搜档网
当前位置:搜档网 › 备战高考物理临界状态的假设解决物理试题(大题培优 易错 难题)含答案解析

备战高考物理临界状态的假设解决物理试题(大题培优 易错 难题)含答案解析

备战高考物理临界状态的假设解决物理试题(大题培优 易错 难题)含答案解析
备战高考物理临界状态的假设解决物理试题(大题培优 易错 难题)含答案解析

高中物理常见临界问题

高中物理常见临界问题(极值问题)分析处理训练 一问题概述: 当物体由一种运动形式(物理过程与物理状态)变为另一种运动形式(物理过程与物理状态)时,可能存在一个过渡的转折点,即分界限的现象。这时物体所处的状态通常称为临界状态,与之相关的物理条件则称为临界条件。这是量变质变规律在物理中的生动表现。如:力学中的刚好滑动;正常行驶;宇宙速度,共振;电学中电源最大输出功率;光学中的临界角;光电效应中的极限频率等 解决临界问题,通常以定理、定律为依据,分析所研究问题的一般规律和一般解的形式及其变化情况,然后找出临界状态,临界条件,从而通过临界条件求出临界值,再根据变化情况,直接写出条件。 所谓极值问题,一般而言,就是在一定条件下求最值结果。求解极值问题的方法从大的角度可分为物理方法和数学方法。物理方法即用临界条件求极值。数学方法包括(1)利用矢量图求极值(2)用三角函数关系求极值;(3)用二次方程的判别式求极值;(4)用不等式的性质求极值。(5)导数法求解。一般而言,用物理方法求极值直观、形象,对构建模型及动态分析等方面的能力要求较高,而用数学方法求极值思路严谨,对数学能力要求较高.若将二者予以融合,则将相得亦彰,对增强解题能力大有裨益。极值问题与临界问题从本质上说是有区别的,但高考中极值问题通常都可用物理临界法求解。 解答临界问题的关键是找临界条件。许多临界问题,题干中常用“恰好”、“最大”、“至少”、“不相撞”、“不脱离”……等词语对临界状态给出了明确的暗示,审题时,一定要抓住这些特定的词语发掘其内含规律,找出临界条件。 有时,有些临界问题中并不显含上述常见的“临界术语”,具有一定的隐蔽性,解题灵活性较大,审题时应力图还原习题的物理情景,耐心讨论状态的变化,可用极限法(把物理问题或过程推向极端,从而将临界状态及临界条件显露出来)假设法(即假设出现某种临界状态,物体的受力情况及运动状态与题设是否相符,最后再根据实际情况进行处理。)数学函数极值法等方法找出临界状态。然后抓住临界状态的特征,找到正确的解题方向。 ※为了提高解题速度,可以理解记住一些重要的临界条件及状态: 物体自由地沿斜面刚好匀速下滑则μ=tgα。 物体刚好滑动静摩擦力达到最大。 两个物体沿同一直线运动,在速度相等时距离最大或最小。 两物体刚好相对静止必速度相等、加速度相等。 两个物体距离最近(远),相对速度相等。 速度达到最值——沿速度方向的合外力为零(曲线运动时则切向合外力为零) 两个一同运动的物体刚好(不)脱离时,两物体间的弹力刚好为零,速度、加速度相等。 刚好到达某点——速度为零(速度不一定为零) 物体刚好(不)滑出——物体到达末端时二者等速。 在竖直面内做圆周运动,绳端物体刚好到达最高点——绳拉力为零,重力是向心力, 杆端物体刚好到达最高点——物体速度等于零。 两个物体刚好(不)分离——两物接触且弹力为零,速度加速度(垂直接触面方向)相等。绳刚好拉直——绳直且拉力为零,绳刚好拉断——张力等于绳所能承受最大拉力。 刚好不相撞——两物体间距为零时等速。 碰撞过程碰后相对速度为零时,损失的动能最大 粒子刚好(不)飞出两极板间匀强电场或匀强磁场——轨迹与板边缘相切,粒子刚好(不)飞出磁场区——轨迹与磁场边界相切。

高中物理中的临界与极值问题

高中物理中的临界与极值问题 宝鸡文理学院附中何治博 一、临界与极值概念所谓物理临界问题是指各种物理变化过程中,随着条件的逐渐变化,数量积累达到一定程度就会引起某种物理现象的发生,即从一种状态变化为另一种状态发生质的变化(如全反射、光电效应、超导现象、线端小球在竖直面内的圆周运动临界速度等),这种物理现象恰好发生(或恰好不发生)的过度转折点即是物理中的临界状态。与之相关的临界状态恰好发生(或恰好不发生)的条件即是临界条件,有关此类条件与结果研究的问题称为临界问题,它是哲学中所讲的量变与质变规律在物理学中的具体反映。极值问题则是指物理变化过程中,随着条件数量连续渐变越过临界位置时或条件数量连续渐变取边界值(也称端点值)时,会使得某物理量达到最大(或最小)的现象,有关此类物理现象及其发生条件研究的问题称为极值问题。临界与极值问题虽是两类不同的问题,但往往互为条件,即临界状态时物理量往往取得极值,反之某物理量取极值时恰好就是物理现象发生转折的临界状态,除非该极值是单调函数的边界值。因此从某种意义上讲,这两类问题的界线又显得非常的模糊,并非泾渭分明。 高中物理中的临界与极值问题,虽然没有在教学大纲或考试说明中明确提出,但近年高考试题中却频频出现。从以往的试题形式来看,有些直接在题干中常用“恰好”、“最大”、“至少”、“不相撞”、“不脱离”……等

