搜档网
当前位置:搜档网 › 电动汽车驱动电机和传动系统的参数匹配

电动汽车驱动电机和传动系统的参数匹配

电动汽车驱动电机和传动系统的参数匹配
电动汽车驱动电机和传动系统的参数匹配

关于燃料电池电动汽车传动系统的研究

能源概论 --关于燃料电池电动汽车传动系统的研究 姓名: 学号: 专业:

关于燃料电池电动汽车传动系统的研究 摘要:燃料电池汽车是一种高效清洁的电动汽车。与传统的内燃机汽车相比, 燃料电池车的动力传动系统采用电动机替代内燃机成为燃料电池汽车驱动动力源, 其动力传统系统具有革命性的改变。本文介绍了燃料电池汽车动力传统技术发展概况, 围绕燃料电池电动汽车动力传动拓扑架构、多源系统管理和动力系统配置与仿真优化技术等关键技术开展了详细论述。对燃料电池电动汽车动力传统设计与制造具有重要的参考价值。 关键词: 燃料电池 传动系统 构架 改良 蓄电 1 引言 燃料电池汽车是电动汽车的一种。燃料电池发出的电, 经逆变器、控制器等装置,给电动机供电, 再经传动系统、驱动桥等带动车轮转动,就可使车辆在路上行驶, 燃料电池的能量转换效率比内燃机要高2 ~3倍。燃料电池的化学反应过程不会产生有害产物,因此燃料电池车辆是无污染汽车。随着对汽车燃油经济性和环保的要求, 汽车动力系统将从现在以汽油等化石燃料为主慢慢过渡到混合动力,最终将完全由清洁的燃料电池车替代。 近几年来, 燃料电池系统和燃料电池汽车技术已经取得了重大的进展。世界著名汽车制造厂,如丰田、本田、通用、戴姆勒- 克莱斯勒、日产和福特汽车公司已经开发了几代燃料电池汽车,并宣布了各种将燃料电池汽车投向市场的战略目标。目前, 燃料电池轿车的样车正在进行试验, 以燃料电池为动力的运输大客车在北美的几个城市中正在进行示范项目。其中本田的FCX Clarity 最高时速达到了160 km/ h ; 丰田燃料电池汽车FCH V adv 已经累计运行了360, 000 km 的路试, 能够在零下37度启动,一次加氢能够从大阪行驶到东京( 560公里)。在我国科技部的支持下, 燃料电池汽车技术得到了迅速发展。2007 年, 我国第四代燃料电池轿车研制成功, 该车最高时速达150 km/h,最大续驶里程319 km。2008 年,燃料电池示范汽车又在北京奥运进行了示范运行。2010 年, 包括上汽、奇瑞等国内汽车企业共有196 辆燃料电池汽车在上海世博园区进行示范运行。在开发燃料电池汽车中仍然存在着技术性挑战,如燃料电池组的一体化,提高商业化电动汽车燃料处理器和辅助部汽车制造厂都在朝着集成部件和减少部件成本的方向努力, 并已取得了显著的进步。但与统的内燃机轿车相比, 燃料电池电动汽车采用燃料电池+ 电动机!来代替传统车的心脏—发动机和燃油系统。燃料电池轿车的动力传动系统发生较大的

电动汽车驱动电机类型种类和结构原理图

电动汽车驱动电机类型种类和结构原理图 随着电动汽车行业的发展,各大汽车厂商纷纷开发了自家的电动车型。在雨后春笋般的的电动汽车市场,大家在看车的时候,厂商均推出了各自车型应用的电机。到底不同的电机有什么差别,下面本文就来讲讲新能源汽车电机的基础知识,介绍各种电机在电动汽车应用特点。 一、什么是电机? 所谓电机,就是将电能与机械能相互转换的一种电力元器件。当电能被转换成机械能时,电机表现出电动机的工作特性;当机械能被转换成电能时,电机表现出发电机的工作特性。大部分电动汽车在刹车制动的状态下,机械能将被转化成电能,通过发电机来给电池回馈充电。

二、电动汽车应用驱动电机特点 基于电动汽车的特点,对所采用的电机也有较高的要求。为了提升最高时速,电机应有较高的瞬时功率和功率密度(W/kg);为了增加1次充电行驶距离,电机应有较高的效率;而且电动汽车是变速工作的,所以电机应有较高的高低速综合效率;此外有很强的过载能力、大的启动转矩、转矩响应要快。电动车起动和爬坡时速度较低,但要求力矩较大;正常运行时需要的力矩较小,而速度很高。低速时为恒转矩特性,高速时为恒功率特性,且电动机的运行速度范围应该较宽。另外,电机还应具备坚固、可靠,有一定的防尘防水能力,且成本不能过高。 目前,从现已成熟的电机技术来看,开关磁阻电机在各个技术特性方面似乎很符合电动车的使用需要,但尚未得到广泛应用;而现今永磁同步电机在电动汽车行业应用较广泛;现在较为知名的特斯拉Model系列均采用异步电机。此外,如果按电流类型划分还可分为直流电机和交流电机两种。下面根据转速、功率密度、体积等多方面特性参数对比来了解4种较为典型的驱动电机特点。

