail: Including raw materials, chemical reactions (including the polymerization reactions),the reaction equations, the reaction conditions, simultaneous side-reactions, and various influencing factors. For some main coating types, the coating formulations are also analyzed. The main methods of painting are introduced. In addition, the main types of adhesives are introduced, and the formulas of the some adhesives are analyzed too. As an application type course, there are a large number of production examples in the textbook. This course helps students to have perceptual knowledge on the current market of the coatings and adhesives.

润湿分散剂的分类特性与应用

润湿分散剂的分类特性与应用 摘要:论述了不同类别润湿分散剂的基本组成和应用特性,讨论了各种润湿分散剂在不同涂料中所应遵循的规则和选择方法。共讨论了八大类涂料工业常用的一些润湿分散剂品种。 关键词:润湿分散剂、高分子分散剂 润湿与分散是涂料制备的重要工艺过程。由于涂料品种的多样性,所使用的相关分散助剂也是品种繁多。市场上众多供应商提供了各具特色的品牌助剂,令人眼花缭乱。由于涂料助剂大多价格不菲,取舍之间更有着经济上的意义。因此,有必要对助剂的选择问题作一深入浅出的探讨,达到整体把握的目的。 不过,试图将润湿分散剂从化学上加以分类是困难的。原因是不同品牌的产品,其组成、结构差别非常大。从实际应用需要,运用物理化学原理和方法,对其进行大致分类则是可能和有意义的。 考察润湿分散剂的分类特性,宜从应用范围(主要是相容性问题)、极性、离子性以及分子量特征等方面进行。大的方面,按应用领域分为水性与油性以及通用型分散剂。功能上又区别为润湿剂和分散剂。实际上,这一区分带有很大的随意性;因为润湿与分散根本就是一个统一连续的过程。 1.0 水性润湿分散剂 1.1 润湿剂 都是一些低分子量(≤1500)的界面活性剂。主要作用是降低体系的界面张力;一般可在室温下把水溶液的表面张力从72达因/厘米,降至40达因/厘米以下。从而利于分散剂对颜料的作用。微观上,是促进颜料的可润湿性,使分散剂易于在颜料表面铺展而结合,形成所谓的锚固关系。另一方面,润湿剂这种降低体系表面张力的作用,还是涂料施工必不可少的性能。因为,高表面张力的涂料不易在基面上涂覆,易于出现流平不良等缺陷。应用于涂料配方中的润湿剂,有别于乳液合成用的表面活性剂。后者以离子型居多,而前者主要是非离子型的酚基或烷基聚氧乙烯类。 润湿剂的HLB值是衡量极性大小的重要参数。一般供应商可以提供这类数据。HLB值高则水溶性好,反之,则活性大。需要恰当把握。且过高的HLB易于导致涂料对商品色浆的接受性变差。易于出现浮色、发花等涂料质量和施工缺陷[1]。色浆与基础涂料之间HLB 差距过大,可能是水性涂料调色故障的主要原因。另外,泡沫的产生对涂料制造也是个敏感的问题。理论上,有一些计算已知结构表面活性剂HLB值的方法[2]。 有必要指出的是,钠盐或钾盐型分散剂的HLB值可能超过30以上。而合适的HLB值应该在20以下。遗憾的是,准确测定助剂HLB值还是相当困难的。简单测定助剂HLB的方法列于表1。将少量助剂与水相混,观察产生的现象,大致评价出HLB的范围[2] 表1 水分散法测定助剂的HLB值 H L B 范围分散性质 5——6 不稳定,或分散不良 7——8 经强烈摇荡后呈乳状分散 9——10 稳定的乳状分散体 11——13 半透明或灰色分散体