词语对临界状态给出了明确的暗示,审题时,要抓住这些特定的词语发掘其内含的物理规律,找出相应的临界条件。也有一些临界问题中并不显含上述常见的“临界术语”,具有一定的隐蔽性,解题灵活性较大,审题时应力图还原习题的物理情景,周密讨论状态的变化。可用极限法把物理问题或物理过程推向极端,从而将临界状态及临界条件显性化;或用假设的方法,假设出现某种临界状态,分析物体的受力情况及运动状态与题设是否相符,最后再根据实际情况进行处理;也可用数学函数极值法找出临界状态,然后抓住临界状态的特征,找到正确的解题方向。从以往试题的内容来看,对于物理临界问题的考查主要集中在力和运动的关系部分,对于极值问题的考查则主要集中在力学或电学等权重较大的部分。 二、常见临界状态及极值条件解答临界与极值问题的关键是寻找相关条件,为了提高解题速度,可以理解并记住一些常见的重要临界状态及极值条件: 1.雨水从水平长度一定的光滑斜面形屋顶流淌时间最短——屋面倾角 为0 45 2.从长斜面上某点平抛出的物体距离斜面最远——速度与斜面平行时 刻 3.物体以初速度沿固定斜面恰好能匀速下滑(物体冲上固定斜面时恰 好不再滑下)—μ=tgθ。 4.物体刚好滑动——静摩擦力达到最大值。

高中物理 动力学中的临界问题

动力学中的临界问题 1.当物体的运动从一种状态转变为另一种状态时必然有一个转折点,这个转折点所对应的状态叫做临界状态;在临界状态时必须满足的条件叫做临界条件。用变化的观点正确分析物体的受力情况、运动状态变化情况,同时抓住满足临界值的条件是求解此类问题的关键。 2.临界或极值条件的标志 (1)有些题目中有“刚好”、“恰好”、“正好”等字眼,表明题述的过程存在着临界点; (2)若题目中有“取值范围”、“多长时间”、“多大距离”等词语,表明题述的过程存在着“起止点”,而这些起止点往往就是临界状态; (3)若题目中有“最大”、“最小”、“至多”、“至少”等字眼,表明题述的过程存在着极值,这个极值点往往是临界点; (4)若题目要求“最终加速度”、“稳定加速度”等,即是要求收尾加速度或收尾速度。 3.产生临界问题的条件 (1)接触与脱离的临界条件:两物体相接触或脱离,临界条件是:弹力F N =0。 (2)相对滑动的临界条件:两物体相接触且处于相对静止时,常存在着静摩擦力,则相对滑动的临界条件是:静摩擦力达到最大值。 (3)绳子断裂与松弛的临界条件:绳子所能承受的张力是有限的,绳子断与不断的临界条件是绳中张力等于它所能承受的最大张力,绳子松弛的临界条件是F T =0。 (4)加速度最大与速度最大的临界条件:当物体在受到变化的外力作用下运动时,其加速度和速度都会不断变化,当所受合外力最大时,具有最大加速度;合外力最小时,具有最小加速度。当出现速度有最大值或最小值的临界条件时,物体处于临界状态,所对应的速度便会出现最大值或最小值。 例1:如图所示,质量均为m 的A 、B 两物体叠放在竖直弹簧上并保持静止,用大小等于mg 的恒力F 向上拉B ,运动距离h 时,B 与A 分离,下列说法正确的是( ) A . B 和A 刚分离时,弹簧长度等于原长 B .B 和A 刚分离时,它们的加速度为g C .弹簧的劲度系数等于mg h D .在B 和A 分离前,它们做匀加速直线运动

(完整)高中物理力学模型及分析

╰ α 高中物理力学模型及分析 1.连接体模型是指运动中几个物体叠放在一起、或并排在一起、或用细绳、细杆联系在一起的物体组。 解决这类问题的基本方法是整体法和隔离法。 整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程 隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。 2斜面模型(搞清物体对斜面压力为零的临界条件) 斜面固定:物体在斜面上情况由倾角和摩擦因素决定 μ=tgθ物体沿斜面匀速下滑或静止μ> tgθ物体静止于斜面 μ< tgθ物体沿斜面加速下滑a=g(sinθ一μcosθ) 3.轻绳、杆模型 绳只能受拉力,杆能沿杆方向的拉、压、横向及任意方向的力。 杆对球的作用力由运动情况决定 只有θ=arctg( g a)时才沿杆方向 最高点时杆对球的作用力;最低点时的速度?,杆的拉力? 若小球带电呢? E m L · m2 m1 F B A F1 F2 B A F

假设单B下摆,最低点的速度V B=R 2g ?mgR=2 2 1 B mv 整体下摆2mgR=mg 2 R +'2 B '2 A mv 2 1 mv 2 1 + ' A ' B V 2 V=?' A V=gR 5 3 ;' A ' B V 2 V==gR 2 5 6 > V B=R 2g 所以AB杆对B做正功,AB杆对A做负功 若V0 V B=R 2g 所以AB杆对B做正功,AB杆对A做负功 若V0

高中物理重点专题练习:(临界问题)(精选.)