详解电动汽车传动系统原理、传动方式及拓扑构架设计

详解电动汽车传动系统原理、传动方式及拓扑构架设计 随着现代汽车电子技术的发展,新能源汽车、电动汽车的出现无疑给整个行业注入了一股新鲜而且充满挑战性的血液。凭借可以减少很多废弃物、有害气体的排放,对整个社会的生活环境都有很大的改善效果,得到社会及国家的高度的重视,具有很好的发展前景。下面我们就来从电动车的结构引入到电动汽车传动系统,并分析它的工作原理、传动方式、优势等,并简单的列举一些成功的应用案例。电动汽车和普通的汽车不同,它是用车载电源提供行驶的动力,用电机来驱动车轮的运动,而不是用点火装置来提供向前运动的力。我们知道,电动汽车主要是由电力驱动及控制系统、驱动力传动系统、工作装置等各个部分组成。它的工作原理是蓄电池中提供恒定的电流输出,这些恒定的电路通过电力调节器进行一次转换成可以驱动电动机的合适的电流和电压,从而可以驱动整个动力传动系统的正常运行,经过他们之间相互的作用最终给汽车提供可以运行的动力汽车可以正常的行驶。由此可见,电动汽车传动系统的有效性和安全性直接影响着整个系统的运行。电动汽车传动系统原理是直接将电动机的驱动转矩传给汽车的驱动轴。汽车传动轴在采用电动轮驱动时,由于它是靠车载电源提供动力源驱动电动机因而可以实现带负载启动,无需离合器;也正是因为是车载电源可以提供恒定的电流,中间会有电路控制的环境来实现驱动电机的方向和转速的控制,所以不需要倒档和差速器。若采用无级调速,就可以实现自动控制,无需变速器。电动汽车传动系统的传动方式主要有三种:(1)电机+传动轴+后桥(2)电机+变速箱+后桥(3)电机+磁力变矩器+后桥以目前的变速箱技术成熟度而言,除了传统车的变速箱外还没有一款真正成熟的适用于电动汽车的产品,最可靠和适用的传动方式还是电机+传动轴+后桥的直驱方案。当然在具体的设计时,我们需要更具实际情况来设计,包括电机的位置、电源的位置、驱动负载的能力、行驶速度要求、稳定性等这些都需要综合的来考虑。了解车辆效率损失分配即从发动机输出的功率消耗在不同汽车部件上的量及比例。这对改善车辆总体的传动效能非常有用,以达到适当配置资源,改善性能的目的。各种损失,使用安装在车辆适当位置的传感器进行测定。电动汽车传动系统拓扑构架设计汽车动力传动系统采用传统的内燃机和电动机作为动力能源,通过混合使用热能和电能两套系统开动汽车。在低速小功率运行时可以关闭发动机,采用电动机驱动;而高速行驶时用内燃机驱动;通过发动机和电动机的协同工作模式,将车辆在制动时产生的能量转化为电能,并积蓄起来成为新的驱动力量.从而在不同工况下都能达到高效率。一般上有串联式、并联式、混联式和复合式4种布置形式。(1)串联式—下图中采用的电力电子装置只有电机控制器,电池和辅助动力装置都直接并接在电机控制器的入口,属于串联式,车辆的驱动力只来源于电动机。 (2)并联式—下图中是典型的并联式动力系统结构,通常在电池和电机控制器之间安装了一个DC/DC变换器,电池的端电压通过DC/DC变换器的升压或降压来与系统直流母线的电压等级进行匹配。车辆的驱动力由电动机及发动机同时或单独供给。(3)混联式----采用四轮驱动、前后轮分别与不同的驱动系相连,后轮驱动有发动机、后置电机、发电机、变速器等组成,前轮驱动由前置电机、发电机组成。由于它使用不同的驱动方式,所以整个电动汽车传动系统既分离又相关联,可以更好的控制。下图就是一个简单的混联式的拓扑构架。同时具有串联式、并联式驱动方式。(4)复合式---改结构主要集中于双轴混合动力系统中,前轴和后轴独立驱动,前轮和后轮之间没有任何驱动抽或转电力主动型的设计,这种独立的驱动,让传动系统各个部件在运行过程中相互独立控制,因此可以有更好的传输能力。要让整个系统可以更好的运行,除了结构设计方面需要注意之外,还有一个就是电动汽车传动系统的参数设计也需要合理的匹配,这些参数对传动结构的性能影响也是很大的。这一方面的知识,小编在这边文章就不具体介绍了。总结能源问题和环境污染问题是现在社会日益突出的问题,深受国家的重视。因此寻找新能源汽车可以减少废气排放,让能源可以更好的利用在汽车电子设计行业是当务之急。电动汽车正是因为具有上面

纯电动汽车传动系统知识分享

第一章绪论 1.1 课题的目的意义: 1.1.1 纯电动汽车的背景 当前,我国电动汽车发展已经进入关键时期,既面临重大的发展机遇,也面临着严峻的挑战。我国电动汽车发展中还存在很多需要解决的问题,如核心技术还不具备竞争力,企业投入不足,政府的统筹协调能力还没有充分发挥等。总体上看来,我国电动汽车产业,起步不晚,发展不慢,但是由于传统汽车及相关产业基础相对薄弱、投入不足,差距仍然存在,中高端技术竞争压力越来越大,因此,必须加大攻坚力度,推动我国汽车产业向创新驱动转型,提高核心技术竞争力,确保我国汽车行业的可持续发展。 纯电动汽车使用电动机作为传动系统的动力源,缓解了能源紧缺的压力,实现了人们长期以来对汽车零尾气排放的期盼,传动系统作为汽车的核心组成部分,其技术创新是纯电动汽车发展的必经之路。 1.1.2 纯电动汽车的意义 近年来,关于纯电动汽车的研究主要集中在能量存储系统、电驱动系统和控制策略的开发研究三方面。 能量存储系统相当于纯电动汽车的发动机,是纯电动汽车电动机所需电能的提供者。目前,铅酸蓄电池是使用最为广泛的,但其充电速度较慢,使用寿命短,节能环保差。随着电动汽车技术的发展,其他电池正在渐渐取代着铅酸蓄电池。目前发展的新电源有纳硫电池、锂电池、镍镉电池、飞轮电池、燃料电池等,尽管这些新电源投入应用,但是短时间内还是无法解决纯电动汽车电源充电缓慢,电量存储低续航里程短的问题。 纯电动汽车整车控制策略的开发研究一直在紧锣密鼓的进行着,整车控制系统是纯电动汽车实现整车控制和管理的关键,是实现和提高整车控制功能和性能水平的一个重要技术保证。其核心技术主要体现在整车控制软件的架构设计、转矩控制策略以及对整车和各系统得能量管理上。尽管控制策略的开发研究一直没有间断,但是,系统开发较为复杂,进度较慢。