涂料助剂 Paint additives Coating additives

涂料助剂Paint additives Coating additives 涂料助剂是涂料不可缺少的组分,它可以改进生产工艺,保持贮存稳定,改善施工条件,提高产品质量,赋予特殊功能。合理正确选用助剂可降低成本,提高经济效益。 又称油漆辅料,系配制涂料的辅助材料,能改进涂料性能,促进涂膜形成。种类很多,包括催干剂、增韧剂、乳化剂、增稠剂、颜料分散剂、消泡剂、流平剂、抗结皮剂、消光剂、光稳定剂、防霉剂、抗静电剂(见塑料助剂)等,其中用量最大的是催干剂和增韧剂。当前,涂料助剂的研究,以用于水乳胶漆的助剂为重点。 编辑本段种类 经多年发展,涂料助剂种类众多,而且在涂料生产的各个阶段都发挥了不同的作用。制造阶段有:引发剂、分散剂、酯交换催化剂;反应过程有:消泡剂、乳化剂、过滤助剂等;贮存阶段有:防结皮剂、防沉淀剂、增稠剂、触变剂、防浮色发花剂、抗胶凝剂等;施工阶段有:流平剂、防缩孔剂、防流挂剂、锤纹助剂、流动控制剂、增塑剂、消泡剂等;成膜阶段有:聚结助剂、附着力促进剂(也叫附着力增进剂)、光引发剂、光稳定剂、催干、增光、增滑、消光、固化、交联、催化等助剂;赋予特殊功能方面有:阻燃、杀生物、防藻、抗静电、导电、腐蚀抑制、防锈等助剂。[1] 笼统来说,按照其用途划分包括附着力增进剂,防粘连剂,防缩孔剂,防发花剂,防浮色剂,消泡剂,抑泡剂,抗胶凝剂,黏度稳定剂,抗氧剂,防结皮剂,防流挂剂,防沉淀剂,抗静电剂,导电控制剂,防霉剂、防腐剂,聚结助剂,腐蚀抑制剂,防锈剂,分散剂、润湿剂,催干剂,阻燃剂,流动控制剂,锤纹助剂,流干剂,消光剂,光稳定剂、光敏剂,光学增亮剂,增塑剂,增滑剂、防划伤剂,增稠剂,触变剂,其他助剂。 除了主要成膜物质、颜填料、溶剂之外,一种添加到涂料中去的成分,能使涂料或涂膜的某一特定性能起到明显改进作用的物质。在涂料配方中的用量很小。主要是多种无机化合物和有机化合物,包括高分子聚合物。 其名称大都根据其作用特性命名。改善涂料生产工艺的有湿润剂、分散剂、乳化剂、消泡剂等。改善涂料贮存性能和运输的有防沉剂、防结皮剂、防腐剂、冻融稳定剂等。改善涂料施工性能和防止漆膜病态的有防流挂剂、流平剂、浮色发花防止剂、消泡剂、增稠剂等。改善涂膜性能并给以特种性能的有紫外线吸收剂、光稳定剂、阻燃剂、抗静电剂、防霉剂等。 涂料助剂又可以分为油性涂料助剂和水性涂料助剂。顺应全球对环境保护日益重视,水性涂料助剂的发展有了飞跃的发展。新型环保类型的助剂越来越多。应用也越来越广泛。是涂料助剂今后发展的主流方向。 编辑本段详细介绍 催干剂 一类能加快涂膜干结的物质,对于干性油膜的吸收氧和双键的聚合起促进作用。它可使油膜的干结时间由数日缩短到数小时,施工方便且可防止未干涂膜的沾污和损坏。 许多金属的氧化物、盐类和皂类都有催干作用,但有实用价值的是氧化铅(红丹、黄丹)、二氧化锰、醋酸铅、硝酸铅、硫酸锰、氯化锰、硼酸锰、醋酸锰、醋酸钴、氯化钴以及铅、钴、锰的环烷酸皂、亚麻油酸皂和松香酸皂。 由于皂类催干剂油溶性好,故催干效力较高。现代涂料工业多采用环烷酸皂作催干剂。环烷酸皂通常用复分解法生产。 油性涂料中催干剂的用量依干性油或半干性油的数量而定。以干性的亚麻油为例,铅催干剂的用量(以铅计)为油质量的0.4~0.5%。钴和锰的催干能力强于铅,钴、锰、铅之比大约为8:1:40。两种或三种金属皂类并用有协同作用。在树脂涂料中,须增大催干剂用量。增韧剂 即增塑剂(见塑料助剂)。涂料工业常用的品种有邻苯二甲酸二乙酯、邻苯二甲酸二丁

