搜档网
当前位置:搜档网 › 聚变堆用CLAM钢变形奥氏体再结晶规律研究

聚变堆用CLAM钢变形奥氏体再结晶规律研究

聚变堆用CLAM钢变形奥氏体再结晶规律研究
聚变堆用CLAM钢变形奥氏体再结晶规律研究

聚变堆用CLAM钢变形奥氏体再结晶规律研究

摘要: 采用阶梯试样的方法并半定量统计了不同工艺条件下的clam钢的再结晶晶粒个数,确定了其再结晶百分数,绘制了clam 钢再结晶区域图,研究了变形温度及变形量对clam钢的再结晶影响规律,结果表明:当变形温度小于1000℃、变形量小于10%时,奥氏体处于完全未再结晶区;当变形温度大于850℃、变形量大于75%时, 奥氏体位于完全再结晶区。

abstract: the microstructure of the deformed austenite was observed, and the recrystallization fraction of the austenite was measured by the optical microscope, which is drawn recrystallization diagram of clam steel. the influence of the reduction and the temperature on the recrystallization behavior of clam steel achieved by stepped samples. the result indicates that, the recrystallization of austenite occurs when temperature above 850℃and reduction more than 75%, in contrast, the recrystallization of austenite does not occur at all when temperature below 1000℃and reduction less than 10%

key words: clam steel; recrystallization fraction(rf); deformation temperature (dt) ; deformation amount (ε)

关键词: clam钢;再结晶;变形温度;变形量

中图分类号: tg 文献标志码:a 文章编号:

钢结构焊接变形的起因及其控制方法初探

钢结构焊接变形的起因及其控制方法初探 发表时间:2018-05-22T16:03:20.310Z 来源:《基层建设》2018年第4期作者:肖盛龙蔡成 [导读] 摘要:焊接技术以一种用来进行金属材料结合的工艺,它主要是通过加热或高压的形式来对金属材料的局部进行加热,等待金属材料变成液态时又通过自然冷却等方法使其融合在一起方式。 上海振华重工(集团)股份有限公司长兴分公司上海 201913 摘要:焊接技术以一种用来进行金属材料结合的工艺,它主要是通过加热或高压的形式来对金属材料的局部进行加热,等待金属材料变成液态时又通过自然冷却等方法使其融合在一起方式。在很多时候,由于加热条件的不同、加工件的材质、大小的不同,会使得焊件会因为局部受热不均匀产生焊接变形,这一方面影响美观不说,它还会严重的影响到钢结构的整体性能。本文正是从分析钢结构在焊接时发生变形的原因和类型展开了分析,通过制定有效的策略来改善钢结构中存在的这类问题,为后续减少钢结构焊接作业中发生变形的提供理论指导。 关键词:钢结构;焊接变形;起因;控制 前言:随着建筑业的快速发展,行业对钢结构的需求量与日俱增,这也为焊接技术的发展奠定了扎实的基础,但是由于容易受到种种的内外环境的影响,焊接变形的问题始终是在所难免。好在很多经验丰富的焊接工人在实际工作中能够凭借他们丰富的实践经验来解决钢结构焊接工作中存在的焊接变形问题,以此提升钢结构的品质,在此笔者将其进行归纳和整理,阐述了改善焊接变形的相关知识理论。 1钢结构焊接变形的主要类型 从很多的焊接变形是以中我们可以发现,导致焊接变形的原因是多方面的,按照变形的类型我们可以将其划分为这几类:①降温收缩纵横变形。完成焊接工件温度在冷却的过程中,钢结构以焊缝为起点,它会沿着纵横轴方向发生收缩变形,这时我们能够明显的看到它的变形情况;②钢结构在降温冷却过程中因为不同局部的收缩量不同产生角度变形。它表现在钢板发生收缩后因为收缩量的不同导致角度位移,这就给人呈现很明显的角度变形的情形;③焊缝角螺旋状变形。这时由于在进行局部焊接之后,因为钢结构的纵横面收缩不均而产生的变形;④错边变形。以焊缝为起点的局部加热之后,由于受热不均导致构件的收缩量大小不一致,因此导致构件的长和宽发生变形。⑤不同的焊缝位置之间的变形程度不同,全部集聚在一起就形成了挠区变形,也就是我们所说的面目全非的感觉。⑥波浪形变形。在进行局部焊接时由于高温的作用,使得焊缝位置周围存在内应力,应力的大小就会出现类似于波浪式的焊接变形。 2钢结构焊接变形产生的原因 引起钢结构焊接变形的原因多种多样,本文总结了以下几种进行阐述。 2.1 温度控制不当 从种种的迹象表明,引起焊接变形的最大罪魁祸首是温度。高温会使金属发生热胀冷缩,一旦温度超过了金属的熔点时,金属就会发生不停的膨胀,当其冷却下来时它的膨胀状态也被保留了下来,给人一看就是变形的情形。同时即便是局部加热,高温会使得局部金属的体积膨胀而对周围的金属造成挤压而产生变形,同时高温也会传递给周围的金属导致它们出现不同的膨胀变形。 2.2 钢结构的焊接顺序和方法不当 在对钢结构进行焊接时,需要讲究方式方法,要按照施工的顺序要求来执行,切不可颠倒顺序,否则就会导致钢结构发生焊接变形。一般来讲,由于焊接工艺和焊接材质的不同,不同的焊缝处的承载力不尽相同,因此要遵循先重后轻的原则,防止因为后期重力较大的钢结构挤压承载力较小的钢结构导致变形。 2.3 钢结构的材料 金属材料的熔点各不相同,与此同时在温度相同的情况下他们的膨胀系数也存在着差异。我们在进行局部焊接时无论是膨胀程度过大或者过小,始终都会对整个钢结构的焊接处造成变形,这就会严重的影响到我们的焊接质量。 2.4 钢结构的焊缝位置 往往在很多时候,在进行钢结构焊接时都会涉及到一个总焊缝,总焊缝的位置决定着钢结构在焊接过程中的受力情况,随着焊接进度的不断推进,钢结构的整体重力也会不断的增大,这对总焊缝的压力也就越来越大,所以我们需要灵活的设计总焊缝的位置,预防和控制钢结构的焊接变形。 2.5 刚性不同,变形程度不同 按理来讲,在承载力大小一致的情况下,刚性越大的钢结构变形程度较小,反之亦然。因此我们在设计钢结构时需要提前的预知它的承载能力,然后再根据承载重力的大小来或者不同刚性的钢结构,这样就能够降低钢结构发生焊接变形的产生概率。 3对于控制钢结构焊接变形的几点思考 3.1 从设计上控制钢结构焊接的形变 钢结构建筑是未来社会发展的一个趋势,它减少了对建筑施工材料的消耗,同时又不失艺术审美价值,同时它还能够承受较大强度的负载,我们也可以通过优化钢结构设计来降低钢结构存在焊接形变的事实。 第一,在确保钢结构质量稳定的基础上减少焊接点的数目和尺寸。因为焊点数目多的话需要加热的面积就会越多,同时要是焊接尺寸伴随的加热时间也会相应的变长,进而就导致焊接变形更加严重。 第二,科学的设计钢结构建筑的承压位置,并且要考虑到焊点的对称性,这样就能够确保整体结构的受力均匀,尽可能的将焊点与钢材截面的中轴设计在一条直线上,这样就能够降低在施工中受到压力而发生变形。 第三,要结合所选用的钢材焊接面尺寸和形状大小来选择焊接材料和焊接方法,这样一来能够尽最大可能的降低局部的受热时间,避免的长时间的加热导致金属发生膨胀变形。 第四,钢结构焊接点的设计要避免过于集中或者靠近部位存在多个焊点,因为这样也会使得在加热的过程中会导致局部反复的受热而发生形变,同时也会导致钢材料的刚度发生下降。 第五,针对钢结构建筑中受力比较大的位置应该尽量避免进行焊接,及时焊接没产生变形,出现焊点的钢材的应力能力也大打折扣。为了保证施工质量,应减少应力点的焊接。 第六,焊接作业尽可能的进行简单没有较高难度的焊接,因为高难度焊接对于焊工的个人能力和经验都具有苛刻的要求,不是人人都

