搜档网
当前位置:搜档网 › 四旋翼飞行器无人机结构和原理

四旋翼飞行器无人机结构和原理

四旋翼飞行器无人机结构和原理
四旋翼飞行器无人机结构和原理

四旋翼飞行器结构和原理

1.结构形式

旋翼对称分布在机体的前后、左右四个方向,四个旋翼处于同一高度平面,且四个旋翼的结构和半径都相同,四个电机对称的安装在飞行器的支架端,支架中间空间安放飞行控制计算机和外部设备。结构形式如图1.1所示。

2.工作原理

四旋翼飞行器通过调节四个电机转速来改变旋翼转速,实现升力的变化,从而控制飞行器的姿态和位置。四旋翼飞行器是一种六自由度的垂直升降机,但只有四个输入力,同时却有六个状态输出,所以它又是一种欠驱动系统。

四旋翼飞行器的电机1和电机3逆时针旋转的同时,电机2和电机4顺时针旋转,因此当飞行器平衡飞行时,陀螺效应和空气动力扭矩效应均被抵消。

在上图中,电机1和电机3作逆时针旋转,电机2和电机4作顺时针旋转,规定沿x轴正方向运动称为向前运动,箭头在旋翼的运动平面上方表示此电机转速提高,在下方表示此电机转速下降。

(1)垂直运动:同时增加四个电机的输出功率,旋翼转速增加使得总的拉力增大,当总拉力足以克服整机的重量时,四旋翼飞行器便离地垂直上升;反之,同时减小四个电机的输出功率,四旋翼飞行器则垂直下降,直至平衡落地,实现了沿z轴的垂直运动。当外界扰动量为零时,在旋翼产生的升力等于飞行器的自重时,飞行器便保持悬停状态。

(2)俯仰运动:在图(b)中,电机1的转速上升,电机3 的转速下降(改变量大小应相等),电机2、电机4 的转速保持不变。由于旋翼1 的升力上升,旋翼3 的升力下降,产生的不平衡力矩使机身绕y 轴旋转,同理,当电机1 的转速下降,电机3的转速上升,机身便绕y轴向另一个方向旋转,实现飞行器的俯仰运动。

(3)滚转运动:与图b 的原理相同,在图c 中,改变电机2和电机4的转速,保持电机1和电机3的转速不变,则可使机身绕x 轴旋转(正向和反向),实现飞行器的滚转运动。(4)偏航运动:旋翼转动过程中由于空气阻力作用会形成与转动方向相反的反扭矩,为了克服反扭矩影响,可使四个旋翼中的两个正转,两个反转,且对角线上的各个旋翼转动方向相同。反扭矩的大小与旋翼转速有关,当四个电机转速相同时,四个旋翼产生的反扭矩相互平衡,四旋翼飞行器不发生转动;当四个电机转速不完全相同时,不平衡的反扭矩会引起四旋翼飞行器转动。在图d中,当电机1和电机3 的转速上升,电机2 和电机4 的转速下降时,旋翼1和旋翼3对机身的反扭矩大于旋翼2和旋翼4对机身的反扭矩,机身便在富余反扭矩的作用下绕z轴转动,实现飞行器的偏航运动,转向与电机1、电机3的转向相反。

(5)前后运动:要想实现飞行器在水平面内前后、左右的运动,必须在水平面内对飞行器施加一定的力。在图e中,增加电机3转速,使拉力增大,相应减小电机1转速,使拉力减小,同时保持其它两个电机转速不变,反扭矩仍然要保持平衡。按图b的理论,飞行器首先发生一定程度的倾斜,从而使旋翼拉力产生水平分量,因此可以实现飞行器的前飞运动。向后飞行与向前飞行正好相反。(在图b 图c中,飞行器在产生俯仰、翻滚运动的同时也会产生沿x、y轴的水平运动。)

(6)倾向运动:在图f 中,由于结构对称,所以倾向飞行的工作原理与前后运动完全一样。

四旋翼飞行器结构和原理

四旋翼飞行器结构和原理 1.结构形式 旋翼对称分布在机体的前后、左右四个方向,四个旋翼处于同一高度平面,且四个旋翼的结构和半径都相同,四个电机对称的安装在飞行器的支架端,支架中间空间安放飞行控制计算机和外部设备。结构形式如图1.1所示。 .工作原理 四旋翼飞行器通过调节四个电机转速来改变旋翼转速,实现升力的变化,从而控制飞行器的姿态和位置。四旋翼飞行器是一种六自由度的垂直升降机,但只有四个输入力,同时却有六个状态输出,所以它又是一种欠驱动系统。