水溶性粘结剂

铸造用水溶性高分子粘结剂的研究与应用 济南鲁源铸造材料有限公司李涛摘要:水溶性高分子粘结剂具有较好的溶解性、优良的成膜性及粘合性,通过用国际上先进的物理、化学等方法对天然的水溶性高分子材料进行复合改性,满足铸造用型芯粘结剂的基本要求,且具有干强度高、蠕变性小,环保节能等优点,是一种理想的无公害铸造粘结剂。 关键词:水溶性高分子改性制芯 一、前言 水溶性高分子粘结剂因其含有亲水基团,具有很好的粘合性、成膜性、分散性等,在化学粘结剂、水处理、化学助剂等行业日益扩大。自80年代起,以α-淀粉为主的水溶性粘结材料,因其具有制备工艺简单,生产成本低廉,用于制芯具有干强度高、蠕变性小、溃散性好、旧砂复用性好等特点,特别是操作过程中清洁、节能和浇注过程中几无有害气体产生的优点,即引起铸造界的广泛关注。但由于α-淀粉用于制芯存在吸湿性强、高温强度低、比强度低等缺陷,一定程度地限制了其推广应用。济南鲁源铸造材料有限公司在多年来潜心研究充分满足型芯性能要求的淀粉类粘结材料的基础上,结合新的水溶性高分子材料加工工艺,通过将β-淀粉等多种水溶性高分子材料先进行物理、化学改性,再进行预糊化处理,并添加多种助剂以改善芯砂性能和型芯性能,成功地开发了新一代环保型制芯用粘结材料LYN型铸造用水溶性高分子粘结剂,并成功地应用于铸造生产中。

二、LYN型水溶性高分子粘结剂复合改性工艺及机理分析 1、改性机理分析: 理想的型芯粘结合剂应当具备高的干拉强度、适宜的湿压强度、良好的流动性、低的吸湿性以及良好的溃散性。玉米淀粉支链淀粉高达72%,表观DP分布400-1500,在适当的条件下可与三聚磷酸纳、氯氧化磷等交联剂发生下列反应: 淀粉—OH+HO—淀粉交联剂淀粉—O—X—O—淀粉 控制磷含量0.07~0.09%,其反应产物磷酸酯淀粉具有一定的疏水特性,且在高温下具有很好的耐热性。将磷酸酯淀粉在一定条件下进行预糊化处理即α化,淀粉显微结构发生较大改变,通过控制其反应程度,成糊粘度、比强度大提高。再将预糊化处理后的磷酸酯淀粉与拒水剂B、抗高温冲刷剂C机械混合,在型芯制作过程中充分反应,拒水剂B可形成一层拒水膜覆盖在淀粉粘结网络上,显著提高其高温强度和拒水性。经过以上处理的水溶性高分子粘结剂基本上具备了型芯粘结剂应具有的性能。 2、试验用材料 玉米淀粉(水分≤13%)、三聚磷酸钠、氯氧化磷(交联剂)、拒水剂B、抗高温冲刷剂C 3、试验设备 10kg自制膨化罐 1台 75kg/h挤压机 1台 500kg搅拌罐 1台

流平剂的种类

涂料配方中为何要使用流平剂 涂料的主要要功能是装饰和防护,如果出现流动和流平缺陷,不仅影响外观,同时也有损防护功能。如形成缩孔造成漆膜厚度不够、形成针孔会导致漆膜的不连续性,这些都会降低漆膜的防护性。 涂料在施工和成膜过程中,会发生一些物理、化学变化,这些变化及涂料本身的性质,将显著影响涂料的流动和流平。 涂料施工后,会出现新的界面,一般情况下为涂料与底材之间的液/固界面和涂料与空气之间的液/气界面。如果涂料与底材之间的液/固界面的界面张力高于底材的临界表面张力,涂料就无法在底材上铺展,自然就会产生鱼眼、缩孔等流平缺陷。 漆膜干燥过程中溶剂的挥发会导致在漆膜表面与内部之间产生温度、密度和表面张力差,这些差异进而导致产生漆膜内部的湍流运动,形成所谓Benard 旋涡。 Benard旋涡会导致产生桔皮;在含不止一种颜料的体系,如果颜料粒子的运动性存在一定差异,Benard旋涡还很可能导致浮色和发花,垂直面施工会导致丝纹。 漆膜的干燥过程中有时会产生一些不溶性的胶粒,不溶性胶粒的产生会导致形成表面张力梯度,在漆膜中经常导致缩孔的产生。例如,在交联固化型体系中,配方含有不止一种树脂,在漆膜的干燥过程中,随着溶剂的挥发,溶解性较差的树脂就可能形成不溶性胶粒。另外,在含有表面活性剂的配方中,如果表面活性剂与体系不相容,或在干燥过程中随着溶剂的挥发,其浓度发生变化导致溶解性发生变化,形成不相容的液滴,也会形成表面张力差。这些都可能会导致缩孔的产生。 涂料在施工和成膜过程中,如果存在外界的污染物,也可能会导致缩孔、鱼眼等流平缺陷。这些污染物通常是来自空气、施工工具和底材的油污、尘埃、漆雾、水汽等。