第六章 回复与再结晶

第六章回复与再结晶 (一)填空题 1. 金属再结晶概念的前提是,它与重结晶的主要区别是。 2. 金属的最低再结晶温度是指,它与熔点的大致关系是。 3 钢在常温下的变形加工称,铅在常温下的变形加工称。 4.回复是,再结晶是。 5.临界变形量的定义是,通常临界变形量约在范围内。 6 金属板材深冲压时形成制耳是由于造成的。 7.根据经验公式得知,纯铁的最低再结晶温度为。 (二)判断题 1.金属的预先变形越大,其开始再结晶的温度越高。(×) 2.变形金属的再结晶退火温度越高,退火后得到的晶粒越粗大。(√)3.金属的热加工是指在室温以上的塑性变形过程。(×) 4.金属铸件不能通过再结晶退火来细化晶粒。(√) 金属铸件不能通过再结晶退火达到细化晶粒的目的,因为铸件,没有经受冷变形加工,所以当加热至再结晶退火温度时,其组织不会发生根本变化,因而达不到细化晶粒的目的。 再结晶退火必须用于经冷塑性变形加工的材料,其目的是改善冷变形后材料的组织和性能。再结晶退火的温度较低,一般都在临界点以下。若对铸件采用再结晶退火,其组织不会发生相变,也没有形成新晶核的驱动力(如冷变形储存能等),所以不会形成新晶粒,也就不能细化晶粒。 5.再结晶过程是形核和核长大过程,所以再结晶过程也是相变过程。(×); 6 从金属学的观点看,凡是加热以后的变形为热加工,反之不加热的变形为冷加工。 (×) 7 在一定范围内增加冷变形金属的变形量,会使再结晶温度下降。( √) 8.凡是重要的结构零件一般都应进行锻造加工。(√) 9.在冷拔钢丝时,如果总变形量很大,中间需安排几次退火工序。( √) 10.从本质上讲,热加工变形不产生加工硬化现象,而冷加工变形会产生加工硬化现象。这是两者的主要区别。( ×) (三)选择题 1.变形金属在加热时发生的再结晶过程是一个新晶粒代替旧晶粒的过程,这种新晶粒的晶型( )。 A.与变形前的金属相同 B 与变形后的金属相同 C 与再结晶前的金属相同D.形成新的晶型 2.金属的再结晶温度是( ) A.一个确定的温度值B.一个温度范围 C 一个临界点D.一个最高的温度值 3.为了提高大跨距铜导线的强度,可以采取适当的( A )。 A.冷塑变形加去应力退火 B 冷塑变形加再结晶退火 C 热处理强化D.热加工强化 4 下面制造齿轮的方法中,较为理想的方法是( C )。 A.用厚钢板切出圆饼再加工成齿轮B用粗钢棒切下圆饼再加工成齿轮 C 由圆钢棒热锻成圆饼再加工成齿轮D.由钢液浇注成圆饼再加工成齿轮 5.下面说法正确的是( C )。 A.冷加工钨在1 000℃发生再结晶 B 钢的再结晶退火温度为450℃ C 冷加工铅在0℃也会发生再结晶D.冷加工铝的T再≈0.4Tm=0.4X660℃=264℃ 6 下列工艺操作正确的是(D ) 。 A.用冷拉强化的弹簧丝绳吊装大型零件淬火加热时入炉和出炉 B 用冷拉强化的弹簧钢丝作沙发弹簧 C 室温可以将保险丝拉成细丝而不采取中间退火 D.铅的铸锭在室温多次轧制成为薄板,中间应进行再结晶退火 7 冷加工金属回复时,位错(C )。