四旋翼飞行器的电机1和电机3逆时针旋转的同时,电机2和电机4顺时针旋转,因此当飞行器平衡飞行时,陀螺效应和空气动力扭矩效应均被抵消。

在上图中,电机1和电机3作逆时针旋转,电机2和电机4作顺时针旋转,规定沿x轴正方向运动称为向前运动,箭头在旋翼的运动平面上方表示此电机转速提高,在下方表示此电机转速下降。 (1)垂直运动:同时增加四个电机的输出功率,旋翼转速增加使得总的拉力增大,当总拉力足以克服整机的重量时,四旋翼飞行器便离地垂直上升;反之,同时减小四个电机的输出功率,四旋翼飞行器则垂直下降,直至平衡落地,实现了沿z轴的垂直运动。当外界扰动量为零时,在旋翼产生的升力等于飞行器的自重时,飞行器便保持悬停状态。 (2)俯仰运动:在图(b)中,电机1的转速上升,电机3 的转速下降(改变量大小应相等),电机2、电机4 的转速保持不变。由于旋翼1 的升力上升,旋翼3 的升力下降,产生的不平衡力矩使机身绕y 轴旋转,同理,当电机1 的转速下降,电机3的转速上升,机身便绕y轴向另一个方向旋转,实现飞行器的俯仰运动。 (3)滚转运动:与图b 的原理相同,在图c 中,改变电机2和电机4的转速,保持电机1和电机3的转速不变,则可使机身绕x 轴旋转(正向和反向),实现飞行器的滚转运动。 (4)偏航运动:旋翼转动过程中由于空气阻力作用会形成与转动方向相反的反扭矩,为了克服反扭矩影响,可使四个旋翼中的两个正转,两个反转,且对角线上的各个旋翼转动方向相同。反扭矩的大小与旋翼转速有关,当四个电机转速相同时,四个旋翼产生的反扭矩相互平衡,四旋翼飞行器不发生转动;当四个电机转速不完全相同时,不平衡的反扭矩会引起四旋翼飞行器转动。在图d中,当电机1和电机3 的转速上升,电机2 和电机4 的转速下降时,旋翼1和旋翼3对机身的反扭矩大于旋翼2和旋翼4对机身的反扭矩,机身便在

四旋翼飞行器论文(原理图 程序)..

四旋翼自主飞行器(B题) 摘要 系统以R5F100LE作为四旋翼自主飞行器控制的核心,由电源模块、电机调速控制模块、传感器检测模块、飞行器控制模块等构成。飞行控制模块包括角度传感器、陀螺仪,传感器检测模块包括红外障碍传感器、超声波测距模块、TLS1401-LF模块,瑞萨MCU综合飞行器模块和传感器检测模块的信息,通过控制4个直流无刷电机转速来实现飞行器的欠驱动系统飞行。在动力学模型的基础上,将小型四旋翼飞行器实时控制算法分为两个PID控制回路,即位置控制回路和姿态控制回路。测试结果表明系统可通过各个模块的配合实现对电机的精确控制,具有平均速度快、定位误差小、运行较为稳定等特点。

目录 1 系统方案论证与控制方案的选择............................................................................................. - 2 - 1.1 地面黑线检测传感器............................................................................................................. - 2 - 1.2 电机的选择与论证................................................................................................................. - 2 - 1.3 电机驱动方案的选择与论证................................................................................................. - 3 - 2 四旋翼自主飞行器控制算法设计............................................................................................. - 3 - 2.1 四旋翼飞行器动力学模型..................................................................................................... - 3 - 2.2 PID控制算法结构分析.......................................................................................................... - 3 - 3 硬件电路设计与实现................................................................................................................. - 5 - 3.1飞行控制电路设计.................................................................................................................. - 5 - 3.2 电源模块................................................................................................................................. - 6 - 3.3 电机驱动模块......................................................................................................................... - 6 - 3.4 传感器检测模块..................................................................................................................... - 7 - 4 系统的程序设计......................................................................................................................... - 8 - 5 测试与结果分析......................................................................................................................... - 9 - 5.1 测试设备................................................................................................................................. - 9 - 5.2 测试结果................................................................................................................................. - 9 - 6 总结........................................................................................................................................... - 10 - 附录A 部分程序清单.................................................................................................................. - 11 -

md4系列四旋翼无人机系统快速操作手册

md4系列四旋翼无人机系统 快速操作手册 佛山市安尔康姆航拍科技有限公司 2011年6月

一、起飞前的准备 1、飞行器动力电池:用电池电量显示仪对电池进行测试,对于md4-200显示 参数须高于16.5V,对于md4-1000,显示参数须高于25V。 2、遥控器:每次飞行时一定要把遥控器电池充满电,保证不会因为电量的原因 导致遥控器无法控制飞行器;遥控器的频率必须飞行器接收机的频率一致,否则,飞行器无法手动起飞; 3、地面站电脑:携带足够的设备电池,保证地面站电脑的电池能满足该次作业 的要求,不要出现在飞行过程中地面站电脑电量不足而关机的情况; 4、地面站供电:地面站承担着解码飞行器下传数据的重要任务,一旦断电,则 无法显示任何数据,这样会对安全飞行带来隐患; 5、任务载荷:如果是携带相机或摄像机,需保证该设备的电量及存储卡的容量。 6、飞行环境:md4-200要求风速小于6米/秒,md4-1000要求风速小于12 米/秒,周围环境空旷(起飞点离障碍物的距离应保持在20米以上),对GPS 信号和磁力计不存在干扰(详情下文有说明)。

二、飞行相关 1、将飞行器放置在平坦的地面,保证机体平稳,起飞地点尽量避免有沙石、纸 屑等杂物; 2、打开遥控器电源,为飞行器插入充满电的电池,自检通过后,飞行器会每隔 两秒发出一声“滴”的响声,表示正处于搜索GPS信号状态; 3、打开地面站软件mdCockpit,弹出下行数据回放页面,重点观察GPS信号 跟设备状态。 GPS信号的确认: 观察地面站软件的下行链路解码器界面,保证GPS的定位 精度不高于4米,如右图红框部分所示。 设备状态的确认: 该步骤主要检查磁力计、GPS及SD卡的工作状态,正常模式如下图: 4、遥控器摇杆动作的分配: 图15:摇杆动作的分配