阻垢原理

阻垢剂分类 阻垢剂可按照多种方法进行分类。 根据使用效能,阻垢剂可分为普通阻垢剂和高效阻垢剂。普通阻垢剂用于浓缩倍率低一些的应用场合;而高效阻垢剂则用于浓缩倍率很高的应用场合,比如RO/NF系统,浓缩倍率常常达到4倍甚至更高,浓缩后的水极不稳定,有很强的结垢倾向。因此,膜系统一般推荐使用高效阻垢剂,在膜系统中使用普通阻垢剂经实践证明很不安全。 高效阻垢剂根据pH值的不同,又可分为酸性和碱性阻垢剂。无论是酸性还是碱性,其阻垢效率的高低,取决于阻垢剂本体对水中结垢离子有效的螯合增溶作用、晶格畸变作用以及吸附与分散作用。阻垢剂溶液呈酸性或碱性,是本体在水溶液中以有机酸或其钠盐形式表现的结果。它的酸碱性并不决定其阻垢性能的好坏。至于碱性阻垢剂能改变给水的pH值,将给水的LSI值提高,造成CaCO3结垢的说法,有夸大之虞。这是因为反渗透系统的投加量非常小,一般控制值为2~3mg/L(以标准液计),而水中含有大量HCO3-物质,实属典型的缓冲溶液,如此小的剂量不可能明显改变原水的pH值,不足为虑。而某些碱性阻垢剂成分更稳定,阻垢性能更好。 阻垢原理 无机垢的形成过程可分为下面3个步骤: ● 形成过饱和溶液; ● 生成晶核; ● 晶核成长,形成晶体。 这3个步骤中有一个遭到破坏,结垢过程即被减缓或抑制。阻垢剂的作用就是有效阻止这些步骤中的一个或几个,以达到阻垢目的。阻垢剂干扰晶体生长的机理有如下几种说法: 1.螯合增溶作用 螯合增溶作用是指阻垢剂与水中Ca2+、Mg2+、Sr2+、Ba2+等高价金属离子络合成稳定的水溶性螯合物,使水中游离态钙、镁离子的浓度相应降低,这样就好像使CaCO3等物质的溶解度增大了,本来会析出溶液的CaCO3等物质实际上没有形成沉淀。 所谓阈限效应阻垢是指只需向溶液中加入少量的阻垢剂,就能稳定溶液中大量的结垢离子,它们之间不存在严格的化学计量关系,当阻垢剂的量增至过大时,其稳定阻垢作用并无明显改进。 2.晶格畸变作用 晶体正常形成的过程是微粒子(离子、原子或分子)根据特定的晶格方式进行十分有规则的排列,从而形成外形规则、熔点固定、致密坚固的物质结构。所谓晶格畸变是指在晶体生长的过程中,常常会由于晶体外界的一些原因,而使得晶体存在空位、错位等缺陷或形成镶嵌构造等畸变,其结果使同一晶体的各个晶面发育不等。晶体中这种局部组分的差异会导致晶体内部的应力,晶体本身与镶嵌物质膨胀系数的不同也会导致应力。这些应力使晶体不稳定。当环境发生某些变化时,大晶体便会碎裂成小晶体。 阻垢剂分子由于吸附在位于晶体活性生长点的晶格点阵上,使晶体不能按照晶格排列正常生长,使晶体发生畸变,使晶体的内部应力增大导致晶体破裂,从而防止微晶沉积成垢,达到阻垢目的。其过程见下图所示: 晶体生长过程阻垢剂对晶体生长的影响 3.吸附与分散作用 阻垢分散剂属于阴离子有机化合物,可因物理化学吸附作用而吸附于胶体颗粒及微晶粒子上,在颗粒表面形成新的双电层,改变颗粒表面原来的电荷状况。于是,因同性电荷相排斥而使它们稳定地分散在水体中。