电动汽车用驱动电机系统的现状及发展趋势

电动汽车用驱动电机系统的现状及发展趋势 中国汽车技术研究中心窦汝振李磊宋建锋 摘要:介绍了我国电动汽车用驱动电机系统的研发现状,以及车用系统与普通工业用系统间的差异,指出了发展趋势。 1 引言 我国汽车工业的发展面临着来自能源安全、环境保护和气候变化等可持续发展要求的多重挑战。随着近几年汽车保有量的快速增加,汽车能源消耗增长呈现加速趋势,进一步加剧了我国石油供需矛盾。在当前石油资源日益紧张,价格不断攀升的国际形势下,发展电动汽车特别是混合动力汽车是缓解我国石油资源短缺现状的有效途径,也是增强我国汽车工业核心竞争力的重大战略举措。 经过“八五”、“九五”规划的实施,特别是“十五”国家863电动汽车重大专项,我国已实现了官、产、学、研的资源整合,具有了电动汽车用驱动电机系统自主研发能力。在国家“三纵三横”总体布局中(如附图所示),驱动电机及其控制系统被列为“三横”中的共性技术之一。 附图国家“十五”电动汽车重大专项布局示意 2 电动汽车用驱动电机系统的特点及分类 电动汽车对驱动电机系统的要求至少包括: (1)基速以下输出大转矩,以适应车辆的启动、加速、负荷爬坡、频繁起停等复杂工况; (2)基速以上为恒功率运行,以适应最高车速、超车等要求; (3)全转速运行范围内的效率最优化,以提高车辆的续驶里程; (4)结构坚固、体积小、重量轻、良好的环境适应性和高可靠性; (5)低成本及大批量生产能力。 电动汽车最早采用了直流电机系统,特点是成本低、控制简单,但重量大,需要定期维护。随电力电子技术、自动控制技术、计算机控制技术的发展,包括异步电机及永磁电机在内的交流电机系统体现出比直流电机系统更加优越的性能,目前已逐步取代了直流电机控制系统。特别是借助于设计方法、开发工具及永磁材料的不断进步,用于驱动的永磁同步电动机得到了飞速发展。 电动汽车中常用的交流电机主要有异步、永磁、开关磁阻三大类型,其特点如表1所示。

新能源电动汽车电驱动系统

新能源电动汽车电驱动 系统 标准化工作室编码[XX968T-XX89628-XJ668-XT689N]

现代电动汽车电驱动系统主要由四大部分组成:驱动电机、变速器、功率变换器和控制器。驱动电机是电气驱动系统的核心,其性能和效率直接影响电动汽车的性能。驱动电机和变速器的尺寸、重量也会影响到汽车的整体效率。功率变换器和控制器则对电动汽车的安全可靠运行有很大关系。 电驱动系统的由以下几个部分组成: 1.电动汽车驱动电机 选用小型轻量的高效电机,对目前电池容量较小、续驶里程较短的电动汽车现状显得尤为重要。早期电动汽车驱动电机大部分采用他励直流电机(DCM)。直流电机驱动系统改变输入电压或电流就可以实现对其转矩的独立控制,进行平滑调速,具有良好的动态特性,并且有成本低、技术成熟等优点。但是,直流电机的绝对效率低,体积、质量大,碳刷和换向器维护量大,散热困难等缺陷,使其在现代电动汽车中应用越来越少。随着电力电子技术、大规模集成电路和计算机技术的发展以及新材料的出现和现代控制理论的应用,机电一体化的交流驱动系统显示了它的优越性,如效率高、能量密度大、驱动力大、有效的再生制动、工作可靠和几乎无需维护等,使得交流驱动系统开始越来越多地应用于电动汽车中。目前在电动汽车中,主要采用永磁同步电机(PMSM)驱动系统、开关磁阻电机(SRM)驱动系统和异步感应电机(肼)驱动系统。 永磁同步电机(PMSM)是一种高性能的电机,具有体积小、重量轻、结构简单、效率高、控制灵活的优点,在电动汽车上得到了广泛的应用,是当前电动汽车用电动机的研发热点,是异步感应电机的最有力的竞争对手。目前,由日本研制的电动汽车主要采用这种电机,如Honda公司的EV Plus、Nissan公司的Altra和Toyota公司的RAV4及Prius车型等。但是,永磁电机的磁钢价格较高,磁性能受温度振动等因素的影响,有高温退磁等问题。 开关磁阻电机(SRM)是由磁阻电机和开关电路控制器组成的机电一体化新型调速电机。开关磁阻电机工作时,依次使定子线圈中的电流导通或截止,电流变化形成的磁场吸引转子的凸出磁极从而产生转矩。开关磁阻电机结构简单,成本较低,可靠性高,起动性能和调速性能好,控制装置也比较简单。然而在实际应用中,开关磁阻电动机存在着转矩波动大、噪声大、需要位置检测器等缺点,所以目前应用开关磁阻电机的驱动系统仍然很少,主要以Chloride公司的“Lucas”电动汽车为代表。 异步感应电机(M)具有结构简单、坚固、成本低、可靠性高、转矩脉动小、噪声小、转速极限高、无需位置传感器及免维护等特点,因而在电动汽车驱动电机领域里,是应用很广泛的一种无换向器电机。近年来,由IM驱动的电动汽车几乎都采用矢量控制和直接转矩控制。美国以及欧洲研制的电动汽车多采用这种电动机。 异步电机的矢量控制调速技术也比较成熟,其电驱动系统具有良好的性能,因此被较早地应用于电动汽车,目前仍然是电动汽车驱动系统的主流产品。迄今为止,美国“Impact’’系列、“ETX.2”型,日本“Cedric"、“OTwn"、“FEV"型,德国 “T4”、“190’’型等电动汽车均采用异步感应电机。异步电机的最大缺点是驱动电路复杂,效率比永磁电机和开关磁阻电机低,特别是在轻载运行时效率更低。因此,如何进一步提高异步电机的运行效率,己经成为人们关注的重要课题。 2.变速器