四旋翼无人机毕业设计

渤海大学本科毕业论文(设计)四旋翼无人机设计与制作 The Manufacture and Design of Quad Rotor Unmanned Aerial Vehicle 学院(系): 专业: 学号: 学生姓名: 入学年度: 指导教师: 完成日期:

摘要 四旋翼无人机飞行器因为它的结构简单,而且控制起来也很方便,因此它成为了近几年来发展起来的热门产业。在这里本文详细的介绍了四旋翼飞行器的设计和制作的过程,其中包括了四旋翼无人机飞行器的飞行原理,硬件的介绍和选型,姿态参考算法的推导和实现,系统软件的具体实现。该四旋翼飞行器控制系统以STM32f103zet 单片机为核心,根据各个传感器的特点,采用不同的校正方法对各个传感器数据进行校正以及低通数字滤波处理,之后设计了互补滤波器对姿态进行最优估计,实现精确的姿态测量。最后结合GPS控制与姿态控制叠加进行PID控制四旋翼飞行器的四个电机,来达到实现各种飞行动作的目的。在制作四旋翼飞行器的过程中,进行了大量的调试并且与现有优秀算法做对比验证,最终设计出能够稳定飞行的四旋翼无人机飞行器。 关键词:姿态传感器;四元数姿态解算;STM32微型处理器;数据融合;PID

The Manufacture and Design of Quad Rotor Unmanned Aerial Vehicle Abstract Quad-rotor unmanned aerial vehicle aircraft have a simple structure, and it is very easy to control, so it has become popular in recent years. Here article describes in detail the design and the process of making the four-rotor aircraft, including Quad-rotor UAV aircraft flight principle, hardware introduction and selection, implementation and realization of derivation attitude reference algorithm, the system software . The Quad-rotor aircraft control system STM32f103zet microcontroller core, and the advantages and disadvantages based on the accelerometer sensor, a gyro sensor and electronic compass sensors using different correction methods for correcting various sensor data and low-pass digital filter processing, after design complementary filter to estimate the optimal posture, precise attitude measurement. Finally, GPS control and attitude control PID control is superimposed four-rotor aircraft four motors to achieve a variety of flight maneuvers to achieve the purpose. Four-rotor aircraft in the production process, a lot of debugging and do comparison with the existing excellent algorithm validation, the final design to stabilize the Quad-rotor UAV flying aircraft. Key Words:MEMS Sensor; Quaternion; STM32 Processor; Data Fusion; PID

最高效的四旋翼无人机数据采集建模

最高效的四旋翼无人机 数据采集建模 CKBOOD was revised in the early morning of December 17, 2020.

最高效的四旋翼无人机数据采集建模 一、简介 近年来,微小型四翼无人机已经成为了无人飞行器研究领域的一个热点。它结构简单、机动性强、便于维护,能够在空中悬停、垂直起飞和降落。在军用和民用方面具有较大的潜在应用价值,国内外许多研究单位纷纷致力于四旋翼无人机飞行控制的架构设计与飞行控制研究,以实现四旋翼无人机的自主飞行。机载传感器系统是四旋翼无人机飞行控制系统的重要组成部分,它为机载控制系统提供可靠的飞行状态信息,是实现四旋翼无人机自主飞行的重要设备。 现在无人机应用最广的是倾斜摄影技术优势或者说最吸引用户的,就是利用倾斜摄影技术可以全自动、高效率、高精度、高精细的构建地表全要素三维模型。 二、四旋翼无人机特点 1、机动性能灵活,低空性能出色。能在城市、森林等复杂环境下完成各种任务。可完成空中悬停监视侦查。实现对动力要地低,能在狭小空间穿行,能垂直起降,对起降环境要求低。 2、对动力要求较小,产生的噪音低,隐蔽性能高,安全性能出色。四旋翼无人机采用四个马达提供动力,可使飞行更加稳定和精确。 3、结构简单,运行、控制原理相对容易掌握。 4、成本较低,零件容易更换,维护方便。

三、飞行软件 目前无人机种类繁多,针对无人机开发的飞控软件也有很多,目前比较好用的是DJI GS Pro、DJI GO4、Litchi Vue、Pix4d等。 四、数据采集,使用DJI GS pro 1、打开DJI GS pro软件,点击新建任务 2、点击测绘航拍区域模式 3、点击地图选点(飞行定点比较耗飞机电量,无特殊情况建议不使用) 4、点击屏幕就会出现一个航测区域,手动拖拽四个定点可以改变航测的面积和形状,同时也可以手动增加拐点,让航测面积更加的灵活多样。并且在右边的菜单栏里选择好对应的云台相机;设置好任务的高度,任务的高度和拍摄的清晰度,成图的分辨率有很大的关系;大面积的时候尽量选择等时间拍照,因为能上传的航点是有限的。 5、点击进入右侧菜单的高级选项之中,重新设置一下航测的重叠了,一般航向和旁向重叠率是700%和70%(最好不要低于70%);设置好云台俯仰角,正射影像图一般为-90°,拍摄3D立体时一般为-45°;设置好返航高度,确保返航时不会碰撞到障碍物。 6、点击右上角飞机左边更多选项,点击高级设置(地图优化限中国大陆地区使用打开);这点也是最关键的一点,这时候一定要点开中国大陆这个选项,不然飞行器的位置是偏移的。会导致航测任务区域整体偏移,有一部分任务没有拍摄到。