课堂练习:(临界问题) 1、一劲度系数为m N k /200=的轻弹簧直立在水平地板上,弹簧下端与地板相连,上端与一质量kg m 5.0=的物体B 相连,B 上放一质量也为kg 5.0的物体A ,如图。现用一竖直向下的力F 压A ,使B A 、均静止。当力F 取下列何值时,撤去F 后可使B A 、不分开 ( ) A.N 5 B.N 8 N 15 D.N 20 2、如图,三个物块质量分别为1m 、 2m 、M ,M 与1m 用弹簧联结,2m 放在1m 上,用足够大的外力F 竖直向下压缩弹簧,且弹力作用在弹性限度以内,弹簧的自然长度为L 。则撤去外力F ,当2m 离开1m 时弹簧的长度为___________,当M 与地面间的相互作用力刚为零时,1m 的加速度为 。 3、如图,车厢内光滑的墙壁上,用线拴住一个重球,车静止时,线的拉力为T ,墙对球的支持力为N 。车向右作加速运动时,线的拉力为T ',墙对球的支持力为N ',则这四个力的关系应为:T ' T ;N ' N 。(填>、<或=)若墙对球的支持力为0,则物体的运动状态可能是 或 。 4、在光滑的水平面上,B A 、两物体紧靠在一起,如图。A 物体的质量为m ,B 物体的质量m 5,A F 是N 4的水平向右的恒力,N t F B )316(-=(t 以s 为单位),是随时间变化的水平力。从 静止开始,当=t s 时,B A 、两物体开始分离,此时B 物体的速度方向 朝 (填“左”或“右”)。 5、如图,在斜面体上用平行于斜面的轻绳挂一小球,小球质量为m ,斜面体倾角为θ,置于光滑水平面上 (g 取2/10s m ),求: (1)当斜面体向右匀速直线运动时,轻绳拉力为多大; (2)当斜面体向左加速运动时,使小球对斜面体的压力为零时,斜面体加速度为多大; (3)为使小球不相对斜面滑动,斜面体水平向右运动的加速度的最大值为多少。

高三物理复习中的极值与临界问题专题

极值与临界问题专题 常州二中徐展 临界现象是量变质变规律在物理学上的生动体现。即在一定的条件下,当物质的运动从一种形式或性质转变为另一种形式或性质时,往往存在着一种状态向另一种状态过渡的转折点,这个转折点常称为临界点,这种现象也就称为临界现象.如:静力学中的临界平衡;机车运动中的临界速度;碰撞中的能量临界、速度临界及位移临界;电磁感应中动态问题的临界速度或加速度;光学中的临界角;带电粒子在磁场中运动的边界临界;电路中电学量的临界转折等. 解决临界问题,一般有两种方法,第一是以定理、定律为依据,首先求出所研究问题的一般规律和一般解的形式,然后再分析、讨论临界特殊规律和特殊解;第二是直接分析、讨论临界状态,找出临界条件,从而通过临界条件求出临界值。 所谓极值问题,一般而言,就是在一定条件下求最佳结果所需满足的极值条件.求解极值问题的方法从大的角度可分为物理方法和数学方法。物理方法包括(1)利用临界条件求极值;(2)利用问题的边界条件求极值;(3)利用矢量图求极值。数学方法包括(1)用三角函数关系求极值;(2)用二次方程的判别式求极值;(3)用不等式的性质求极值。一般而言,用物理方法求极值直观、形象,对构建模型及动态分析等方面的能力要求较高,而用数学方法求极值思路严谨,对数学能力要求较高.若将二者予以融合,则将相得亦彰,对增强解题能力大有裨益。 在中学物理问题中,有一类问题具有这样的特点,如果从题中给出的条件出发,需经过较复杂的计算才能得到结果的一般形式,并且条件似乎不足,使得结果难以确定,但若我们采用极限思维的方法,将其变化过程引向极端的情况,就能把比较隐蔽的条件或临界现象暴露出来,从而有助于结论的迅速取得。 在应用牛顿运动定律解决动力学问题中,当物体运动的加速度不同时,物体有可能处于不同的状态,特别是题目中出现“最大”、“最小”、“刚好”等词句时,往往会有临界现象。此时要用极限分析法,看物体不同加速度时,会有哪些现象发生,找出临界点,求出临界条件。 解决此类问题重在形成清晰的物理图景,分析清楚物理过程,从而找出临界条件或达到极值的条件,要特别注意可能出现的多种情况。在解决临办极值问题注意以下几点: 1.许多临界问题常在题目的叙述中出现“恰好”、“最大”、“至少”、“不相撞”、“不脱离”……等词句对临界问题给出了明确的暗示,审题是只要抓住这些特定词语其内含规律就能找到临界条件。 2.临界点的两侧,物体的受力情况、变化规律、运动状态一般要发生改变,能否用变化的观点正确分析其运动规律是求解这类题目的关键,而临界点的确定是基础。 3.临界问题通常具有一定的隐蔽性,解题灵活性较大,审题时应力图还原习题的物理情景,抓住临界状态的特征,找到正确的解题方向。 4.确定临界点一般用极端分析法,即把问题(物理过程)推到极端,分析在极端情况下可能出现的状态和满足的条件。 【典型例题与练习】 运动学中的极值与临界问题: 1.一车处于静止状态,车后相距s0=25m处有一个人,当车开始起动以1m/s2的加速度前进的同时,人以6m/s速度匀速追车,能否追上?若追不上,人车间的最小距离为多少?人不可能追上车 18 m。A、B 两车停在同一点,某时刻A车以2m/s2的加速度匀加速开出,2s后B车同向以3m/s2的加速度开出。问:B车追上A车之前,在启动后多长时间两车相距最远,距离是多少?