电动车轮毂电机及其电传动系统简析

电动车轮毂电机及其电传动系统简析 雷王宏永济电机厂 内容摘要:介绍了美国德莱赛公司170D电动车(电动轮卡车)的电传动系统,并对其轮毂电机、谐波同步发电机这两个大部件的结构特点作了简要分析。 关键词:电动车轮毂电机发电机 EV 一、前言 目前,在我国山西平朔安太堡露天煤矿,因其特殊的作业形式,煤的运输周转是使用大吨位运煤装卸卡车,这些卡车为进口美国德莱赛公司的电动车(型号有170D等几种),载重量达150吨,时速最高可达30公里/小时,这在我国目前还是独一无二。 电动轮卡车外形像一辆大翻斗汽车,其牵引传动控制系统与一般内燃机车的有很大相似之处,但又有特殊性,特别是其特有的电动轮胎别具特色,笔者在此结合对776电动轮大修中遇到的部分零部件实物,并结合对搜集的一些零散外文资料的阅读和规整,对它们作以简要系统的介绍,以供同行共同探讨。 二、传动控制系统 1.系统分析

整个车的动力来源为燃油发动机,主要有美国的卡特发动机、康明斯发动机等几种型号。我们以170D车为例,其装配的传动控制系统均为美国GE公司的配套装置,有关发动机、发电机、电动轮,整流控制柜等的布置示意图如下: 系统硬件布置示意图 1----发动机 2----发电机 3----整流及控制柜 4---- 电阻制动柜 5----电动轮 6----风机 由示意图可见,发动机---同步发电机机组安装在司机室下方,维修时可整体由卡车前方出入,电动轮分别安装在翻斗下方左右两侧,司机室的后面是电气控制柜。实际上,在翻斗下方的中部还安装有液压系统,液压泵在中间,其两侧为油箱,液压系统主要是控制翻斗箱的起落,在此不予赘述。 卡车制停时,司机可通过脚踏板控制刹车盘,其安装在电动轮换向器端(结构示意图见后),同时也可借助电阻制动协助卡车制停。

燃料电池汽车的动力传动系统设计

燃料电池汽车的动力传动系统设计 1引言 燃料电池汽车是电动汽车的一种。 燃料电池发出的电,经逆变器、控制器等装置,给电动 机供电,再经传动系统、驱动桥等带动车轮转动 ,就可使车辆在路上行驶,燃料电池的能量转 换效率比内燃机要高 2-3倍。燃料电池的化学反应过程不会产生有害产物 ,因此燃料电池车 辆是无污染汽车。随着对汽车燃油经济性和环保的要求 ,汽车动力系统将从现在以汽油等化 石燃料为主慢慢过渡到混合动力 ,最终将完全由清洁的燃料电池车替代。 近几年来,燃料电池系统和燃料电池汽车技术已经取得了重大的进展。世界著名汽车制 造厂,如丰田、本田、通用、戴姆勒-克莱斯勒、日产和福特汽车公司已经开发了几代燃料电 池汽车,并宣布了各种将燃料电池汽车投向市场的战略目标。 目前,燃料电池轿车的样车正在 进行试验,以燃料电池为动力的运输大客车在北美的几个城市中正在进行示范项目。其中本 田的FCX Clarity 最高时速达到了 160 km/h[8];丰田燃料电池汽车 FCHV-adv 已经累计运行 了 360,000 km 的路试,能够在零下37度启动,一次加氢能够从大阪行驶到东京 (560公 里)。 在我国科技部的支持下,燃料电池汽车技术得到了迅速发展。 2007年,我国第四代燃料电池 轿车研制成功,该车最高时速达150 km/h,最大续驶里程319 km 。2008年,20燃料电池示范 汽车又 在北京奥运进行了示范运行。 2010年,包括上汽、奇瑞等国内汽车企业共有 196辆燃 料电池汽车在上海世博园区进行示范运行。 燃油绘济性 排放环保 l ;uel economic exhaust eih ironmen(al protection Internal combustion engine Shori peicxl Mid peitxl Long pei

电动汽车变速器的现状和发展方向--资料

电动汽车变速器的现状和发展方向 汽车行驶的速度是不断变化的,这就要求汽车的变速器的变速比要尽量多,这就是无级变速(Continuously Variable Transmission简称"CVT") 。尽管传统的齿轮变速箱并不理想,但其以结构简单、效率高、功率大三大显着优点依然占领着汽车变速箱的主流地位。 在跨越了三个世纪的一百多年后的今天,电动汽车还没有使用上满意的无级变速箱。这是汽车的无奈和缺憾。但是,人们始终没有放弃寻找实现理想汽车变速器的努力,各大汽车厂商对无级变速器(CVT)表现了极大的热情,极度重视CVT在汽车领域的实用化进程。这是世界范围尚未根本解决的难题,也是汽车变速器的研究的终极目标。 汽车变速器 围绕汽车变速箱五个研究方向,各国汽车变速器专家展开了激烈的角逐。 1.摩擦传动CVT 金属带式无级变速箱(VDT-CVT)的传动功率已能达到轿车实用的要求,装备金属带式无级变速箱的轿车已达100多万辆。据报道:大排量6缸内燃机(2.8L)的奥迪A6轿车上装备的金属带式无级变速箱Multitronic CVT ,能传动142kw(193bhp)功率,280Nm扭矩。这是真正意义的无级变速器。 另一种摩擦传动CVT(名为Extroid CVT)是滚轮转盘式。日产把它装在概念车XVL上首次于去年东京车展展示,新款公爵(Cedric)车也装用这种CVT。可与3L以上排量的大马力内燃