小型四旋翼无人机组机方案

一、小型四旋翼无人机总体架构 典型的小型四旋翼无人机,一般由机械部分(机架),动力部分(包括电机、电子调速器、电调连接板、桨叶、电池),电子部分(包括飞控板、通信模块、遥控器接收机、PPM编码板)组成。 (一)机械部分 机架 考虑到编队飞行对实验室空间的要求,希望机架能够尽量的小。根据与蔡国伟老师对电机与桨叶(后文提到)的搭配进行讨论后,决定将机架的大小设定为轴距255mm,边距180mm(由6寸桨的大小决定)。 1,底板 2,中间机架板 3,顶板 整个机体由底板、中间机架板、顶板连接而成(通过尼龙螺柱和螺丝);底板安置电池、xbee模块、遥控器接收机、电调连接板,中间机架板安置4个电调、pixhawk飞控板,顶板用于安置定位系统标记点(同时起到保护、隐藏pixhawk 飞控板及走线的作用);为便于安装,所有开孔、镂空均根据拟选器件匹配设计;拟采用碳2mm厚3K纤维板加工。 另设计四个保护罩如下(可用于避免桨叶受损或伤人):

4,保护罩 (二)动力部分 (1)电机 一般而言,小型四旋翼无人机(轴距250mm左右)选用KV2000左右(配5-6寸桨)的电机。经过对比讨论后,拟选用飓风D2206 KV1900无刷直流电机(配6寸桨)。之所以选用这款电机是因为这款电机能够提供较大的拉力,同时该电机的工作电流处在一个比较小的区间,单个电机重量仅为。

飓风D2206 KV1900参数表 飓风D2206 KV1900实物图 (2)电子调速器 电子调速器用于驱动无刷直流电机,比较重要的参数是工作电流,刷新频率,重量。一般而言,市面上可售的大部分电子调速器的刷新频率都大于400hz,符合要求。根据上文所选电机的工作电流,综合考虑重量要求,与蔡国伟老师沟通后,拟选用好盈XRotor-10A电子调速器。

四旋翼无人机前沿报告

四旋翼无人机前沿报告 近些年来,各国的许多研究机构都对小型四旋翼无人机进行了一系列的研究,下面列出来一些比较有代表性的四旋翼无人机研究成果。 一、国内外技术发展现状 1.“蜻蜓”无人机 近期,约翰-霍普金斯大学的应用物理实验室的一个研究小组就开发出了一个叫做“蜻蜓(Dragonfly)”的概念无人机任务。该任务提出了一款利用放射性同位素驱动的双四旋翼飞行器,它将可以在土星最大的卫星Titan上执行太空任务。蜻蜓项目首席研究员Elizabeth Turtle指出,这种实验是他们在实验室无法进行的,因为涉及到时间尺度问题,而Titan富含有有机分子和液态水的表面却能维持很长一段时间的时间尺度。该项目就是为了研究Titan生命前化学而设计的。由于Titan表层厚重的云层使得那里的太阳能效率并不高,为此,研究人员改用了多任务放射性同位素热电机(MMRTG)为飞行器提供能源。据了解,MMRTG能让这架双四旋翼无人机在白天持续飞行一个小时的时间,夜晚它将接受充电。蜻蜓无人机的空气流动可以让它收集样本和测量的种类获得增加。在时长1个小时的飞行中,飞行器大概能飞10到20公里。这意味着蜻蜓可以在为期两年的任务中探测到的范围非常广。 2.“OS4”四旋翼无人机 OS4是EPFL自动化系统实验室开发的一种小型四旋翼飞行器,研究的重点是自主飞行控制算法和机构设计方法,目标是要实现室内和室外环境中的完全自主飞行。目前,该项目以及进行了两个阶段。OS4I最大长度约为73CM,质量为235g,它使用了Draganflyer3的十字框架和旋翼,电机型号为Faulhaber1724,微惯性测量单元为Xsens的MT9-B。研究

基于四旋翼无人机的输电线路巡检系统研究_王振华

收稿日期:2012-07-10 基金项目:国家自然科学基金资助项目(60674100);博士点基金资助项目(20113218110013);江苏省产学研联合创新资助项目 (BY2012018) 作者简介:王振华(1987—),男,江苏江阴人,硕士研究生,从事飞行控制理论、嵌入式系统开发研究。 E-mail:wzh_nuaa@https://www.sodocs.net/doc/b213304186.html, 护主要依靠日常巡检及故障发生后的继电保护、稳定控制和失步解列等“三道防线”,而对电网运行的主动监测、主动防护相对落后。提前获知灾害的形成过程,主动清除各类缺陷和隐患,为“坚强”、“自愈”的智能电网安全提供了强有力 的保障。 目前输电线路的巡检手段主要为人工巡检。然而受到自然条件、巡检设备落后的制约,人工巡检存在着诸多问题。而传统的自动化巡检载体,如线路本体在线监测系统[2]、线路攀爬巡检机器人[3-4]等,因其巡检覆盖范围小,操作难度大,不利于维护等原因,正逐步退出历史舞台。随着航空工业技术的发展,飞行器巡检正逐步成为一项新的研究课题。其非接触式、快速高效、多角度全方位的巡检手段,搭配各类可见光和红外影像设备,能够全面了解输电线路的运行情况,给影像信息的获取,上述的飞行平台还不能完全满足要求。 1四旋翼无人机巡检系统 南京航空航天大学和南京工程学院组成的研 究团队,在调研输电线路短途目视巡检需求的基础上,研制了四旋翼无人机巡检系统。其飞行器本体机械结构简单,旋翼尺寸较小(潜在危害性小,运行风险低),具有重量轻、易携带、易操控、可悬停、效率高、无污染、易维护等优点,能够快速机动地执行巡检任务。 巡检系统采用编码正交频分复用(coded orthogonal frequency division multiplexing,COFDM ) 图像传输机制[9]实时传输输电线路部件的影像信息,通过手持式或地面站式遥控设备,进行全方