高中物理临界问题解题技巧类解

高中物理临界问题解题技巧类解 临界问题是物理现象中的常见现象。所谓临界状态就是物理现象从一种状态变化成另一种状态的中间过程,临界状态通常具有以下特点:瞬时性、突变性、关联性、极值性等。临界状态往往隐藏着关键性的隐含条件,是解题的切入口,在物理解题中起举足轻重的作用。求解临界问题通常有如下方法:极限法、假设法、数学分析法(包括解析法、几何分析法等)、图象法等。 极限法:在题目中如出现“最大”、“最小”、“刚好”、“要使”等词语时,一般隐含着临界问题。处理问题时,一般把物理问题(或过程)设想为临界状态,从而使隐藏着的条件暴露出来,达到求解的目的。假设法:有些物理过程中没有明显出现临界问题的线索,但在变化过程中可能出现临界问题,解决办法是采用假设法,把物理过程按变化的方向作进一步的外推,从而判断可能出现的情况。数学分析法;是一种很理性的分析方式,把物理现象转化成数学语言,用数学工具加以推导,从而求出临界问题,用这种分析方法一定要注意理论分析与物理实际紧密联系起来,切忌纯数学理论分析。图象法:将物理过程的变化规律反映到物理图象中,通过图象分析求出临界问题。下面列举的是高中物理各知识系统中典型的临界问题。 一、运动学中的临界问题 例1、一列客车以速度v 1前进,司机发现前方在同一轨道上有一列货车正在以速度v 2匀速前进,且v 1v 2,货车车尾与客车车头相距s 0,客车立即刹车做匀减速运动,而货车仍保持匀速运动。求客车的加速度a 符合什么条件两车才不会撞上? 分析:这一类问题一般用数学方法(解析法)来求解。若要客车不撞上货车,则要求客车尽可能快地减速,当客车的速度减小到与货车速度相等时两车相对静止,若以后客车继续减速,则两车的距离又会增大;若以后客车速度不变,则两车将一直保持相对静止。可见,两车恰好相碰时速度相等是临界状态,即两车不相碰的条件是:两车速度相等时两车的位移之差△S ≤S 0。下面用两种方法求解。 解法一:以客车开始刹车时两车所在位置分别为两车各自位移的起点,则,客车:21112 s v t at =-,货车:22s v t =, 两车不相撞的条件:21,v v at =-120s s s -≤。 联立以上各式有:2 120 ()2v v a s -≥。 解法二:客车减速到2v 的过程中客车的位移为:1212v v s t += , 经历的时间为:12v v t a -=;货车的位移为:22s v t =,

高中物理必修一常考题型+例题及答案

高中物理必修一常考题型 一、直线运动 1、xt图像与vt图像 2、纸带问题 3、追及与相遇问题 4、水滴下落问题(自由落体) 二、力 1、滑动摩擦力的判断 2、利用正交分解法求解 3、动态和极值问题 三、牛顿定律 1、力、速度、加速度的关系; 2、整体法与隔离法 3、瞬时加速度问题 4、绳活结问题 5、超重失重 6、临界、极值问题 7、与牛顿定律结合的追及问题 8、传送带问题 9、牛二的推广 10、板块问题 11、竖直弹簧模型

一、直线运动 1、xt 图像与vt 图像 2014生全国(2) 14.甲乙两汽车在一平直公路上同向行驶。在t =0到t=t 1的时间内,它们的v-t 图像如图所示。 在这段时间内 A.汽车甲的平均速度比乙大 B.汽车乙的平均速度等于2 21v v C.甲乙两汽车的位移相同 D.汽车甲的加速度大小逐渐减小,汽车乙的加速度大小逐渐增大 2016全国(1) 21.甲、乙两车在平直公路上同向行驶,其v -t 图像如图所示。已知两车在t =3s 时并排行驶,则 A.在t=1s 时,甲车在乙车后 B.在t=0时,甲车在乙车前7.5m C .两车另一次并排行驶的时刻是t =2s D.甲、乙两车两次并排行驶的位置之间沿公路方向的距离 为40m 2、纸带问题 【2012年广州调研】 34.(18分) (1) 用如图a 所示的装置“验证机械能守恒定律” ①下列物理量需要测量的是__________、通过计算得到的是_____________(填写代号) A .重锤质量 B .重力加速度 C .重锤下落的高度 D .与下落高度对应的重锤的瞬时速度 ②设重锤质量为m 、打点计时器的打点周期为T 、重力加速度为g .图b 是实验得到的一条纸带, A 、 B 、 C 、 D 、 E 为相邻的连续点.根据测得的s1、s2、s3、s4写出重物由B 点到D 点势能减少量的表达式__________,动能增量的表达式__________.由于重锤下落时要克服阻力做功,所以该实验的动能增量总是__________(填“大于”、“等于”或“小于”)重力势能的减小量

高中物理临界问题总结

高中物理临界问题总结 物理常见临界条件有哪些呢?正在备考的同学们赶紧来看看高中物理知识点物理常见临界条件汇总。下面是小编为您整理的作文,希望对您有所帮助。 高中物理临界问题总结 1.演绎法:以原理、定理和定律为依据,先找出所研究问题的一般规律和一般解,然后分析讨论其特殊规律和特殊解,即采用从一般到特殊的推理方法。 2.临界法:以原理、定理或定律为依据,直接从临界状态和相应的临界量入手,求出所研究问题的特殊规律和特殊解,以此对一般情况进行分析讨论和推理,即采用林特殊到一般的推理方法。 由于临界状态比一般状态简单,故解决临界问题时用临界法比演绎法简捷。在找临界状态和临界量时,常常用到极限分析法:即通过恰当地选取某个物理量(临界物理量)推向极端(“极大”和“极小”,“极左”和“极右”等),从而把隐蔵的临界现象(或“各种可能性”)暴露出来,找到解决问题的“突破口”。因此,先分析临界条件 物理学中临界问题题1 如图所示,细杆的一端与一小球相连,可绕过O点的水平轴自由转动。现给小球一初速度,使它做圆周运动,图中a、b分别表示小球轨道的最低点和最高点,则杆对球的作用力可能是 A.处为拉力,为拉力

B.处为拉力,为推力 C.处为推力,为拉力 D.处为推力,为推力 解析因为圆周运动的物体,向心力指向圆心,小球在最低点时所需向心力沿杆由a指向O,向心力是杆对小球的拉力与小球重力的合力,而重力方向向下,故杆必定给球向上的拉力,小球在最高点时若杆恰好对球没有作用力,即小球的重力恰好对球没有作用力,即小球的重力恰好提供向心力,设此时小球速度为vb,则:mg = m vb = 当小球在最高点的速度vvb时,所需的向心力Fmg,杆对小球有向下的拉力;若小球的速度vvb时,杆对小球有向上推力,故选A、B正确 评析本题关键是明确越过临界状态vb = 时,杆对球的作用力方向将发生变化。