钢结构焊接变形的控制与矫正

钢结构焊接变形的控制与矫正 一、前言 钢结构离不开焊接,焊接必然产生一定量的焊接变形,焊接变形的控制与矫正尤为重要,其焊接的质量和生产效率直接影响到钢结构的建造周期和使用寿命。 二、焊接变形产生的原因 电弧焊是一个不均匀的快速加热和冷却的过程,焊接过程中及焊后,焊接构件都将产生变形。影响焊接变形最根本的因素是焊接过程中的热变形和焊接构件的刚性条件。在焊接过程中的热变形受到了构件刚性条件的约束,出现了压缩塑性变形,这就产生了焊接残余变形。 (一)影响焊接热变形的因素 1.焊接工艺方法。不同的焊接方法,将产生不同的温度场,形成的热变形也不相同。一般来说,自动焊比手工焊加热集中,受热区窄,变形较小。CO2气体保护焊焊丝细,电流密度大,加热集中,变形小。 2.焊接参数。即焊接电流、电弧电压和焊接速度。线能量愈大,焊接变形愈大。焊接变形随焊接电流和电弧电压的增大而增大,随焊接速度增大而减小。在3个参数中,电弧电压的作用明

显,因此低电压高速大电流密度的自动焊变形较小。 3.焊缝数量和断面大小。焊缝数量愈多,断面尺寸愈大,焊接变形愈大。 4.施工方法。连续焊、断续焊的温度场不同,产生的热变形也不同。通常连续焊变形较大,断续焊变形最小。 5.材料的热物理性能。不同的材料,导热系数、比热和膨胀系数等均不相同,产生的热变形也不相同,焊接变形也不相同。 (二)影响焊接构件刚性系数的因素 1构件的尺寸和形状。随着构件刚性的增加,焊接变形愈小。 2胎夹具的应用。采用胎夹具,增加了构件的刚性,从而减少焊接变形。 3装配焊接程序。装配焊接程序能引起构件在不同装配阶段刚性的变化和重心位置的改变,对控制构件的焊接变形有很大的影响。 一般来说,焊接构件在拘束小的条件下,焊接变形大,反之,则变形小。 三、钢结构焊接变形的种类 任何钢结构的焊接变形,可分为整体变形和局部变形。整体变形就是焊接以后,整个构件的尺寸或形状发生的变化,包括纵向和横向收缩(总尺寸缩短),弯曲变形(中拱、中垂)和扭曲变形等。局部变形是指焊接以后构件的局部区域出现的变形,包括角变形和波浪变形等。

钢结构焊接变形的火焰矫正方法

钢结构焊接变形的火焰 矫正方法 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

钢结构焊接变形的火焰矫正方法 摘要火焰矫正是钢结构制作过程中解决焊接变形常用的一种方法,本文重点介绍了钢结构焊接变形火焰矫正方法的施工工艺。 关键词钢结构焊接变形矫正 1 前言 在XXX三期炼钢板坯,轨梁精整等厂房钢结构制作项目中,大部分是由宽翼缘焊接H型钢组成梁、柱等构件。这些构件在加工过程中存在焊接变形问题。这些焊接变形如果不矫正,对结构的整体安装和工程的安全可靠性都存在很大的影响。为此我主要采用了火焰矫正方法,使这些梁柱的焊接变形得到了很好矫正。 2 气体火焰矫正原理 金属具有热胀冷缩的特性,机械性能也随温度而变化。低碳钢(以Q235钢为 温度的关系如图1虚线所示,一般可简化为实线所示,即当例)的屈服极限σ s 温度在500οC以下,屈服极限基本无变化;温度高于600οC时,屈服极限接近于零。温度在500—600οC之间时呈线性变化。 当金属结构局部加热时,加热区的金属热膨胀受到周围冷金属的阻止,不能自由变形,某些部位的金属被塑性压缩。冷却后,残留的局部收缩使结构获得所需要的变形。 线状加热法 线状加热法的原理如图2所示,钢板表面被加热后,离加热点最近的表面温度上升最快,膨胀也最快,周围所受热影响较小,膨胀也很小,加热停止后,温度向周围扩散,被加热部分开始冷却,形状也渐次恢复,但又因钢板表面与空气 接触,热散较快,因而使表面被加热部分还未恢复原状就已固定下来。

随着冷却过程的持续(图2),在中性轴上侧的高温开始收缩,其收缩力使板向上弯曲,弯曲终止后,钢板两端各缩短a/2,中间却凸起a,这样总体积不变,重量也不变。火焰沿钢板直线方向移动,同时为使加热线增宽也可作横向摆动,形成长条形加热。 点状加热法 对薄板进行加热时,因板较薄,表面热量很快传递到内侧,高温部分贯通至整个板的横剖面。冷却时,上下表面冷却相同,中性轴上下侧的冷却收缩力也相同,所以加热时上下表面膨胀部分留下来,从而造成板整体缩短,但并没有弯曲。如图3所示。 缩短加工时加热点位置相对固定。这种方法一般用于矫正薄板波浪变形。加热温度和冷却介质 火焰矫正所用氧—乙炔混合比应为1:—1:之间的中性焰或氧化焰比较合适。 按火焰矫正的加热温度可分为低温矫正、中温矫正和高温矫正三种,相应的加热温度和冷却介质见表1所示。 2.3.1低温矫正低碳钢 根据图1中加热到500—600οC时,低碳钢的屈服极限已大幅度下降,加热到这个温度范围,可以起到火焰矫正的目的,且金相组织和机械性能不变。由于喷水、冷却速度快,火焰矫正效率高。这种方法我们在实际生产中采用较少。 2.3.2中温矫正 中温矫正时金属的加热温度在600—700οC,屈服极限σ 更接近零值。加热 s 温度仍在相变温度以下,金属组织没有相变,因此金属的机械性能也变化不大。中温矫正在我们实际生产中经常使用。 2.3.3高温矫正 这一温度范围内虽然存在金属组织的相变,但由于Q235、Q235F和Q345等钢材在空气中冷却后,仍然可以得到退火组织,其机械性能变化也不大。但如果加热温度过高,会引起奥氏体晶粒长大,冷却中得不到细化,则会增加金属的脆性,降低冲击韧性。 应注意,对Q345钢加热至相变温度的情况下不得使用水冷,否则将产生低碳马氏体,影响冲击韧性。

上海交大材基-第五章塑性变形与回复再结晶--复习提纲.