机(XVL的引擎输出为330Nm/194kw)搭配使用,可谓汽车变速箱发展史上又一重要进步。 从V形橡胶带CVT到V型金属带CVT再到滚轮转盘式CVT,摩擦传动CVT的研究已持续了整整一个世纪,尽管摩擦传动无级变速器的发展已经达到很高的水平,也已经装备上电动汽车达到了实用的水平。但齿轮变速箱依然占据着半壁河山,这至少说明了四个问题:(1)无级变速(CVT)是汽车变速箱始终追逐的目标。 (2)摩擦传动CVT实现大功率的无级变速传动是极为困难的。 (3)摩擦传动CVT传动效率低是必然的。 (4)摩擦传动CVT的效率,功率无法与齿轮变速相比。 2.液力传动 人们经常把液力自动变速器(AT)和无级变速器(CVT)两个概念混为一谈。实际上这两种变速器工作原理完全不同。液力自动变速器免除了手动变速器繁杂的换档和脚踩离合器踏板的频繁操作,使开车变得简单、省力。但是, 液力自动变速器(AT)不是无级变速,是有级变速的自动控制,没有从根本上满足汽车对变速器的要求。 从原始橡胶带无级变速箱到现代金属链无级变速箱、滚轮转盘式CVT,百年大回转说明:无级变速箱是汽车变速箱的最终归属,液力自动变速器只不过是一种过渡产品。 3.电控机械式自动变速器 电控机械式自动变速器(Automated Mechanical Transmission简称"AMT")和液力自动变速器(AT)一样,不是无级变速器,是有级变速器的自动换档控制。其特点是机械传动部分沿用了传统的有级变速箱,但控制参量太多,实现自动控制相当困难。 4.齿轮无级变速器 齿轮无级变速器(Gear Continuously Variable Transmission)这是一种全新的设计思想,是利用齿轮传动实现高效率、大功率的无级变速传动。 据最新消息:一种"齿轮无级变速装置"(Gear Continuously Variable Transmission简称"G-CVT")已经试制成功,并已经进行了多次样机试验。"齿轮无级变速装置"结构相当简单,只有不足20种非标零件,51个零件,生产成本甚至低于手动变速箱。预计今年进行装车试验。 齿轮无级变速器的优势表现为: (1)传动功率大,200KW的传动功率是很容易达到的; (2)传动效率高,90%以上的传动效率是很容易达到的; (3)结构简单,大幅度降低生产成本,相当于自动变速箱的1/10; (4)对电动货车而言,提高传动效率,节油20%; (5)发动机在理想状态下工作,燃料燃烧完全,排放干净,极大的减少了对环境的污染。

纯电动汽车驱动电机应用概述

纯电动汽车驱动电机应用概述 郑金凤 胡冰乐 张翔 (福建农林大学机电工程学院,福建 福州 350002) 摘 要:介绍了目前纯电动汽车的发展状况,叙述了纯电动汽车驱动电机不同类型的特点及相关的控制方法。还介绍了一些目前应用比较广泛的驱动电机控制方法的主要内容及其所解决的相关问题。 关键词:纯电动汽车 驱动电机 矢量控制 直接转矩控制 中图分类号:TP202 文献标识码:A Driving Motor for Electric Vehicles Application Overview Zheng Jinfeng Hu Bingle Zhang Xiang (College of Mechanical and Electronic Engineering,Fujian Agriculture and Forestry University,Fuzhou 350002,China) Abstract: the current state of development of electric vehicles and features of the electric vehicles are described.Otherwise,driving motors and its control methods are narrated. Also major contents of some driving motor control methods applied extensively at present and its related issues are discussed. Key words:Electric vehicle,Drive motor,Vector control,Direct Torque Control 引言 由于环境保护越来越受消费者和政府的重视,以及能源价格的不断上涨,使得世界的汽车制造商都纷纷加大开新能源汽车开发力度。在去年金融危机的影响下,今年以来,由于全球大多主流的汽车市场纷纷出现衰退,尤其以美国和日本为代表的两大汽车市场出现了急剧下滑,使得美国和日本汽车厂家不得不加速原本保守的计划,从而重新刺激美国和日本等原有核心市场。而电动汽车以电能为能源,具有零排放无污染的突出优点,因此备受汽车界的推崇。在中国,政府今年也不断的推出各种政策来促进纯电动汽车的发展。回顾一下国际上电动汽车的发展史,连这次至少有四次,世界汽车工业界要启动纯电动汽车,但是前三次都失败了。前三次失败主要是因为电池。前三次基本上都是以铅酸电池为基础,由于他的比能量和比价格都比较差,所以没有得到推广。现在随着电池技术的不断发展,使得纯电动汽车的推广得以实现。现在纯电动汽车主要采用的是锂电池,锂电池的比能量是铅酸电池的八到十倍,且质量轻。今年比亚迪、丰田、奇瑞等汽车公司都将推出各自的纯电动汽车。并且电动汽车将可能慢慢成为汽车发展的一种趋势和必然[1,2,3]。 1各种电动汽车驱动电机的性能[4-11] 纯电动汽车关键的难点重点在于电池技术和驱动电机。电池技术已经在一定程度上得到了突破。下面主要讨论一下驱动电机的相关状况。 1.1电动汽车驱动电机控制的关键问题 电动汽车是以车载电源为动力,并采用电动机驱动的一种交通工具。电机及其驱动系统是电动汽车的核心部件之一,由于电动汽车在运行过程中频繁起动和加减速操作,对驱动系统的有着很高的要求。下面主要阐述控制过程中的一些关键问题: (1)用在电动汽车的电动机应具有瞬时功率大、过载能力强(过载3~4倍)、加速性能好,使用寿命长的特点。 (2)电动汽车用电动机调速范围应该宽广,包括恒转矩区和恒功率区。要求在低速运行时可以输出大恒定转矩,来适应快速起动、加速、负荷爬坡等要求;高速时能够输出恒定功率,能有较大的调速范围,以适应平坦的路面、超车等高速行驶要求。