高中物理--约束问题与临界值

约束问题与临界值 现行高中物理教材的各种版本中,都未曾提及约束问题。然而,有关约束问题的习题却不少,就是在高考中也常出现这类题型。至于中学物理竞赛试题中更是屡见不鲜,并常以拔高题出现。下面拟就中学物理中有关约束问题,作一浅析。 1.有关约束问题的基本概念 如果某一物体被限制在某一曲面或曲线上运动,我们就说该物体的运动受到约束。那么该曲线或曲面就称为约束。例如图1中单摆小球被限制在圆弧上运动;图2中物体m沿(光滑或粗糙的)斜面下滑,物体m被限制在斜面上运动;图3中导体ab被限制在导电滑轨M N上运动等等,都属于约束问题。图1中的摆线,图2中的斜面,图3中的滑轨等都叫约束。由此可以看出,约束既是实在的物体,又是某些物体对别的物体运 动限制作用的抽象。 约束的分类随依据不同而异。按约束随时间改变与否,可分为 稳定约束与不稳定约束。例如图2中,如果斜面体是固定的,则称 为稳定约束,如果斜面体是放在光滑的水平面上,当m下滑时,斜 面体本身也作加速运动,则称为不稳定约束。按其约束的方向来分, 可分为单向约束和多向约束。如图1中,小球每时刻都只在沿绳伸长的方向受限制,则称为单向约束;图4中,带电小圆环沿绝缘杆在电磁场中下滑时,除沿杆的方向以外,其他方向都受到限制,称为多向约束。从约束的光滑情况来分,又可分为光滑约束和有摩擦约束。 力学中把约束对物体的作用力,称为约束反力。例如图1中绳子对小球的拉力,图2 中斜面对物体的支持力等等都叫做约束反力。由上述定义可以看出,约束反力是因其起源和

作用而得名,在含意上有其狭义的规定性,就性质而言都属于弹力,且都是约束对研究物体的作用力。 2.约束反力的求解 约束反力的大小及其变化情况,往往不能预先知道,也不是都能由平衡条件计算出来的,而需要根据物体的运动被限制在约束上这一条件,运用牛顿运动定律列方程求解。 [例1]一质量为m的小球,与长为l的细绳组成一单摆。现将此单摆拉到与竖直线成α角的位置,由静止释放,在摆动途中,摆绳被一钉子A所阻,钉子与摆的悬挂点o相距r, 两者连线与竖直线成β角。如图5所示。试求: (1)摆绳为钉子所阻后,绳子张力的表达式。 (2)小球在继续上升的过程中,若摆绳发生弯曲,在此情 况下,L、r、β、α之间的关系。 [解析](1)小球从开始摆动到摆绳发生弯曲之间,都属于 单向约束问题。小球摆到图示位置B时,是以钉子A为圆心的,以L—r为半径的圆周运动。设绳子对小球的约束反力为T,AB线与竖直夹角为θ,由机械能守恒定律得 由牛顿运动定律得此时法向方向方程 式(1)、(2)联立解得 (2)若绳子发生弯曲,则T=0,意味着约束解除,由此条件求得

高考物理常见临界条件专题

高考物理常见临界条件汇总 物理常见临界条件有哪些呢? 一、临界状态和临界条件 当物体由一种物理状态变为另一种物理状态时,可能存在一个过渡的转折点,这时物体所处的状态通常称为临界状态。出现临界状态时,该状态既可理解成“恰好出现”也可理解为“恰好不出现”。与临界状态相关的物理条件称为临界条件。解答临界问题的关键是找出临界条件。 临界问题通常具有一定的隐蔽性,解题灵活性较大,审题时应力求准确把握题目的物理情景,分析清楚物理过程,抓住临界状态的特征,找到正确的解题方向。从而找出临界条件。 许多临界问题,题干中常用“恰好”、“最大”、“最小”、“不相碰”、“不脱离”等词语对临界状态给出了明确的暗示,审题时一定要抓住这些特定的词语发掘出内含规律,找出临界条件。 二、临界情况————————临界条件 绳刚好被拉直——绳上拉力为零 刚好不上(下)滑保持物体静止在斜面上的最小水平推力拉动物体的最小力——静摩擦力为最大静摩擦力,物体平衡 转盘上“物体刚好发生滑动”——向心力为最大静摩擦力 绳刚好被拉断——绳上的张力等于绳能承受的最大拉力 两个物体距离最近(远)——速度相等 天车下悬挂重物水平运动,天车突停——重物从直线运动转为圆周运动,绳拉力增加 绳系小球摆动,绳碰到(离开)钉子——圆周运动半径变化,拉力突变 使通电导线在倾斜导轨上静止的最小磁感应强度——安培力平行于斜面 圆形磁场区的半径最小——磁场区是以公共弦为直径的圆 双弹簧振子弹簧的弹性势能最大——弹簧最长(短),两端物体速度为零 速度达到最大——物体所受合外力为零 刚好不相撞——两物体最终速度相等或者接触时速度相等 刚好不分离——两物体仍然接触、弹力为零原来一起运动的两物体分离时不只弹力为零且速度和加速度相等 粒子刚好飞出(飞不出)两个极板间的匀强电场——粒子运动轨迹与极板相切 杆端物体刚好通过最高点——物体运动到最高点时速度为零 绳端物体刚好通过最高点——物体运动到最高点时重力(“等效重力”)等于向心力速度大小为刚好运动到某一点(“等效最高点”)——到达该点时速度为零 物体刚好滑出(滑不出)小车——-物体滑到小车一端时与小车的速度刚好相等 粒子刚好飞出(飞不出)磁场——粒子运动轨迹与磁场边界相切 粒子刚好飞出(飞不出)两个极板间的匀强电场——粒子运动轨迹与极板相切 粒子刚好飞出(飞不出)磁场——粒子运动轨迹与磁场边界相切 粒子刚好飞出(飞不出)两个极板间的匀强电场——粒子运动轨迹与极板相切