第5章材料的形变和再结晶 提纲 5.1 弹性和粘弹性 5.2 晶体的塑性变形(重点) 5.3 回复和再结晶(重点) 5.4 高聚物的塑性变形 学习要求 掌握材料的变形机制及特征,以及变形对材料组织结构、性能的影响;冷、热加工变形材料的回复和结晶过程。 1.材料的弹性变形本质、弹性的不完整性及黏弹性; 2.单晶体塑性变形方式、特点及机制(滑移、孪生、扭折) 3.多晶体、合金塑性变形的特点及其影响因素 4.塑性变形对材料组织与性能的影响; 5.材料塑性变形的回复、再结晶和晶粒长大过程; 6.影响回复、再结晶和晶粒长大的诸多因素(包括变形程度、第二相粒子、工艺参数等) 7、结晶动力学的形式理论(J-M-A方程) 8、热加工变形下动态回复、再结晶的微观组织特点、对性能影响。 9、陶瓷、高聚物材料的变形特点 重点内容 1. 弹性变形的特征,虎克定律(公式),弹性模量和切变弹性模量; 材料在外力作用下发生变形。当外力较小时,产生弹性变形。弹性变形是可逆变形,卸载时,变形消失并恢复原状。在弹性变形范围内,其应力与应变之间保持线性函数关系,即服从虎克(Hooke)定律: 式中E为正弹性模量,G为切变模量。它们之间存在如下关系: 弹性模量是表征晶体中原子间结合力强弱的物理量,故是组织结

构不敏感参数。在工程上,弹性模量则是材料刚度的度量。 2. 弹性的不完整性和粘弹性; 理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等弹性不完整性。弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等。3. 滑移系,施密特法则(公式),滑移的临界分切应力; 晶体中一个滑移面和该面上一个滑移方向组成。 fcc和bcc,bcc的滑移系?滑移系多少与塑性之间的关系。 滑移的临界分切应力: 如何判断晶体中各个滑移系能不能开动? 解释几何软化和几何硬化?为何多晶体塑性变形时要求至少有5个独立的滑移系进行滑移? 4. 滑移的位错机制,派-纳力(公式); 为什么晶体中滑移系为原子密度最大的面和方向? 5. 比较塑性变形两种基本形式:滑移与孪生的异同特点; 6. 多晶体塑性变形的特点:晶粒取向的影响,晶界的影响;

钢结构焊接最易出现的问题及解决措施

钢结构焊接最易出现的问题及解决措施 钢结构指主要由钢制材料组成的结构,是主要的建筑结构类型之一。结构主要由型钢和钢板等制成的钢梁、钢柱、钢桁架等构件组成,各构件或部件之间通常采用焊缝、螺栓或铆钉连接。因其自重较轻,且施工简便,广泛应用于大型厂房、场馆、超高层等领域。 钢结构在焊接过程中,有许多需要注意的事项,一旦疏忽,有可能铸成大错。 1、焊接施工不注意选择最佳电压 【现象】 焊接时无论是打底、填充、盖面,不管坡口尺寸大小,均选择同一电弧电压。这样有可能达不到要求的熔深、熔宽,出现咬边、气孔、飞溅等缺陷。 【措施】 一般针对不同情况应该分别选择相应长弧或短弧能得到较好的焊接质量和工作效率。例如打底焊接时为了能得到较好的熔深应该采用短弧操作,填充焊或盖面焊接时为了得到较高的效率和熔宽可以适当加大电弧电压。 2、焊接不控制焊接电流 【现象】 焊接时,为了抢进度,对于中厚板对接焊缝采取不开坡口。强度指标下降,甚至达不到标准要求,弯曲试验时出现裂纹,这样会使焊缝接头性能不能保证,对结构安全构成潜在危害。【措施】 焊接时要按工艺评定中的焊接电流控制,允许有10~15%浮动。坡口的钝边尺寸不宜超过6mm。对接时,板厚超过6mm时,要开坡口进行焊接。 3、不注意焊接速度与焊接电流,焊条直径协调使用 【现象】 焊接时不注意控制焊接速度与焊接电流,焊条直径、焊接位置协调起来使用。如对全熔透的角缝进行打底焊时,由于根部尺寸窄,如焊接速度过快,根部气体、夹渣没有足够的时间排出,易使根部产生未熔透、夹渣、气孔等缺陷;盖面焊时,如焊接速度过快,也易产生气孔;焊接速度过慢,则焊缝余高会过高,外形不整齐;焊接薄板或钝边尺寸小的焊缝时,焊接速度太慢,易出现烧穿等情况。 【措施】 焊接速度对焊接质量和焊接生产效率有重大影响,选用时配合焊接电流、焊缝位置(打底焊,填充焊,盖面焊)、焊缝的厚薄、坡口尺寸选取适当的焊接速度,在保证熔透,气体、焊渣易排出,不烧穿,成形良好的前提下选用较大的焊接速度,以提高生产率效率。 4、施焊时不注意控制电弧长度 【现象】 施焊时不根据坡口形式、焊接层数、焊接形式、焊条型号等适当调整电弧长度。由于焊接电弧长度使用不当,较难得到高质量的焊缝。 【措施】 为了保证焊缝质量,施焊时一般多采用短弧操作,但可以根据不同的情况选用合适的弧长以获得最优的焊接质量,如V形坡口对接、角接的第一层应使用短些的电弧,以保证焊透,且不发生咬边现象,第二层可以稍长,以填满焊缝。焊缝间隙小时宜用短弧,间隙大时电弧可稍长,焊接速度加快。仰焊电弧应最短,以防止铁水下流;立焊、横焊时为了控制熔池温度,也要用小电流、短弧焊接。另外,无论采取什么焊接,在运动过程中要注意始终保持弧长基本不变,以此确保整条焊缝的熔宽和熔深一致。 5、焊接不注意控制焊接变形 【现象】