四旋翼飞行器建模与仿真Matlab概要

四轴飞行器的建模与仿真 摘要 具有广泛的军事和民事应用前景。本文根据对四旋翼飞行器的机架结构和动力学特性做详尽 的分析和研究,在此基础上建立四旋翼飞行器的动力学模型。四旋翼飞行器有各种的运行状 态,比如:爬升、下降、悬停、滚转运动、俯仰运动、偏航运动等。本文采用动力学模型来描 述四旋翼飞行器的飞行姿态。在上述研究和分析的基础上 是通过对飞行器的飞行原理和各种运动状态下的受力关系以及参考牛顿 真模型,模型建立后在 Matlab/simuli nk 软件中进行仿真。 关键字:四旋翼飞行器,动力学模型,Matlab/simulink Modeling and Simulating for a quad-rotor aircraft ABSTRACT The quad-rotor is a VTOL multi-rotor aircraft. It is very fit for the kind of reconnaissanee mission and monitoring task of near-Earth, so it can be used in a wide range of military and civilia n app licati ons. In the dissertati on, the detailed an alysis and research on the rack structure and dyn amic characteristics of the laboratory four-rotor aircraft is showed in the dissertatio n. The dynamic model of the four-rotor aircraft areestablished. It also studies on the force in the four-rotor aircraft flight principles and course of the camp aig n to make the research and an alysis. The four-rotor aircraft has many op erati ng status, such as climb ing, dow ning, hoveri ng and roll ing moveme nt, p itch ing moveme nt and yaw ing moveme nt. The dyn amic model is used to describe the four-rotor aircraft in flight in the dissertati on. On the basis of the above an alysis, modeli ng of the aircraft can be made. Dyn amics modeli ng is to build models un der the principles of flight of the aircraft and a variety of state of moti on, and Newt on - Euler model with reference to the four-rotor aircraft.The n the simulatio n is done in the software of Matlab/simuli nk. Keywords: Quad-rotor ,The dynamic mode, Matlab/simulink 四旋翼飞行器是一种能够垂直起降的多旋翼飞行器 ,它非常适合近地侦察、监视的任务, ,进行飞行器的建模。动力学建模 -欧拉模型建立的仿

四旋翼无人机建模及其PID控制律设计

四旋翼无人机建模及其PID控制律设计 时间:2012-10-27 来源:现代电子技术作者:吴成富,刘小齐,袁旭 关键字:PID无人机建模 摘要:文中对四旋翼无人机进行建模与控制。在建模时采用机理建模和实验测试相结合的方法,尤其是对电机和螺旋桨进行了详细的建模。首先对所建的模型应用PID进行了姿态角的控制。在此基础上又对各个方向上的速度进行了PlD 控制。然后在四旋翼飞机重心进行偏移的情况下进行PID控制,仿真结果表明PID控制律能有效的控制四旋翼无人机在重心偏移情况下的姿态角和速度。最后为了方便控制加入了控制逻辑。 关键词:四旋翼;建模;PID;控制;重心偏移;控制逻辑 四旋翼无人机是一种具有4个旋翼的飞行器,有X型分布和十字型分布2种。文中采用的是X型分布的四旋翼,四旋翼无人机只能通过改变旋翼的转速来实现各种运动。国外对四旋翼无人直升机的研究非常活跃。加拿大雷克海德大学的Tavebi和McGilvrav证明了使用四旋翼设计可以实现稳定的飞行。澳大利亚卧龙岗大学的McKerrow对Dragantlyer进行了精确的建模。目前国外四旋翼无人直升机的研究工作主要集中在以下3个方面:基于惯导的自主飞行、基于视觉的自主飞行和自主飞行器系统。而国内对四旋翼的研究主要有:西北工业大学、国防科技大学、南京航天航空大学、中国空空导弹研究院第27所、吉林大学、北京科技大学和哈工大等。大多数的研究方式是理论分析和计算机仿真,提出了很多控制算法。例如,针对无人机模型的不确定性和非线性设计的 DI/QFT(动态逆/定量反馈理论)控制器,国防科技大学提出的自抗扰控制器可以对小型四旋翼直升机实现姿态增稳控制,还有一些经典的方法比如PID控制等,但是都不能很好地控制四旋翼速度较大的情况。本文对四旋翼无人机设计了另外一种不同的控制方法即四旋翼的四元数控制律设计,仿真结果表明这种控制方法是一种有效的方法。尤其是对飞机的飞行速度较大的情况,其能稳定地控制四旋翼达到预期的效果。 1 四旋翼的模型 文中所研究的四旋翼结构属于X型分布,即螺旋桨M1和M4与M2和M3关于X轴对称,螺旋桨M1和M2与M3和M4关于Y轴对称,如图1所示。对于四旋翼的模型本文主要根据四旋翼的物理机理进行物理建模,并做以下2条假设。