圆周运动中的临界问题和周期性问题高中物理

圆周运动中的临界问题和周期性问题 一、圆周运动问题的解题步骤: 1、确定研究对象 2、画出运动轨迹、找出圆心、求半径 3、分析研究对象的受力情况,画受力图 4、确定向心力的来源 5、由牛顿第二定律r T m r m r v m ma F n n 222)2(π ω====……列方程求解 二、临界问题常见类型: 1、按力的种类分类: (1)、与弹力有关的临界问题:接触面间的弹力:从有到无,或从无到有 绳子的拉力:从无到有,从有到最大,或从有到无 (2)、与摩擦力有关的弹力问题:从静到动,从动到静,临界状态下静摩擦力达到最大静摩擦 2、按轨道所在平面分类: (1)、竖直面内的圆周运动 (2)、水平面内的圆周运动 三、竖直面内的圆周运动的临界问题 1、单向约束之绳、外轨道约束下的竖直面内圆周运动临界问题: 特点:绳对小球,轨道对小球只能产生指向圆心的弹力 ① 临界条件:绳子或轨道对小球没有力的作用: mg=mv 2/R →v 临界=Rg (可理解为恰好转过或恰好转不过的速度) 即此时小球所受重力全部提供向心力 ②能过最高点的条件:v ≥Rg ,当v >Rg 时,绳对球产生拉力,轨道对球产生压力. ③不能过最高点的条件:v <V 临界(实际上球还没到最高点时就脱离了轨道做斜抛运动) 例1、绳子系着装有水的木桶,在竖直面内做圆周运动,水的质量m=0.5kg ,绳子长度为l=60cm ,求:(g 取10m/s 2) A 、最高点水不留出的最小速度? B 、设水在最高点速度为V=3m/s ,求水对桶底的压力? 答案:(1)s m /6 (2)2.5N

变式1、如图所示,一质量为m 的小球,用长为L 细绳系住,使其在竖直面内作圆周运动.(1)若过小球恰好能通过最高点,则小球在最高点和最低点的速度分别是多少?小球的受力情况分别如何?(2)若小球在最低点受到绳子的拉力为10mg ,则小球在最高点的速度及受到绳子的拉力是多少? 2、单向约束之内轨道约束下(拱桥模型)的竖直面内圆周运动的临界问题: 汽车过拱形桥时会有限速,是因为当汽车通过半圆弧顶部时的速度 gr v =时,汽车对弧顶的压力FN=0,此时汽车将脱离桥面做平抛运动, 因为桥面不能对汽车产生拉力. 例2、半径为 R 的光滑半圆球固定在水平面上,顶部有一小物体, 如图所示。今给小物体一个水平初速度0v = ) A.沿球面下滑至 M 点 B.先沿球面下滑至某点N,然后便离开斜面做斜下抛运动 C.按半径大于 R 的新的圆弧轨道做圆周运动 D.立即离开半圆球做平抛运动 3、双向约束之轻杆、管道约束下的竖直面内圆周运动的临界问题 物体(如小球)在轻杆作用下的运动,或在管道中运动时,随着速度的变化,杆或管道对其弹力发生变化.这里的弹力可以是支持力,也可以是压力,即物体所受的弹力可以是双向的,与轻绳的模型不同.因为绳子只能提供拉力,不能提供支持力;而杆、管道既可以提供拉力,又可以提供支持力;在管道中运动,物体速度较大时可对上壁产生压力,而速度较小时可对下壁产生压力.在弹力为零时即出现临界状态. (一)轻杆模型 如图所示,轻杆一端连一小球,在竖直面内作圆周运动. (1)能过最高点的临界条件是:0v =.这可理解为恰好转过或恰好不能转过最高点的临界条件,此时支持力mg N =. (2) 当0v << mg N <<0,N 仍为支持力,且N 随v 的增大而减小,

高中物理力学模型

╰ α 高中物理力学模型 1.连接体模型是指运动中几个物体叠放在一起、或并排在一起、或用细绳、细杆联系在一起的物 体组。解决这类问题的基本方法是整体法和隔离法。 整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程 隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物 体从连接体中隔离出来进行分析的方法。 2斜面模型 (搞清物体对斜面压力为零的临界条件) 斜面固定:物体在斜面上情况由倾角和摩擦因素决定 μ=tg θ物体沿斜面匀速下滑或静止 μ> tg θ物体静止于斜面 μ< tg θ物体沿斜面加速下滑a=g(sin θ一μcos θ) 3.轻绳、杆模型 绳只能受拉力,杆能沿杆方向的拉、压、横向及任意方向的力。 杆对球的作用力由运动情况决定 只有θ=arctg(g a )时才沿杆方向 最高点时杆对球的作用力;最低点时的速度?,杆的拉力? 若小球带电呢? V B =R 2g ?mgR=22 1B mv 假设单B 下摆,最低点的速度整体下摆2mgR=mg 2R +'2B '2A mv 21mv 2 1+ 'A 'B V 2V = ? 'A V =gR 53 ; ' A ' B V 2V == gR 256> V B =R 2g 所以AB 杆对B 做正功,AB 杆对A 做负功 若 V 0