钢结构工程中焊接变形质量控制QC(可编辑修改word版)

钢结构工程中焊接变形质量控制 一、小组概况:本小组是一个具有较强QC 理论基础和丰富实践经验的QC 小组,小组成员是项目部的主要技术骨干,都接受过四川三峡认证公司、省、市、十一局的TQC 培训教育。 QC 小组概况 小组成员简介

二、选题理由 由于在万家寨体育馆工程中钢屋架起承载和支撑作用,设计对钢结构的要求很高,因为钢结构的质量不仅影响到其它工序,而且对整体工程质量起着十分重要作用,同时在安全方面也起着十分重要的作用。在钢结构安装施工过程中,特别是在气割下料或焊接时,由于在加热或冷却过程的不均匀性的存在,十分容易导致结构内部产生应力,这些应力的存在,最终可能出现结构发生变形,从而降低装置钢结构的承载能力和使用寿命。外形尺寸超差还可能对其他安装工序产生影响,如果这种变形所引起的尺寸过大,还可能造成工件报废或返工,造成人力和物力的浪费,使工程成本增加,这种情况是施工单位所最不想看到的工之前,我们就想到了钢结构制作中可能产生变形这一问题,并引起大家的重视。我们总结了以往的施工经验,想办法控制由于焊接所产生的残余应力,防止发生结构变形,使该项工程的钢结构施工质量最终达到设计要求。 为此我们 QC 小组把“钢结构工程中焊接变形质量控制”作为此次小组活动的课题”,并希望能够通过此次活动使钢结构焊接形变质量达到设计要求。 三、选择课题

1、钢结构具有强度高、重量轻、抗震性能好、施工速度快等 特点,在现代公共建筑中会出现一系列的质量问题,导致 各种安全事故的发生。 2、为了防止各种质量问题导致的安全事故的发生,我们从开 始制作钢屋架前的每一个环节入手、分析论证出现形变的 原因、针对原因找出主要因素,制定实施防范措施,确保 钢屋架整体安装的质量安全,最终保证本工程质量合格。 四、现状调查 (1)普遍调查 2007 年4 月,本小组查资料发现在以前所干的工程,抽取了不同时间、不同地点的钢结构工程,在这些工程中往往会出现钢结构焊接顺序不当、焊接质量未达到要求、下料方法不当、卡具使用方法不当等等一些质量安全事故的发生。 (2)实际调查工程的各质量问题的百分比统计如下:

回复与再结晶

1、一块单相多晶体包含。 A.不同化学成分的几部分晶体B.相同化学成分,不同结构的几部分晶体C.相同化学成分,相同结构,不同位向的几部分晶体 2、在立方系中点阵常数通常指。 A.最近的原子间距B.晶胞棱边的长度 3、每一个面心立方晶胞中有八面体间隙m个,四面体间隙n个,其中。 A.m=4,n=8B.m=13,n=8C.m=1,n=4 4、原子排列最密的一族晶面其面间距。 A.最小B.最大 5、晶体中存在许多点缺陷,例如 A.被激发的电子B.空位C.沉淀相粒子 6、金属中通常存在着溶质原子或杂质原子,它们的存在。 A.总是使晶格常数增大B.总是使晶格常数减小C.可能使晶格常数增大,也可能使晶格常数减小 7、金属中点缺陷的存在使电阻。 A.增大B.减小C.不受影响 8、空位在过程中起重要作用。

A.形变孪晶的形成B.自扩散C.交滑移 9、金属的自扩散的激活能应等于。 A.空位的形成能与迁移激活能的总和B.空位的形成能C.空位的迁移能 10、位错线上的割阶一般通过形成 A.位错的交割B.交滑移C.孪生 一、名词解释 沉淀硬化、细晶强化、孪生、扭折、第一类残余应力、第二类残余应力、、回复、再结晶、多边形化、临界变形量、冷加工、热加工、动态回复、动态再结晶 沉淀硬化:在金属的过饱和固溶体中形成溶质原子偏聚区和由之脱出微粒弥散分布于基体中导致硬化。 细晶强化:通过细化晶粒而使金属材料力学性能提高的方法。 孪生:在切应力作用下,晶体的一部分沿一定晶面和晶向发生均匀切变并形成晶体取向的镜面对称关系。 扭折:在滑移受阻、孪生不利的条件下,晶体所做的不均匀塑性变形和适应外力作用,是位错汇集引起协调性的形变。 按残余应力作用范围不同,可分为宏观残余应力和微观残余应力等两大类,其中宏观残余应力称为第一类残余应力(由整个物体变形不均匀引起),微观残余应力称为第二类残余应力(由晶粒变形不均匀引起)。 储存能:在塑性变形中外力所作的功除大部分转化为热之外,由于金属内部的形变不均匀及点阵畸变,尚有一小部分以畸变能的形式储存在形变金属内部,这部分能量叫做储存能。回复:经冷塑性变形的金属加热时,尚未发生光学显微组织变化前(即再结晶之前)的微观结构变化过程。 再结晶:经冷变形的金属在一定温度下加热时,通过新的等轴晶粒形成并逐步取代变形晶粒的过程。 多边形化:指回复过程中油位错重新分布而形成确定的亚晶结构过程。 临界变形量:需要超过某个最小的形变量才能发生再结晶,这最少的形变量就称为临界变形量。 冷加工:在再结晶温度以下的加工过程;在没有回复和在接近的条件下进行的塑性变形加工。热加工:在再结晶温度以上的加工过程;在再结晶过程得到充分进行的条件下进行的塑性变形加工。 动态回复:热加工时由于温度很高,金属在变形的同时发生回复,同时发生加工硬化和软化两个相反的过程。这种在热变形时由于温度和外力联合作用下发生的回复过程 动态再结晶:是指金属在热变形过程中发生的再结晶现象。 二、问答题