轴飞行器作品说明书

四轴飞行器 作品说明书 摘要 四轴飞行器在各个领域应用广泛。相比其他类型的飞行器,四轴飞行器硬件结构简单紧凑,而软件复杂。本文介绍四轴飞行器的一个实现方案,软件算法,包括加速度计校正、姿态计算和姿态控制三部分。校正加速度计采用最小二乘法。计算姿态采用姿态插值法、需要对比这三种方法然后选出一种来应用。控制姿态采用欧拉角控制或四元数控制。 关键词:四轴飞行器;姿态;控制

目录 1.引言 (1) 2.飞行器的构成? (1) .硬件构成..............................................1? 机械构成 (1) 电气构成 (3) .软件构成 (3) 上位机 (3) 下位机........... . (4) 3.飞行原理........... ................................ (4) . 坐标系统 (4) .姿态的表示 (5) .动力学原理 (5) 4.姿态测量........... ................................ (6) .传感器校正 (6) 加速度计和电子罗盘 (6) 5.姿态控制 (6) .欧拉角控制 (6) .四元数控制 (7) 6.姿态计算 (7) 7.总结 (8) 参考文献 (9)

四轴飞行器最开始是由军方研发的一种新式飞行器。随着MEMS?传感器、单片机、电机和电池技术的发展和普及,四轴飞行器成为航模界的新锐力量。到今天,四轴飞行器已经应用到各个领域,如军事打击、公安追捕、灾害搜救、农林业调查、输电线巡查、广告宣传航拍、航模玩具等。 目前应用广泛的飞行器有:固定翼飞行器和单轴的直升机。与固定翼飞行器相比,四轴飞行器机动性好,动作灵活,可以垂直起飞降落和悬停,缺点是续航时间短得多、飞行速度不快;而与单轴直升机比,四轴飞行器的机械简单,无需尾桨抵消反力矩,成本低?。 本文就小型电动四轴飞行器,介绍四轴飞行器的一种实现方案,讲解四轴飞行器的原理和用到的算法,并对几种姿态算法进行比较。 2.飞行器的构成 四轴飞行器的实现可以分为硬件和软件两部分。比起其他类型的飞行器,四轴飞行器的硬件比较简单,而把系统的复杂性转移到软件上,所以本文的主要内容是软件的实现。? .硬件构成? 飞行器由机架、电机、螺旋桨和控制电路构成。 机械构成? 机架呈十字状,是固定其他部件的平台,本项目采用的是碳纤维材料的机架。电机采用无刷直流电机,固定在机架的四个端点上,而螺旋桨固定在电机转子上,迎风面垂直向下。螺旋桨按旋转方向分正桨和反桨,从迎风面看逆时针转的为正桨,四个桨的中心连成的正方形,正桨反桨交错安装。 CA D设计机架如图: 整体如图2-1: 电气构成 电气部分包括:控制电路板、电子调速器、电池,和一些外接的通讯、传感器模块。控制电路板是电气部分的核心,上面包含MCU、陀螺仪、加速度计、电子罗盘、气压计等芯片,负责计算姿态、处理通信命令和输出控制信号到电子调速器。电子调速器简称电调,用于控制无刷直流电机。 电气连接如图2-2所示。 .软件构成

四旋翼飞行器的结构形式和工作原理

四旋翼飞行器的结构形式和工作原理 1.结构形式 直升机在巧妙使用总距控制和周期变距控制之前,四旋翼结构被认为是一种最简单和最直观的稳定控制形式。但由于这种形式必须同时协调控制四个旋翼的状态参数,这对驾驶员认为操纵来说是一件非常困难的事,所以该方案始终没有真正在大型直升机设计中被采用。这里四旋翼飞行器重新考虑采用这种结构形式,主要是因为总距控制和周期变距控制虽然设计精巧,控制灵活,但其复杂的机械结构却使它无法再小型四旋翼飞行器设计中应用。另外,四旋翼飞行器的旋翼效率相对很低,从单个旋翼上增加拉力的空间是非常有限的,所以采用多旋翼结构形式无疑是一种提高四旋翼飞行器负载能力的最有效手段之一。至于四旋翼结构存在控制量较多的问题,则有望通过设计自动飞行控制系统来解决。四旋翼飞行器采用四个旋翼作为飞行的直接动力源,旋翼对称分布在机体的前后、左右四个方向,四个旋翼处于同一高度平面,且四个旋翼的结构和半径都相同,旋翼1和旋翼3逆时针旋转,旋翼2和旋翼4顺时针旋转,四个电机对称的安装在飞行器的支架端,支架中间空间安放飞行控制计算机和外部设备。四旋翼飞行器的结构形式如图1.1所示。

图1.1四旋翼飞行器的结构形式 2.工作原理 典型的传统直升机配备有一个主转子和一个尾桨。他们是通过控制舵机来改变螺旋桨的桨距角,从而控制直升机的姿态和位置。四旋翼飞行器与此不同,是通过调节四个电机转速来改变旋翼转速,实现升力的变化,从而控制飞行器的姿态和位置。由于飞行器是通过改变旋翼转速实现升力变化,这样会导致其动力部稳定,所以需要一种能够长期保稳定的控制方法。四旋翼飞行器是一种六自由度的垂直升降机,因此非常适合静态和准静态条件下飞行。但是四旋翼飞行器只有四个输入力,同时却有六个状态输出,所以它又是一种欠驱动系统。