电动汽车四轮独立驱动技术

电动汽车四轮独立驱动技术 一、引言 内燃机汽车自20世纪初出现至今,在其自身随人类科技的进步经历了巨大的变的过程中也给人类生活和生产带来了巨大方便,为人类社会的进步做出了巨大的贡献,但其消耗日益紧缺的石油并产生大量污染物也使人类赖以生存的环境恶化。因此近年来由于环境恶化及能源紧张等问题,迫切需要开发低能耗,无污染的汽车。因此,电动汽车成为21世纪汽车技术研究的热点。 混合动力汽车与纯电动汽车是电动汽车研究的两个分支。经过近些年的发展,电动汽车技术日趋成熟,部分产品已进入商业化应用如ToyotaPrius。目前,电动汽车传动系统多数在传统内燃机汽车的传动系基础上进行一些改变,进而将电动机及电池等部件加入总布置中。这种布置难以充分发挥电动汽车的优势。为使电动汽车对传统内燃机汽车形成更大的竞争优势,设计出适合电动汽车的底盘系统势在必行。而四轮独立驱动技术则可使电动汽车底盘实现电子化,主动化,大大提高电动汽车的性能。使电动汽车与传统汽车相比具有更强的竞争力。 二、四轮独立驱动技术的特点 电动汽车四轮独立驱动系统是利用四个独立控制的电动机分别驱动汽车的四个车轮,车轮之间没有机械传动环节。其电动机与车轮之间可以是轴式联接也可以将电动机嵌入车轮成为轮式电机,车轮一般带有轮边减速器。这种驱动系统与传统汽车驱动系统相比有以下特点: 1.传动系统得到减化,整车质量大大减轻。由电动机直接驱动车轮甚至两者集成为一体。这样省掉了离合器、变速器及传动轴等传动环节,传动效率得到提高,也更便于实现机电一体化。传动系质量在汽车整车质量中占有很大比重,机械传动系的消失,使汽车很好的实现了轻量化目标。另外,由于动力传动的中间环节减少,传动系的振动及噪声得到改善。甚至在采用纯电力驱动时,可实现无声行驶。这是美国海军的"RST-V"侦察车及其新一代军用"悍马"汽车采用四轮独立驱动技术的重要原因。 2.与传统汽车相比,四轮独立驱动系统可通过电动机来完成驱动力的控制而不需要其他附件,容易实现性能更好的、成本更低的牵引力控制系统(TCS)、防抱死制动系统(ABS)及动力学控制系统(VDC)。传统汽车的TCS与ABS系统均须对发动机与制动系进行联合控制才能达到较好性能,由于机械系统的响应较慢,且受制动器,液压管路及电磁阀的延迟等因素影响,传统内燃机汽车的ABS系统与TCS系统的实际时间延迟达50~100ms。限制了TCS系统与ABS系统的性能提高,而且增加能耗。与内燃机相比,无论在加速还是减速,电动机转矩响应都非常快且容易获得其准确值,这对TCS、ABS、VDC系统来说是非常重要的。因此电动机作为ABS、TCS及VDC 系统的执行器是非常理想的。 3.对各车轮采用制动能量回收系统,则可大大提高汽车能量利用效率,且与采用单电动机驱动的电动汽车相比,其能量回收效率也获得显著增加。这对提高电动汽车续驶里程是很重要的。 4.实现汽车底盘系统的电子化、主动化。现代汽车驱动系统布置分为前驱动、后驱动或全驱动。这两种驱动型式各有优缺点,而且对汽车行驶工况的适应性也不同。如前驱动轿车在高

纯电动汽车的驱动电机系统详解

纯电动汽车的驱动电机系统详解 驱动电机系统是电动汽车三大核心系统之一,是车辆行驶的主要驱动系统,其特性决定了车辆的主要性能指标,直接影响车辆动力性、经济性和用户驾乘感受。一、驱动电机系统介绍驱动电机系统由驱动电机、驱动电机控制器(MCU)构成,通过高低压线束、冷却管路与整车其他系统连接,如图1所示。整车控制器(VCU)根据加速踏板、制动踏板、挡位等信号通过CAN网络向电机控制器MCU发送指令,实时调节驱动电机的扭矩输出,以实现整车的怠速、加速、能量回收等功能。电机控制器能对自身温度、电机的运行温度、转子位置进行实时监测,并把相关信息传递给整车控制器VCU,进而调节水泵和冷却风扇工作,使电机保持在理想温度下工作。驱动电机技术指标参数,如表1所示,驱动电机控制器技术参数如表2所示。1、驱动电机永磁同步电机是一种典型的驱动电机(图2),具有效率高、体积小、可靠性高等优点,是动力系统的执行机构,是电能转化为机械能载体。它依靠内置旋转变压器、温度传感器(图3)来提供电机的工作状态信息,并将电机运行状态信息实时发送给MCU。旋转变压器检测电机转子位置,经过电机控制器内旋变解码器解码后,电机控制器可获知电机当前转子位置,从而控制相应的IGBT功率管导通,按顺序给定子三个线圈通电,驱

动电机旋转。温度传感器的作用是检测电机绕组温度,并提信息供给MCU,再由MCU通过CAN线传给VCU,进而控制水泵工作、水路循环、冷却电子扇工作,调节电机工作温度。驱动电机上有一个低压接口和三根高压线(V、U、W)接口,如图4所示。其中低压接口各端子定义如表3所示,电机控制器也正是通过低压端口获取的电机温度信息和电机 转子当前位置信息。2、驱动电机控制器驱动电机控制器MCU结构如图5所示,它内部采用三相两电平电压源型逆变器,是驱动电机系统的控制核心,称为智能功率模块,它以IGBT(绝缘栅双极型晶体管)为核心,辅以驱动集成电路、主控集成电路。MCU对所有的输入信号进行处理,并将驱动电机控制系统运行状态信息通过CAN2.0网络发送给整车控制器VCU。驱动电机控制器内含故障诊断电路,当电机出现异常时,达到一定条件后,它将会激活一个错误代码并发送给VCU整车控制器,同时也会储存该故障码和相关数据。驱动电机控制器主要依靠电流传感器(图6)、电压传感器、温度传感器来进行电机运行状态的监测,根据相应参数进行电压、电流的调整控制以及其它控制功能的完成。电流传感器用于检测电机工作实际电流,包括母线电流、三相交流电流。电压传感器用于检测供给电机控制器工作的实际电压,包括动力电池电压、12V蓄电池电压。温度传感器用于检测电机控制系统的工作温度,包括IGBT模块的温度。驱动电