钢结构焊接变形的火焰矫正施工方法

钢结构焊接变形的火焰矫正施工方法 发表时间:2009-04-08T14:16:57.280Z 来源:《科海故事博览•科教创新》2009年第3期供稿作者:庞博[导读] 阐述钢结构变形的主要种类,介绍焊接变形的火焰矫正施工方法。 摘要:根据多年经验,结合国内同行相关资料,阐述钢结构变形的主要种类,介绍焊接变形的火焰矫正施工方法。关键词:火焰矫正焊接变形施工方法目前,钢结构已在厂房建筑中得到广泛的应用。而钢结构厂房的主要构件是焊接H型钢柱、梁、撑。这些构件在制作过程中都存在焊接变形问题,如果焊接变形不予以矫正,则不仅影响结构整体安装,还会降低工程的安全可靠性。焊接钢结构产生的变形超过技术设计允许变形范围,应设法进行矫正,使其达到符合产品质量要求。实践证明,多数变形的构件是可以矫正的。矫正的方法都是设法造成新的变形来达到抵消已经发生的变形。在生产过程中普遍应用的矫正方法,主要有机械矫正、火焰矫正和综合矫正。但火焰矫正是一门较难操作的工作,方法掌握、温度控制不当还会造成构件新的更大变形。因此,火焰矫正要有丰富的实践经验。本文对钢结构焊接变形的种类、矫正方法作了一个粗略的分析。 一、钢结构焊接变形的种类与火焰矫正钢结构的主要构件是焊接H型钢柱、梁、撑。焊接变形经常采用以下三种火焰矫正方法:(1)线状加热法;(2)点状加热法;(3)三角形加热法。下面介绍解决不同部位的施工方法。以下为火焰矫正时的加热温度(材质为低碳钢)低温矫正 500度~600度冷却方式:水中温矫正 600度~700度冷却方式:空气和水高温矫正 700度~800度冷却方式:空气注意事项:火焰矫正时加热温度不宜过高,过高会引起金属变脆、影响冲击韧性。16Mn在高温矫正时不可用水冷却,包括厚度或淬硬倾向较大的钢材。 1. 翼缘板的角变形 矫正H型钢柱、梁、撑角变形。在翼缘板上面(对准焊缝外)纵向线状加热(加热温度控制在650度以下),注意加热范围不超过两焊脚所控制的范围,所以不用水冷却。线状加热时要注意:(1)不应在同一位置反复加热;(2)加热过程中不要进行浇水。这两点是火焰矫正一般原则。 2.柱、梁、撑的上拱与下挠及弯曲在翼缘板上,对着纵长焊缝,由中间向两端作线状加热,即可矫正弯曲变形。为避免产生弯曲和扭曲变形,两条加热带要同步进行。可采取低温矫正或中温矫正法。这种方法有利于减少焊接内应力,但这种方法在纵向收缩的同时有较大的横向收缩,较难掌握。翼缘板上作线状加热,在腹板上作三角形加热。用这种方法矫正柱、梁、撑的弯曲变形,效果显著,横向线状加热宽度一般取20—90mm,板厚小时,加热宽度要窄一些,加热过程应由宽度中间向两边扩展。线状加热最好由两人同时操作进行,再分别加热三角形三角形的宽度不应超过板厚的2倍,三角形的底与对应的翼板上线状加热宽度相等。加热三角形从顶部开始,然后从中心向两侧扩展,一层层加热直到三角形的底为止。加热腹板时温度不能太高,否则造成凹陷变形,很难修复。注:以上三角形加热方法同样适用于构件的旁弯矫正。加热时应采用中温矫正,浇水要少。3.柱、梁、撑腹板的波浪变形矫正波浪变形首先要找出凸起的波峰,用圆点加热法配合手锤矫正。加热圆点的直径一般为50~90mm,当钢板厚度或波浪形面积较大时直径也应放大,可按d=(4δ+10)mm(d为加热点直径;δ为板厚)计算得出值加热。烤嘴从波峰起作螺旋形移动,采用中温矫正。当温度达到600~700度时,将手锤放在加热区边缘处,再用大锤击手锤,使加热区金属受挤压,冷却收缩后被拉平。矫正时应避免产生过大的收缩应力。矫完一个圆点后再进行加热第二个波峰点,方法同上。为加快冷却速度,可对Q235钢材进行加水冷却。这种矫正方法属于点状加热法,加热点的分布可呈梅花形或链式密点形。注意温度不要超过750度。 二、结语 火焰矫正引起的应力与焊接内应力一样都是内应力。不恰当的矫正产生的内应力与焊接内应力和负载应力迭加,会使柱、梁、撑的纵应力超过允许应力,从而导致承载安全系数的降低。因此在钢结构制造中一定要慎重,尽量采用合理的工艺措施以减少变形,矫正时尽量可能采用机械矫正。当不得不采用火焰矫正时应注意以下几点:1.烤火位置不得在主梁最大应力截面附近;2.矫正处烤火面积在一个截面上不得过大,要多选几个截面;3.宜用点状加热方式,以改善加热区的应力状态;4.加热温度最好不超过700度。

金属的塑性变形与再结晶-材料科学基础学习知识-实验-06

实验六金属的塑性变形与再结晶 (Plastic Deformation and Recrystallization of Metals)实验学时:2 实验类型:综合 前修课程名称:《材料科学导论》 适用专业:材料科学与工程 一、实验目的 1.观察显微镜下变形孪晶与退火孪晶的特征; 2.了解金属经冷加工变形后显微组织及机械性能的变化; 3.讨论冷加工变形度对再结晶后晶粒大小的影响。 二、概述 1.显微镜下的滑移线与变形孪晶 金属受力超过弹性极限后,在金属中将产生塑性变形。金属单晶体变形机理指出,塑性变形的基本方式为:滑移和孪晶两种。 所谓滑移,是晶体在切应力作用下借助于金属薄层沿滑移面相对移动(实质为位错沿滑移面运动)的结果。滑移后在滑移面两侧的晶体位向保持不变。 把抛光的纯铝试样拉伸,试样表面会有变形台阶出现,一组细小的台阶在显微镜下只能观察到一条黑线,即称为滑移带。变形后的显微组织是由许多滑移带(平行的黑线)所组成。