水溶性高分子及其应用

水溶性高分子及其应用 马建 常州轻工职业技术学院 10线缆331 1013433138 摘要:水溶性高分子材料是一种亲水性的高分子材料,在水中能溶解或溶胀而形成溶液或分散液。它具有性能优异、使用方便、有利环境保护等优点,广泛应用于国民经济的各个领域。本文主要论述了水溶性高分子材料的概念、分类、功能和应用、以及研究发展现状及前景。 关键词:水溶性 高分子 发展应用 1、 水溶性高分子的概念 水溶性高分子化合物又称为水溶性树脂或水溶性聚合物。通常所说的水溶性高分子是一种强亲水性的高分子材料,能溶解或溶胀于水中形成水溶液或分散体系”。在水溶性聚合物的分子结构中含有大量的亲水基团。亲水基团通常可分为三类:①阳离子基团,如叔胺基、季胺基等;② 阴离子基团,如羧酸基、磺酸基、磷酸基、硫酸基等;③极性非离子基团,如羟基、醚基、胺基、酰胺基等。 2、分类 a 、按来源分类 1 )天然水溶性高分子。 天然水溶性高分子以植物或动物为原料,通过物理的或物理化学的方法提取而得。许多天然水溶性高分子一直是造纸助剂的重要组分,例如常见的有表面施胶剂天然淀粉、植物胶、动物胶 (干酪素)、甲壳质以及海藻酸的水溶性衍生物等。 2)半合成水溶性高分子 。 这类高分子材料是由上述天然物质经化学改性而得。用于造纸工业中主要有两类:改性纤维素 (如羧甲基纤维素) 和改性淀粉 (如阳离子淀粉)。 3)合成水溶性高分子。 此类高分子的应用最为广泛,特别是其分子结构设计十分灵活的优势可以较好地满足造纸生产环境多变及造纸工业发展的要求。 b 、按分子量分类 可分为低分子量、高分子量、超高分子量 C 、按用途分类 可分为驱油剂(聚丙烯酰胺、改性淀粉、瓜胶),絮凝剂(聚丙烯酸、改性纤维素、壳聚糖) 3、功能 O OH O OH O CH 2OH OH O OH O CH 2OH OH O OH COOH

涂料流平剂的机理和利用

涂料是一种流动状态或粉末状态的有机物,能均匀覆盖在物体表面上,并且牢固地附着在物体表面,统称为涂料。涂料不仅能起防护、装饰作用,而且还具有绝缘、导电、防静电、示温、防霉、杀菌等特殊功能,涂料技术的发展反映了一个国家的工业化程度、科技的发展、人民生活水平以及国防力量等综合因素,它在国民经济发展中正发挥着愈来愈突出的作用。粉末涂料以其100%的固体分,生产与施工中无VOC排放,有利于环境保护,同时由于其利用率高达90%~95%,涂装周期短,生产效率高等优越性能而广泛应用于家电、机械、电子、建筑、化工、航天航空、矿山冶金等各个领域。 我国自80年代以来,已大量研究应用,现已初步形成了一个较完整的体系,但涂料不管采取何种涂装手段,经施工后,均存在溶剂蒸发、聚合物流动的成膜过程,由于溶剂蒸发、聚合物与基材的润湿程度不同往往造成漆膜出现张力梯度,从而导致漆膜出现皱纹和缩孔,一旦出现这种现象,则漆膜的装饰性及漆膜的耐水性、耐溶剂性均会下降。国内外较多地进行了缩孔形成机理的研究,研究认为:涂膜缩孔的形成与其自身的流平性关系甚大。通过大量的实践,在电子显微镜下观察,不难发现涂膜的缩孔, 可以看到绝大多数的缩孔都是由很少部分未被充分润湿的颗粒与周围不相容的树脂所形成的旋涡状结构,如图1所示。 C.Patton先生对此现象的解释为:涂料在熔融流平,在局部地方形成了表面张力梯度,即缩孔部分为低表面张力物质,由于低表面张力物质总是呈现伸展扩展趋势,使得它从中心向四周扩散,而四周紧近相触的高表面张力部分又呈收缩趋势,在二者相互作用下,永久性缩孔就得以形成。对如何控制涂料缩孔现象也有较多的报道,集中在两个方面:(1)改进涂料的涂装技术如:静电喷涂法、流化床涂装法、静电流化床涂装法与粉末电泳涂装法等;(2)对粉末涂料本身进行控制,如原材料的控制,选择流平剂。两种办法对比起来,添加防缩孔的流平剂是克服这些弊病的有效方法。 流平剂是一种涂料助剂,它能促使涂料在干燥成膜过程中形成一个平整、光滑、均匀的涂膜。目前流平剂的设计应保证具有下面三个功能:(1)降低涂料与基材之间的表面张力,使涂料与基材具有最佳的润湿性,即减小因溶剂挥发导致的张力梯度,以相溶性受限制的长链树脂为主要组成物,常用的有聚丙烯酸脂类、醋丁纤维素类,其产品主要有[1]:EASTMAN的CAB-551-0.01和CAB-551-0.2,其加入量一般为涂料总量的0.1%~0.2%等;(2)能调整溶剂的挥发速度,降低粘度、提高涂料的流动性,在溶剂型涂料中常以芳烃、酮类、酯类或多官能团的优良溶剂———高沸点溶剂混合物为主要组成,它调整了溶剂的挥发速度,使涂料在干燥过程中具有平均的挥发速度及溶解力,主要产品有:德谦公司的411、433、455、466等,加入量一般在0.1%~1.0%之间(按涂料总量计);(3)在漆膜表面能形成单分子层,以提供均一的表面张力,以相容性受限制的长链硅材脂为主要组成,常用的有二苯基聚硅氧烷,甲基苯基聚硅氧烷、有机基改性硅氧烷、氟化硅氧烷等,其主要产品有BYK-300,BYK-306,BYK-323等。另外含氟表面活性剂对于广大范围的树脂及溶剂具有优良的相容性和表面活性,能有效地改善浸润性、分散性、流平性。其在热固型水溶性环氧、氨基树脂白色面涂料中有很好的应用。 、管路敷设技术通过管线不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行 高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况 ,然后根据规范与规程规定,制定设备调试高中资料试卷方案。 、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