电动汽车用驱动电机发展现状与趋势分析

龙源期刊网 https://www.sodocs.net/doc/b17423097.html, 电动汽车用驱动电机发展现状与趋势分析 作者:张勇 来源:《时代汽车》2016年第12期 摘要:目前,我国电动汽车行业正在不断发展,相关的生产技术也逐步完善。本文中,笔者即将对电动汽车用驱动电机进行介绍,并就驱动电机目前的发展状况以及在将来一段时间的发展趋势作出相关分析。 关键词:电动汽车;驱动电机;现状;趋势 1电动汽车用驱动电机概述 目前,电动汽车的不同特性对于驱动电机提出了不同类型的要求。其中,对速度要求较高的电动汽车,要求其电机的瞬时功率及功率密度值较高;而要求电池使用周期较长,充电后可以行使更远距离的电动汽车,要求电机的效率应相对较高;此外,电动汽车还要求驱动电机具有比较理想的高低速综合效率,用材坚固,耐用性强,且具有理想的防水性能,性价比高等特性。依据上述要求,目前国内设计生产的比较常见的驱动电机主要包括下述4种类型。 1.1直流有刷电机 直流有刷电机是一种采用直流供电的驱动电机,是最早研发并使用的电动汽车用驱动电机类型,且目前在很多类型的电动汽车中仍旧在广泛使用。直流有刷电机最大的优势在于控制特性较好,简单易于操作,且目前国内的生产技术较为成熟,质量比较稳定。 然而,直流有刷电机之所以后来逐步为其他类型的驱动电机所取代,正是由于其也存在着一些比较突显的缺陷。首先,由于直流有刷电机具有电刷及机械换向器两个结构,导致其电机过载能力及速度得不到有效的提高,且使用过程中对零部件的维护成本较高。此外,直流有刷电机的损耗主要发生在转子部分,这便导致产生的热量散失难度较大,对转矩质量比参数需要进一步优化。第三,直流有刷电机在运行过程中,电刷容易因摩擦产生火花,从而形成电磁干扰对电动汽车的正常运行造成不利影响。第四,由于采用的是机械换向器,因此会对电机的容量、转速等性能造成限制,越来越无法满足用户对于驱动电机的需求。 1.2感应电机 目前电动汽车中最为常用的就是交流三相感应电机。此类电机的定子和转子是通过对硅钢片进行叠压后制成的,没有其他零部件接触。具有结构简单,性能稳定,耐用性能优良等特点。此外,该电机的功率范围较广;可以通过空气进行冷却,也可以通过液体冷却;同时,对于周边环境具有很好的适应性能。相比于其他类型的驱动电机,感应电机的质量小,价位低,性价比高,并且保养及维修成本也相对较低。

电动汽车用电机可行性报告

1.我国电动汽车发展概况 1.1 产业背景 1.2 产业政策 1.3 发展状况 1.3.1 技术状况 1.3.2 产业化状况 1.3.3 产品状况 1.3.4 国内主要生产企业及其产品明细表 1.4 发展方向 1.4.1 未来趋势 1.4.2 专家评述 2.我国发展电动汽车的相关政策 2.1 国家发展电动汽车的相关政策(按出台时间、名称、主要内容列表) 2.2 各省市发展电动汽车的相关政策(对北京、山东、湖南、湖北、河南、安徽、天津等分述之) 2.3 电动汽车技术支持的相关单位与组织 3.电动汽车驱动系统与驱动电机 3.1 电动汽车对其驱动系统的主要技术要求 3.2 电动汽车驱动系统的分类及其说明 3.3 电动汽车驱动电机的分类及其技术指标汇总 3.4 国内电动汽车研发单位及其研发情况 3.5 电动汽车驱动电机发展方向 4.技术方案 4.1 永磁一磁阻同步电机先进性与可行性 4.2 永磁一磁阻同步电机的优越性 4.3 永磁一磁阻同步电机现有工作基础 5.技术路线 6.合作组织 7.投资估算 8.其他

国外电动汽车及其驱动系统(本网页可阅览) 1.电动汽车的技术特征 1.1 电动汽车的基本概念和基本分类 电动汽车是指以车载电源为动力,用电机驱动车轮行驶,符合道路交通、安全法规各项要求的车辆。它使用存储在电池中的电来发动。电动汽车主要有纯电动汽车、混合动力电动汽车和燃料电池电动汽车3种类型. 纯电动汽车 纯电动汽车是完全由二次电池(如铅酸电池、镍镉电池、镍氢电池或锂离子电池等)提供动力的汽车。 混合动力电动汽车 一般是指采用内燃机和电动机两种动力,将内燃机与储能器件(如高性能电池或超级电容器) 通过先进控制系统相结合, 提供车辆行驶所需要的动力, 混合动力电动汽车并未从根本上摆脱交通运输对石油资源的依赖。因此,混合动力电动汽车是电动汽车发展过程中的一种过渡车型。 燃料电池车 燃料电池车是利用氢气和氧气(或空气)在催化剂的作用下直接经电化学反应产生电能的装臵, 具有完全无污染(排放物为水)的优点, 1.2电动车的基本特点 概括来讲, 电动汽车与内燃机汽车相比有以下优点 (1)效率高:对能源的利用,电动汽车的总效率至少在19%以上(采用燃料电池时效率远高于这一数值),而内燃机汽车效率低于12%,由此可见, 电动汽车更加节能。 (2)环境污染小: 电动汽车排出的废气非常少甚至不排出废气, 产生的废热也明显少于内燃机汽车. (3)可使用多种能源: 可直接利用电厂输出的电能,也可以通过太阳能、化学能、机械能转化而获得电能。 (4)噪音低: 即使靠近正在高速运转的电动机也不会感觉到让人不舒服的噪音, 而内燃机的噪音则非常大。 (5)结构简单,使用维修方便,操作控制易实现自动化。 三种类型电动汽车的比较如附表所示