在显微镜下能清楚地看到多晶体变形的特点:① 各晶粒内滑移带的方向不同(因晶粒方位各不相同);② 各晶粒之间形变程度不均匀,有的晶粒内滑移带多(即变形量大),有的晶粒内滑移带少(即变形量小);③ 在同一晶粒内,晶粒中心与晶粒边界变形量也不相同,晶粒中心滑移带密,而边界滑移带稀,并可发现在一些变形量大的晶粒内,滑移沿几个系统进行,经常看见双滑移现象(在面心立方晶格情况下很易发现),即两组平行的黑线在晶粒内部交错起来,将晶粒分成许多小块。(注:此类样品制备困难,需要先将样品进行抛光,再进行拉伸,拉伸后立即直接在显微镜下观察;若此时再进行样品的磨光、抛光,滑移带将消失,观察不到。原因是:滑移带是位错滑移现象在金属表面造成的不平整台阶,不是材料内部晶体结构的变化,样品制备过程会造成滑移带的消失。) 另一种变形的方式为孪晶。不易产生滑移的金属,如六方晶系的镉、镁、铍、锌等,或某些金属当其滑移发生困难的时候,在切应力的作用下将发生的另一形式的变形,即晶体的一部分以一定的晶面(孪晶面或双晶面)为对称面,与晶体的另一部分发生对称移动,这种变形方式称为孪晶或双晶。 孪晶的结果是:孪晶面两侧晶体的位向发生变化,呈镜面对称。所以孪晶变形后,由于对光的反射能力不同,在显微镜下能看到较宽的变形痕迹——孪晶带或双晶带。在密排六方结构的锌中,由于其滑移系少,则易以孪晶方式变形,在显微镜下看到变形孪晶呈发亮的竹叶状特征。(注:孪晶是材料内部晶体结构上的变化,样品制备过程不会造成孪晶的消失。) 对体心立方结构的Fe -α,在常温时变形以滑移方式进行;而在0℃以下受冲击载荷时,则以孪晶方式变形;而面心立方结构大多是以滑移方式变形的。 2.变形程度对金属组织和性能的影响

钢结构工程焊接技术重点、难点及控制措施_secret

钢结构工程焊接技术重点、难点及控制措施本文针对钢结构工程焊接技术的重点和难点,按多年来的工程实践经验主要阐述十种实用焊接变形的控制措施和方法;焊接残余应力的控制措施;焊接裂纹的防治措施;焊接工艺评定的范围;焊缝质量检查;框架结构制作与安装焊接;安装焊接工艺;钢结构变形的预防等。 1、概述 钢结构焊接时,焊接热源对结构不均匀加热引起的结构形状和尺寸的变化,称为焊接变形。在变形的同时,结构内部还产生应力、应变,因为这时结构并未承受外载时,就存在这些应力,所以这些应力居于内应力范畴,称为焊接残余力。属于不均匀分布的自平衡内应力。 焊接变形及应力在焊接过程中往往是难以避免的。它们将影响到焊接结构尺寸精度和焊接接头的强度,轻者需耗费不少人力、物力去矫正、修理,严重的会使构件报废。此外,焊接变形和应力对焊接结构以后使用是的承载能力也产生不可低估的影响。焊接残余应力和焊接变形是能量存在同一构件的不同形式,服从于能量存在同一构件的不同形式,服从于能量守恒定律;它们相辅相成,并互相转化。减少一方必须增大一方: 设:焊缝的总能量为E总,E总=E有+E损+ρ残+ε=1 (1) (1)式中,E有—冶金反应时的有用能;E损---无用能,损耗能;ρ残--焊接残余应力;ε-焊接变形,当焊接完成后,构件中只存在两种能量形式; E残+ε=c<1 (2) c---常量 于是(2)式有了工程应用的价值,这就是我们在工程实际中控制焊接残余应力和焊接变形的基本观点。我们从事钢结构设计、制作安装的技术人员必须了解和掌握焊接变形及应力产生的原因及其基本规律、影响因素,以便在制作安装过程中能够控制焊接变形和应力。 2、焊接应变与变形的控制 2.1焊接变形的控制 (1)尽量减少焊缝的截面积,施焊量以满足连接需要即可,俗话说:“不过焊”,(对一般的角焊缝)是按照有效焊角尺寸来决定其焊缝强度的,所以对于凸出很高的焊缝,多出的焊缝金属,按规范作用并不能提高其许可强度,反而增大了应力集中系数,消弱了坡口的综合性能。对厚板,对接焊缝,可采用U型刨边形成U型坡口,可进一步减少焊缝金属量。 (2)焊缝的数量愈少愈好,每条焊缝尽量采用多层多道焊,厚板焊接特别要注意。 (3)焊缝尽可能称、布置要靠近中和轴施焊(由于收缩力引起钢板变形力臂小),因此减少变形。 (4)环绕中和轴的焊缝要平衡:应用对称施焊的原则,时一个收缩力对另一个收缩力相互平