动力学中的临界极值问题的处理讲课教案

动力学中的临界极值问题的处理

动力学中临界极值问题的处理及分析 物理学中的临界和极值问题牵涉到一定条件下寻求最佳结果或讨论其物理过程范围的问题,此类问题通常难度较大技巧性强,所涉及的内容往往与动力学、力学密切相关,综合性强。在高考命题中经常以压轴题的形式出现,临界和极值问题是每年高考必考的内容之一。 一.解决动力学中临界极值问题的基本思路 所谓临界问题是指当某种物理现象(或物理状态)变为另一种物理现象(或另一物理状态)的转折状态叫临界状态.可理解成“恰好出现”或“恰好不出现”.某种物理现象转化为另一种物理现象的转折状态称为临界状态。至于是“出现”还是“不出现”,需视具体问题而定。极值问题则是在满足一定的条件下,某物理量出现极大值或极小值的情况。临界问题往往是和极值问题联系在一起的。 解决此类问题重在形成清晰的物理图景,分析清楚物理过程,从而找出临界条件或达到极值的条件,要特别注意可能出现的多种情况。动力学中的临界和极值是物理中的常见题型,同学们在刚刚学过的必修1中匀变速运动规律、共点力平衡、牛顿运动定律中都涉及到临界和极值问题。在解决临办极值问题 注意以下几点:○1临界点是一个特殊的转换状态,是物理过程发生变化的转折点,在这个转折点上,系统的一些物理量达到极值。○2临界点的两侧,物体的受力情况、变化规律、运动状态一般要发生改变,能否用变化的观点正确分析其运动规律是求解这类题目的关键,而临界点的确定是基础。○3许多临界问题 常在题目的叙述中出现“恰好”、“最大”、“至少”、“不相撞”、“不脱离”……等词句对临界问题给出了明确的暗示,审题是只要抓住这些特定词语 其内含规律就能找到临界条件。○4有时,某些临界问题中并不包含常见的临界 术语,但审题时发现某个物理量在变化过程中会发生突变,如运动中汽车做匀 减速运动类问题,则该物理量突变时物体所处的状态即为临界状态。○5临界问 题通常具有一定的隐蔽性,解题灵活性较大,审题时应力图还原习题的物理情 景,抓住临界状态的特征,找到正确的解题方向。○6确定临界点一般用极端分 析法,即把问题(物理过程)推到极端,分析在极端情况下可能出现的状态和满足的条件。解题常用的思路用矢量法、三角函数法、一元二次方程判别式法或根据物理过程的特点求极值法等。 二.匀变速运动规律中与临界极值相关问题的解读 在质点做匀变速运动中涉及到临界与极值的问题主要有“相遇”、“追及”、“最大距离”、“最小距离”、“最大速度”、“最小速度”等。 【例1】速度大小是5m/s的甲、乙两列火车,在同一直线上相向而行。当它们相隔2000m时,一只鸟以10m/s的速度离开甲车头向乙车头飞去,当到达乙车车头时立即返回,并这样连续在两车间来回飞着。问: (1)当两车头相遇时,这鸟共飞行多少时间?

高中物理常见的临界条件

高中物理常见的“临界条件” 一、刚好不相撞 两物体最终速度相等或者接触时速度相等。 二、刚好不分离 两物体仍然接触、弹力为零,且速度和加速度相等。 三、刚好不滑动 1.转盘上“物体刚好发生滑动”:向心力为最大静摩擦力。 2.斜面上物体刚好不上(下)滑:静摩擦力为最大静摩擦力,物体平衡。 3.保持物体静止在斜面上的最小水平推力: 静摩擦力为最大静摩擦力,物体平衡。 4.拉动物体的最小力:静摩擦力为最大静摩擦力,物体平衡。 四、运动到某一极端位置 1.绳端物体刚好通过最高点(等效最高点):物体运动到最高点时重力(等效重力)等于向心力,速度大小为(gR)1/2[(gˊR)1/2]. 2.杆端物体刚好通过最高点:物体运动到最高点时速度为零。 3.刚好运动到某一点:到达该点时速度为零。 4.物体刚好滑出(不滑出)小车:物体滑到小车一端时与小车速度刚好相等。 5.粒子刚好飞出(飞不出)两个极板间的匀强电场:粒子沿极板的边缘射出(粒子运动轨迹与极板相切)。 6.粒子刚好飞出(飞不出)磁场:粒子运动轨迹与磁场边界相切。 五、速度达到最大或最小时:物体所受的合外力为零,即加速度为零 1.机车启动过程中速度达最大匀速行驶:牵引力和阻力平衡。 2.导体棒在磁场中做切割运动时达稳定状态:感应电流产生的安培力和其他力的合力平衡。 六、某一量达到极大(小)值 1.两个物体距离最近(远):速度相等。 2.圆形磁场区的半径最小:磁场区是以公共弦为直径的圆。 3.使通电导线在倾斜导轨上静止的最小磁感应强度:安培力平行于斜面。 4.穿过圆形磁场区域时间最长:入射点和出射点分别为圆形直径两端点。 七、绳的临界问题 1.绳刚好被拉直:绳上拉力为零。 2.绳刚好被拉断:绳上的张力等于绳能承受的最大拉力。 3.绳子突然绷紧:速度突变,沿绳子径向方向的速度减为零。 八、运动的突变