新能源汽车的驱动及传动系统的概述

新能源汽车的驱动及传动系统的概述 驱动系统 对于新能源汽车来说,其驱动系统的核心就是驱动电机,驱动电机性能的优劣直接决定了新能源汽车性能的好坏。新能源汽车驱动用电机比较独特,其对电机技术性能、主要尺寸以及工作环境等有其特殊的要求,可归纳为以下几点:(1)高功率密度,高比功率采用新的材料降低电机本体的质量提高其 比功率;优化电机设计,降低其体积提高功率密度;并且,控制装置等电机相关配套系统也应该尽可能的选用轻质材料。 (2)高效率优化电机设计,降低电机各部分损耗值,并能够在汽车减 速制动时进行能量回收提高能源利用率。 (3)高过载能力电机的启动转矩要足够大,以满足新能源汽车迅速加 速行驶以及最大爬坡的动力性能要求。 (4)宽调速范围在电机低速与高速运行范围内都能达到精准的控制要 求,而且不失去其他动力性指标要求。 (5)高防护等级,高可靠性电机的控制系统及相应的电气系统的安全 性要求较高,新能源汽车的动力电池组及电机绕组中的电压很容易达到300V 以上,所以必须配备相应的耐高压保护设备以保证乘车安全。 (6)高稳态精度、高可控性、高动态响应性能以满足汽车频繁起停等 复杂工况的要求及多台电机协调运行的要求。 (7)低噪声,低振动为了提高新能源汽车的乘坐舒适性,必须优化电 机设计,降低其噪音及振动水平。 (8)能够在恶劣环境条件下可靠工作新能源汽车驱动电机必须满足耐 热、耐寒及耐潮湿等恶劣工作环境的要求。 (9)结构简单,价格低廉适合大批量生产,维修保养方便。 目前市场上存在的驱动电机: (1)早期新能源汽车驱动用电机大多是直流电机,因为其转矩速度特性能够满足新能源汽车的牵引要求并且控制起来非常简便,但其在结构上的缺陷,使得其使用环境要求苛刻、保养维修困难、寿命较短。随着电力电子器件和微控制器技术的迅速发展,交流电机逐渐取代直流电机应用于新能源汽车,在目前新开发的各种新能源汽车中,直流电动机已经基本上被淘汰。 (2)三相异步感应电动机是一种技术成熟运用广泛的电动机。其结构简单,性能可靠,对环境的适应性好。与同规格的直流电机相比,其效率较高,质量大为减轻,且维修保养简便。但是其功率因数较低,耗电量较大,转子易发热,对控制器的容量要求较高,另外由于其直交轴的相互影响,增加了控制系统的复杂程度,调速性能较差。 (3)开关磁阻电机是一种比较新型的电机,比之其他类型电机,在结构上没有永磁体、电刷和滑环等零部件,其结构简单并且非常坚固,制造成本较低,转速范围宽,小转动惯量的转子使得电机动态响应快。但是,其扭矩性能低,转矩脉动和噪声水平较其他类型电机都大,这是由其结构双凸极特性引起的,是电机本身无法克服的固有缺陷,这种缺陷成为了影响其广泛应用的绊脚石。

电动汽车动力传动系的结构与工作原理

电动汽车动力传动系的结构与工作原理 摘要:能源危机已经逐渐成为世界面临的最重大问题之一。电动汽车的发展应运而生。电动汽车的动 力传动系统又是其核心技术,本文主要对电动汽车中的蓄电池,电动机以及控制器的结构和工作原理进行 了阐述。 关键词:电动汽车蓄电池电动机控制器 The Works And Structure Of Power Transmission For Electric Vehicle LIU Xue Lai ( School of Automobile and Traffic Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China) Abstract: Energy crisis has become one of the most important issues which all the people have to face. Due to this problem, the development of electric vehicle comes into being. Power transmission is the core technology for electric vehicle. The article mainly makes a set about the works and structure of electric vehicle’s storage battery, electric motor and motor controller. Keyword: Electric Vehicle Storage Battery Electric Motor Motor Controller 前言 能源短缺、环境污染、气候变暖是全球汽车产业面临的共同挑战,各国政府及其产业界积极应对,纷纷提出各自发展战略,新能源汽车已经成为21世纪汽车工业的发展热点。我国是一个能源短缺的国家,尤为重视新能源汽车的研发。其中,纯电动汽车是新能源汽车的重中之重。纯电动汽车是以电池为储能单元,以电动机为驱动系统的车辆。通常地,容量型驱动力电池即可满足实用要求。纯电动汽车的特点是结构相对简单,生产工艺相对成熟,缺点是充电速度慢,续驶里程短。因此适合与行驶路线相对固定,有条件进行较长时间充电的车辆。 1.概述 1.1 动力传动系统 动力传动系统是电动汽车最主要的系统,电动汽车运行性能的好坏主要是由其动力传动系统的性能决定的。电动汽车动力传动系统由蓄电池、控制器、电动机、变速器、主减速器、等组成。电机控制器接受从加速踏板(相当于内燃机汽车的油门)、刹车踏板和PRND(停车、倒车、空档、前进)控制按键的输出信号,控制电动机的旋转,通过减速器、传动轴、差速器、半轴等机械传动装置驱动车轮旋转。车辆减速时,电机对车辆前进起制动作用,这时电机处于发电机制动的运动状态,给蓄电池充电,也就是所谓的再生制动。电动汽车的再生制动功能是非常重要的,根据对电动汽车的实际运行测试结果表明,再生制动给作为储能动力源的蓄电池补充的能量,能是电动汽车一次充电之后行驶里程增加。动力传动系统的构成框图如1.1所示。

相关主题