涂料助剂

涂料助剂 产品简介: 助剂,又称涂料辅助材料,是涂料生产工艺和涂料性能达到某种特定要求而少量添加的一些辅助的特殊材料,其开发和应用是现代涂料工艺的重大技术成就之一。它们用量很少,在现代涂料的制备、贮运和涂装过程中对保证涂料和涂装性能起到重要的作用。水性机高性能、高性能涂料中的助剂是不可或缺的组分。助剂在涂料成膜后一般留在涂层中成为其组分之一,所以在认识其主要功能的同时还应注意其对最终涂层的负面影响。 迄今为止,助剂的作用原理并不十分清楚,而且往往多种助剂在一种涂料中使用,由于助剂的结构和理化性质不同,而且大多数助剂都是不同类型的表面活性剂,它们在一起可能起协同作用,也可能起拮抗作用。此外,助剂于成膜物树脂、颜料机分散介质之间也存在复杂的相互作用,因此选择正确的助剂组合需要助剂供应商与配方师共同努力,进行大量的筛选工作。 分类: 按助剂的功能分类:湿润、分散剂,乳化剂,消泡剂,流平剂,防沉、防流挂剂,催干剂,固化剂机催化剂,增塑剂,防霉剂,平光剂,增稠剂,阻燃剂,导静电剂,紫外线吸收剂,热稳定剂,防结皮剂,以及用量较大的增塑剂,乳胶涂料的成膜助剂,防冻剂,防霉剂等。 按其在涂料制备和涂装过程的作用分类: a)涂料生产过程调节涂料性能助剂湿润、分散剂,乳化剂,消泡剂,流变调节剂——增稠剂、防流挂剂等。 b)保证涂料贮存运输过程性能稳定性的助剂防沉淀剂,防结皮剂,防霉剂,防浮色、分色剂等。 c)调整涂料施工涂装,改善成膜性的助剂流平剂、消光剂、防流挂剂、成膜助剂、固化剂机催干剂等。 d)改进涂层特殊性能,提高耐久性的助剂紫外线吸收剂、热稳定性、防霉剂、耐划伤剂、憎水或亲水处理剂等。 按作用位置和方式分类: a)具有界面活性的助剂这类助剂是界面活性剂。它们拥有吸附基,吸附在相的界面处。它们的功能作用是界面或接近界面的地方发挥的。 b)非界面活性的助剂非界面活性的助剂绝大部分是在涂料和涂膜中挥发作用的。多数是为了增强涂料和涂膜某些性能或强化某个工艺过程。 涂料助剂名称发挥作用阶段发挥作用位置 乳化剂树脂,乳液聚合单体/介质,界面 引发剂、催化剂、链终止剂树脂合成单体聚合反应相中 湿润剂、分散剂、消泡剂、脱泡剂涂料生产、颜料分散颜料/基料,界面