四旋翼无人机毕业设计

四旋翼无人机毕业设计 目录 摘要 ............................................................................................. 错误!未定义书签。Abstract ................................................................................................ 错误!未定义书签。1绪论 .. (1) 1.1研究背景及意义 (1) 1.2 国内外四旋翼飞行器的研究现状 (1) 1.2.1国外四旋翼飞行器的研究现状 (1) 1.2.2国内四旋翼飞行器的研究现状 (3) 1.3 本文研究内容和方法 (4) 2 四旋翼飞行器工作原理 (5) 2.1 四旋翼飞行器的飞行原理 (5) 2.2 四旋翼飞行器系统结构 (5) 3 四旋翼飞行器硬件系统设计 (7) 3.1 微惯性组合系统传感器组成 (7) 3.1.1 MEMS陀螺仪传感器 (7) 3.1.2 MEMS加速度计传感器 (7) 3.1.3 三轴数字罗盘传感器 (8) 3.2 姿态测量系统传感器选型 (8) 3.3 电源系统设计 (10) 3.4 其它硬件模块 (10) 3.4.1 无线通信模块 (10) 3.4.2 电机和电机驱动模块 (11) 3.4.3 机架和螺旋桨的选型 (12) 3.4.4 遥控控制模块 (13) 4 四旋翼飞行器姿态参考系统设计 (15) 4.1 姿态参考系统原理 (15) 4.2 传感器信号处理 (16) 4.2.1 加速度传感器信号处理 (16) 4.2.2 陀螺仪信号处理 (16) 4.2.3 电子罗盘信号处理 (17) 4.3 坐标系 (17) 4.4 姿态角定义 (18) 4.5 四元数姿态解算算法 (19) 4.6 校准载体航向角 (27) 5 四旋翼飞行器系统软件设计 (29) 5.1 系统程序设计 (29) 5.1.1 姿态参考系统软件设计 (29) 5.1.2 PID控制算法设计 (30)

2015年全国大学生电子设计大赛四旋翼飞行器论文

2015年全国大学生电子设计竞赛多旋翼自主飞行器(C题) 2015年8月15日

摘要 本文对四旋翼碟形飞行器进行了初步的研究和设计。首先,对飞行器各旋翼的电机选择做了论证,分析了实际升力效率与PWM的关系并选择了此样机的最优工作频率,并重点对飞行器进行了硬件和软件的设计。 本飞行器采用瑞萨R5F100LEA单片机为主控制器,通过四元数算法处理传感器MPU6000采集机身平衡信息并进行闭环的PID控制来保持机身的平衡。整个控制系统包括电源模块、传感器检测模块、电机调速模块、飞行控制模块及微处理器模块等。角度传感器和角速率传感模块为整个系统提供飞行器当前姿态和角速率信号,构成飞行器的增稳系统。本系统经过飞行测试,可以达到设计要求。关键字:R5F100LEA单片机、传感器、PWM、PID控制。

目录 1系统方案 (1) 1.1电机的论证与选择 (1) 1.2红外对管检测传感器的论证与选择 (1) 1.3电机驱动方案的论证与选择 (2) 2系统控制理论分析 (2) 2.1控制方式 (2) 2.2 PID模糊控制算法 (2) 3控制系统硬件与软件设计 (4) 3.1系统硬件电路设计 (4) 3.1.1系统总体框图 (4) 3.1.2 飞行控制电路原理图 (4) 3.1.3电机驱动模块子系统 (5) 3.1.4电源 (5) 3.1.5简易电子示高模块电路原理图 (6) 3.2系统软件设计 (6) 3.2.1程序功能描述与设计思路 (6) 3.2.2程序流程图 (6) 4测试条件与测试结果 (7) 4.1 测试条件与仪器 (7) 4.2 测试结果及分析 (7) 4.2.1测试结果(数据) (7) 4.2.2测试分析与结论 (8) 附录1:电路图原理 (9) 附录2:源程序 (10)

四旋翼飞行器基本原理

四旋翼飞行器无刷直流电机调速系统的设计 孟磊,蒋宏,罗俊,钟疏桐 武汉理工大学自动化学院、武汉理工大学信息工程学院 摘要,关键字:略 近年来,无人机的研究和应用广泛受到各个方面的重视。四旋翼飞行器作为无人机的一种,能够垂直起落、空中悬停、可适用于各种飞行速度与飞行剖面,具有灵活度高、安全性好的特点,适用于警务监控、新闻摄影、火场指挥、交通管理、地质灾害调查、管线巡航等领域实现空中时时移动监控。 四旋翼飞行器的动力来源是无刷直流电机,因此针对该型无刷直流电机的调速系统对飞行器的性能起着决定性的作用。为了提高四旋翼飞行器的性能,本文设计制作了飞行试验平台,完成了直流无刷电机无感调速系统的硬件、软件设计。通过实验证明该系统的设计是可行的。 四旋翼飞行器平台结构 四旋翼平台呈十字形交叉,有四个独立电机驱动螺旋桨组成。当飞行器工作时,平台中心对角的螺旋桨转向相同,相邻的螺旋桨转向相反同时增加减少四个螺旋桨的速度,飞行器就垂直上下运动;相反的改变中心对角的螺旋桨速度,可以产生滚动、俯仰等运动。结构图如下: 四旋翼飞行器的控制系统分为两个部分:飞行控制系统和无刷直流电机调速系统。飞行控制系统通过IMU惯性测量单位(由陀螺传感器和加速度传感器组成)检测飞行姿态,通过无线通讯模块与地面遥控器通信。4个无刷直流电机调速系统通过I2C总线与飞行控制器通信,通过改变4个无刷直流电机的转速来改变飞行姿态,系统采用12V电池供电。控制系统结构图如下:

无刷直流电机调速系统 无刷直流电动机既具有运行效率高、调速性能好,同时又具有交流电动机结构简单、运行可靠、维护方便的优点,是电机主要发展方向之一,现已成功运用与军事、航空、计算机数控机床、机器人、电动自行车等多个领域。在该四旋翼飞行器上使用了新西达2217外转子式无刷直流电机,其结构为12绕组7对磁极,典型KV值为1400. 通常无刷直流电机的控制方式分为有位置传感器控制方式和无位置传感器控制方式。有位置传感器控制方式通过再定子上安装电磁式、光电式或者磁敏式位置传感器来检测转子的位置,为驱动电路提供转向信息。无位置传感器的控制方式有很多,包括磁链计算法‘反电动势法、状态观测器法、电感法等。在各种无位置传感器控制方法中,反电动势法是目前技术最为成熟的、应用最为广泛的一种位置检测方法。本系统采用的饭店董事过零检测法是反电动势法中的一种,通过检测各相绕组反电动势的过零点来判断转子的位置。根据无刷直流电机的特性,电机的最佳转向时刻是想反电动势过零点延迟30电角度的时刻,而该延迟的电角度对应的时间可以有两次过零点时间间隔计算得到。 无刷直流电机调速系统硬件设计 该无刷直流电机调速系统有三相全桥驱动电路、反电势过零电路、电流电压检测电路组成电机驱动器。使用一片ATmega8单片机作为控制器,该单片机内部集成了8kB的flash,最多具有23个可编程的I/O口,输出时为推挽结构输出,驱动能力较强。片上集成了AD 转换器、模拟比较器、通用定时器、可编程计数器等资源。 三相全桥驱动电路利用功率型MOS管作为开关器件,选用P型MOS管FD6637与N型MOS管FD6635搭配使用,设计容量为允许通过的最大电流为30A。FD6637的开关利用三极管9013进行驱动、FD6635的开关直接用单片机的I/O口进行驱动。电路如图3所示。通过R17、R19、R25来减少下管FDD6635的栅极充电电流峰值,防止震荡并保护MOS管;R16、R23、R24作为下拉电阻,保证下关的正常导通与关断;R2、R5、R8作为上管栅极上拉电阻,阻值选择470Ω,既保证了MOS管的开关速率不降低,同时也防止三极管Ic电流过大。A+、B+、C+提供驱动桥的上桥臂的栅极导通信号,分别通过ATmega8的三个硬件PWM通道驱动,通过改变PWM信号的占空比来实现电机调速;A-、B-、C-提供下桥臂栅极驱动信号,由单片机的I/O口控制,只有导通和关闭两种状态。

TI杯四旋翼飞行器要点

2014年TI杯大学生电子设计竞赛报告 A题:四旋翼飞行器 摘要:小型四旋翼飞行器是一种通过对四个旋翼联合驱动而实现垂直起降的无人飞行器,是一个模块化、具有较高硬件灵活性和较好操控性的平台装置,这个平台装置能够为科学实验、工程监控、气象监测、灾害预警等提供很好的应用平台。本文以自制小型电动四旋翼飞行器作为研究平台,通过对MPU6050传感器测得运动数据研究,实现对其空中运动姿态的数学描述,建立完整的动力学模型,并针对姿态解算方法和飞行控制算法展开研究,最终完成飞行器的稳定悬停等研究目标。 关键词:四旋翼飞行器;MPU6050传感器;运动姿态;动力学模型;稳定悬停。

目录 一、系统设计要求................................................ - 1 - 1. 1、任务.................................................. - 1 - 1. 2、设计相关要求.......................................... - 1 - 1.2.1 、基本要求............................ 错误!未定义书签。 1.2.2、发挥部分......................................... - 1 - 二、系统方案论证与选择.......................................... - 1 - 2.1 、系统基本方案.......................................... - 2 - 2.1.1、处理器选取方案.................................... - 2 - 2.1.2、轨迹探测模块选取方案................. 错误!未定义书签。 2.1.3、高度传感器选取方案................................ - 3 - 2.1.4、平衡传感器选取方案................... 错误!未定义书签。 2.1.5、电源模块选取方案.................................. - 4 - 2.1.6、电机驱动模块选取方案.............................. - 4 - 2.1.7、加速度模块选取方案................... 错误!未定义书签。 2.2、系统各模块的最终方案................................... - 5 - 2.2.1、方案描述.......................................... - 5 - 2.2.2、具体方案.......................................... - 5 - 三、系统的硬件设计与实现........................................ - 7 - 3.1、系统硬件的基本组成部分................................. - 7 - 3. 2、主要单元电路的设计.................................... - 7 - 3.2.1、控制电路.......................................... - 7 - 3.2.2、摄像头循迹电路....................... 错误!未定义书签。 3.2.3、超声波测距电路....................... 错误!未定义书签。 3.2.4、电机驱动电路...................................... - 8 - 四、系统软件设计................................................ - 9 - 4.1、基本要求流程图......................................... - 9 - 4.2、超声波发送和接收模块流程图............................. - 9 - 4.3.软件流程图.......................................... - 10 - 4.4.主要算法程序代码.................................... - 11 - 五、系统测试................................................... - 14 - 5.1、测试仪器.............................................. - 14 - 5.2、指标测试.............................................. - 14 - 5.2.1、测试方法和条件................................... - 14 - 5.2.2、测试数据及测试结果分析........................... - 14 - 六、总结....................................................... - 15 - 参考文献................................................... - 16 -

相关主题