高中物理力学中的临界问题

高中物理力学中的临界问题分析 一. 运动学中的临界问题 在在追及与相遇问题中常常会出现临界现象,仔细审题,挖掘题设中的隐含条件,寻找与“刚好”、“最多”、“至少”等关键词对应的临界条件是解题的突破口。一般来说两物体速度相等是题中隐含的临界条件,解题时正确处理好两物体间的时间关系和位移关系是解题的关键。 例题一:一辆汽车在十字路口等待绿灯,当绿灯亮时汽车以3m/s 2的加速度开始行驶,恰在这时一辆自行车以6m/s 的速度匀速驶来,从后边超过汽车.试问:(1)汽车从路口开动后,在赶上自行车之前经过多长时间两车相距最远此时距离是多少(2)当两车相距最远时汽车的速度多大 解析:(1)设两车运动时间为t 时,自行车的位移X 1=v 0t ,汽车的位移为2221at x = 两车相距的距离22013x v t at 6t t .22?=-=- 当s t 2)2 3(26 =-?-=时,Δx 有最大值Δx=6m. (2)当t=2s 时,汽车的速度v=at=6m/s=v 0,此时两车相距最远。 例题二、在水平轨道上有两列火车A 和B 相距s ,A 车在后面做初速度为v 0、加速度大小为2a 的匀减速直线运动,而B 车同时做初速度为零、加速度为a 的匀加速直线运动,两车运动方向相同.要使两车不相撞,求A 车的初速度v 0应满足什么条件 解析:要使两车不相撞,A 车追上B 车时其速度最多只能与B 车速度相等.设A 、B 两车从相距s 到A 车追上B 车时,A 车的位移为s A ,末速度为v A ,所用时间为t ;B 车的位移为s B ,末速度为v B ,两车运动的速度时间图象如图所示,由匀变速直线运动规律有: 对A 车有 对B 车有 两车有s=sA-sB 追上时,两车刚好不相撞的临界条件是v A =v B 以上各式联立解得 故要使两车不相撞,A 的初速度v0应满足的条件是: 点评:在追及问题中,当同一时刻两物体在同一位置时,两物体相遇,此时若后面物体的速度大于前面物体的速度即相撞,因此两物不相撞的临界条件是两物体的速度相等。若两物体相向运动,当两物体发生的位移大小之和等于开始时两物体的距离时相遇,此时只要有一个物体的速度不为零则为相撞。 针对练习:(07海南卷)两辆游戏赛车a 、b 在两条平行的直车道上行驶。0=t 时两车都在同一计时线处,此时比赛开始。它们在四次比赛中的t v -图如图所示。哪些图对应的比赛中,有一辆赛车追上了另一辆(AC) 解析:由v-t 图象的特点可知,图线与t 轴所围面积的大小,即为物体位移的大小.观察4个图象,只有A 、C 选项中,a 、b 所围面积的大小有相等的时刻,故选项A 、C 正确. 二、平衡现象中的临界问题 在平衡问题中当物体平衡状态即将被打破时常常会出现临界现象,分析这类问题要善于通过研究变化的过程与

高中物理-动力学中的临界和极值问题

高中物理-动力学中的临界和极值问题 在应用牛顿运动定律解决动力学问题时,会出现一些临界或极值条件的标志: 1.若题目中出现“恰好”“刚好”等字眼,明显表示过程中存在临界点. 2.若题目中有“取值范围”“多长时间”“多大距离”等词语,表明过程中存在着“起止点”,而这些“起止点”往往就对应临界状态. 3.若题目中有“最大”“最小”“至多”“至少”等字眼,表明过程中存在着极值,而极值点往往是临界点. 4.若题目要求“最终加速度”“稳定加速度”等即是求收尾加速度或收尾速度. 一、接触与分离的临界条件 物体分离的临界条件是相互作用力由原来的不为零变为零.因此解答此类问题,应该对原状态下研究对象的受力和运动状态进行分析,由牛顿第二定律或平衡条件列方程,令其中相互作用的弹力为零解得临界状态的加速度,以临界加速度为依据分析各种状态下物体的受力情况及运动状态的变化. 质量为m 、半径为R 的小球用长度也 为R 的轻质细线悬挂在小车车厢水平顶部的A 点,现观察到小球与车顶有接触,重力加速度为g ,则下列判断正确的是( ) A .小车正向右做减速运动,加速度大小可能为3g B .小车正向左做减速运动,加速度大小可能为3 3 g C .若小车向右的加速度大小为23g ,则车厢顶部对小球的弹力为mg D .若细线张力减小,则小球一定离开车厢顶部 [解析] 如图所示,小球恰好与车顶接触的临界状态是车顶对小球的弹力恰为零,故临界加速度a 0=g tan θ,由线长等于小球半径可得,θ=60°,a 0=3g .小球与车顶接触时,小车具有向右的加速度,加速度大小a ≥3g ,A 、B 项错;当小车向右的加速度大小a =23g 时,ma F N +mg =tan θ,解得F N =mg ,C 项正确;细线张力F T =ma sin θ, 小球与车顶接触 的临界(最小)值F Tmin =2mg ,当张力的初始值F T >2mg 时,张力减小时只要仍大于或等于临界值,小球就不会离 开车厢顶部,D 项错误. [答案] C 二、绳子断裂与松弛的临界条件 绳子所能承受的张力是有限的,绳子断与不断的临界条件是绳中张力等于它所能承受的最大张力,绳子松弛的临界条件是F T =0. 如图所示,小车内 固定一个倾角为θ =37°的光滑斜面,用一根平行于斜面的细线系住一个质量为m =2 kg 的小球,取g =10 m/s 2,sin 37°=0.6, cos 37°=0.8,则: (1)当小车以a 1=5 m/s 2的加速度向右匀加速运动时,细线上的拉力为多大? (2)当小车以a 2=20 m/s 2的加速度向右匀加速运动时,细线上的拉力为多大? [解析] 本题中存在一个临界状态,即小球刚好脱离斜面的状态,设此时加速度为a 0,对小球受力分析如图甲所示.将细线拉力分解为水平x 方向和竖直y 方向两个分力, 则得到 F cos θ=ma 0 F sin θ-mg =0 a 0=g tan θ=403 m/s 2. (1)a 1=5 m/s 2

相关主题