阻垢分散剂的研究现状及其特点(一)

阻垢分散剂的研究现状及其特点(一) TheStateandPropertiesofResearchto ScaleInhibitorsandDispersants Abstracts:Thedevelopingprocessandpropertiesoftheresearchtoscaleinhibitorsofalltypesarecomme ndedindetailinthispaper.Thetypesandtheirsynthesisofthemainscaleinhibitorsindifferentdeveloping periodsarecommended.Andalsotheiradvantagesaredescribedsimply.Thedomesticdevelopingdirect ionofresearchworktowatertreatmentchemicalsissimplydescribedfurthermore. KeyWords:scaleinhibitoranddispersant;naturalorganic;polycarboxylicacid;scaleinhibitionmechanis m;copolymer 摘要:本文主要详述了各类分散阻垢剂国内的研究现状及其特点;论述了在各个发展阶段使用的主要阻垢剂的种类及其合成方法,并对其优缺点进行了简单的描述;同时本文还就阻垢分散剂在国内的研究方向进行了简单的论述。 关键词:阻垢分散剂天然有机物聚羧酸阻垢机理共聚物 循环冷却水系统在运行过程中,由于原水水质、水温升高、浓缩倍数的提高等,造成系统的结垢、积污等问题,影响了系统的正常运行。阻垢剂就是能够控制产生泥垢和水垢的一类药剂,其研究开发大致经历了起步阶段、聚羧酸使用阶段、多官能团共聚物使用阶段及特种结构和性能的阻垢分散剂使用阶段1-5],并已经逐步走向成熟。 1.阻垢分散剂的起步阶段 60年代初尚未发展聚合物阻垢剂时,主要采用木质素、单宁、淀粉、纤维素等简单加工的天然有机物作为阻垢分散剂,控制水垢的生成2-7]。 木质素是一种无定形的芳香族聚合物,有极强的活性,其分子都是一些结构单元的聚合物。木质素磺酸是磺化后的结构单元组成,结构单元上含有酚羟基和羧基。水处理中应用的单宁,一般指从植物的皮、木质、叶、根部或果实中提取的天然单宁,它是指一类含有多酚羟基而聚合度不同的物质,并包括一些单体的混合物,分子量一般在2000以上。淀粉和纤维素都属于碳水化合物中的糖类,分子式为(C6H10O5)n,其糖单体为葡萄糖。 天然分散剂在水处理应用中一般用量较大,约50mg/L~200mg/L;且在高温、高压条件下易分解,易造成系统的有机污染。但由于天然分散剂具有来源方便、价格低廉、无公害,且具有分散污物的优点,目前在少量商品复合配方中仍有使用。 2.聚羧酸使用阶段 聚羧酸阻垢剂是一种、二种或多种单体聚合而成的阴离子型低相对分子质量的聚电解质,起阻垢作用的主要是聚合物的负离子,为Ca2+、Mg2+、Fe3+、Cu2+、Zn2+等的优良螯合剂,其阻垢机理是在水中起凝聚后的分散作用及晶格畸变作用。只有在一定的相对分子量范围内,聚羧酸的阻垢性能才明显。按照合成单体的种类,聚羧酸阻垢剂有均聚物阻垢剂和共聚物阻垢剂两大类。 2.1均聚物阻垢剂3-7] 70年代,开始使用聚丙烯酸聚合物,同时将具有优良缓蚀性能的有机膦酸盐作为阻垢分散剂使用,显示出良好的阻垢效果。由于聚羧酸的阻垢性能与其分子量、羧基数目及间隔有关,每个品种有其最佳分子量值;若分子量相同,则碳链上羧基数目越多阻垢效果越好。当羧基聚积密度较高时,阻碍了相邻碳原子的自由旋转作用,相对地固定了相邻碳原子上羧基的空间位置,增加了它们与碱土金属的缔合程度,从而提高了阻垢能力。而丙烯酸和马来酸分子中羧基的数目相对较多,且间隔较小,因而现阶段使用的聚羧酸类阻垢剂主要是以它们为主体的。 聚丙烯酸是由丙烯酸单体在异丙醇调节剂下以过硫酸铵为引发剂聚合,也可通过丙烯腈水解生成丙烯酸再聚合而成。作为阻垢剂时平均分子量一般在1000~6000范围内最好;对于含

相关主题