金属的塑性变形与再结晶

实验名称:金属的塑性变形与再结晶实验类型: 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、实验步骤与实验结果(必填) 五、讨论、心得(必填) 一、实验目的 1.了解冷塑性变形对金属材料的内部组织与性能的影响; 2.了解变形度对金属再结晶退火后晶粒大小的影响。 二、实验原理 金属塑性变形的基本方式有滑移和孪生两种。在切应力作用下,晶体的一部分沿某一晶面相对于另一部分滑动,这种变形方式称为滑移;在切应力作用下,晶体的一部分沿某一晶面相对另一部分产生剪切变形,且变形部分与未变形部分的位向形成了镜面对称关系,这种变形方式称为孪生。 (一) 冷塑性变形对金属组织与性能的影响 若金属在再结晶温度以下进行塑性变形,称为冷塑性变形。冷塑性变形不仅改变了金属材料的形状与尺寸,而且还将引起金属组织与性能的变化。金属在发生塑性变形时,随着外形的变化,其内部晶粒形状由原来的等轴晶粒逐渐变为沿变形方向伸长的晶粒,在晶粒内部也出现了滑移带或孪晶带。当变形程度很大时,晶粒被显著地拉成纤维状,这种组织称为冷加工纤维组织。同时,随着变形程度的加剧,原来位向不同的各个晶粒会逐渐取得近于一致的位向,而形成了形变织构,使金属材料的性能呈现出明显的各向异性。金属经冷塑性变形后,会使其强度、硬度提高,而塑性、韧性下降,这种现象称为加工硬化。 (二) 冷塑性变形后金属在加热时组织与性能的变化 金属经冷塑性变形后,由于其内部亚结构细化、晶格畸变等原因,处于不稳定状态,具有自发地恢复到稳定状态的趋势。但在室温下,由于原子活动能力不足,恢复过程不易进行。若对其加热,因原子活动能力增强,就会使组织与性能发生一系列的变化。 1.回复当加热温度较低时,原子活动能力尚低,故冷变形金属的显微组织无明显变化,仍保持着纤组织的特征。此时,因晶格畸变已减轻,使残余应力显著下降。但造成加工硬化的主要原因未消除,故其机械性能变化不大。 2.再结晶当加热温度较高时,将首先在变形晶粒的晶界或滑移带、孪晶带等晶格畸变严重的地带,通过晶核与长大方式进行再结晶。冷变形金属在再结晶后获得了新的等轴晶粒,因而消除了冷加工纤维组织、加工硬化和残余应力,使金属又重新恢复到冷塑性变形前的状态。 金属的再结晶过程是在一定温度范围内进行的。通常把变形程度在70%以上的冷变形金属经1h加热能完全再结晶的最低温度,定为再结晶渡。实验证明,金属的熔点愈高,在其他条件相同时,其再结晶温度也愈高。金属的再结晶温度(T再)与其熔点(T熔)间的关系,大致可用下式表示: T再≈0.4 T熔 3.晶粒长大冷变形金属再结晶后,一般都得到细小均匀的等轴晶粒。但继续升高加热温度或延长保温时间,再结晶后的晶粒又会逐渐长大,使晶粒粗化。 (三) 变形程度对金属再结晶后晶粒度的影响 冷变形金属再结晶后晶粒度除与加热温度、保温时间有关外,还与金属的预先变形程度有关。金属再结晶后的晶粒度与其预先变形程度间的关系如下图所示:

钢结构焊接问题整改方案

钢结构焊接 整 改 方 案

目录 一、加强钢结构厂家的管理 二、现场问题的整改 三、预防措施 四、安全及文明施工注意事项

根据现场钢结构实际情况,加强对钢结构厂家的管理工作。对厂家的材料进行验收及加强对管理人员的技术交底工作。现场质量主要是通过其焊接质量来体现的,因而焊接是钢结构现场组焊极其重要的关键环节。施工中必须认真对待,确保焊缝质量。对此,我司做出如下管理措施: 一、加强钢结构厂家的管理 (一)熟悉安装施工图,做好技术交底工作: 1、钢结构技术人员应熟悉图纸,掌握图纸设计意图及要求。 2、技术人员通过技术交底工作,使施工人员了解钢柱、钢梁、预埋件等制作工艺及规范,掌握选用的焊接工艺、焊接材料、质量标准和施工工艺要点。 (二)开工前的安全技术培训: 1、技术人员应通过技术交底进行员工培训。 2、施工人员应学习有关焊接的工艺要求。 (三)焊接材料: 1、选用标准的国家名牌焊材厂家进货,并按批号所取合格证书。 2、进厂材料应按批号建立入库台账。 3、电焊条、焊丝所选用的型号必须符合设计及规范要求,并有出厂合格证。如需改动焊条型号,必须征得设计部门的同意。 (四)焊接作业条件: 1、焊接前采取适当的反变形措施,以降低焊接变形量。 2、按图纸要求加工坡口。 拼接采用“X”形坡口,四面采用“K”形坡口。 3、焊缝点固:按照每间隔400mm焊接50mm进行点固。

4、为减小整体变形和便于吊装组合,在组合时按图纸要求用加筋板进行加强处理。 5、焊接:每层或每道焊缝焊接完毕后,应采用砂轮或钢丝刷将焊渣、飞溅等杂物清理干净(应注意中间接头或坡口边缘),仔细检查根部的焊接质量,如发现表面缺陷应立即用机械加工发进行清除、补焊。每一层经100%自检合格后方可进行下一步工序,直至焊接完毕。 6、要求焊缝接头圆滑、均匀、无裂纹、咬边、夹渣和气孔现象。 7、焊接完毕,应将四周飞溅清理干净,并检查外观。 8、焊工应经过考试并取得合格证后方可上岗,如停焊超过半年以上,应重新考核。 (五)焊接操作工艺 1、严格执行钢结构焊接规范,以满足设计图纸要求。 2、焊条使用前,必须按照质量证明书的规定进行烘焙,低氢型焊条经过烘焙后,应放在保温箱内随用随取。 3、首次使用的钢材种类和焊接材料,必须进行焊接工艺性能和物理性能试验,符合要求后方可使用。 4、普通碳素结构钢厚度大于34mm和低合金结构钢厚度大于或等于30mm,应进行预热,其焊接预热温度宜控制在100~150℃。预热后区域在焊接坡口两侧各80~100mm范围内。 5、多层焊接应连续施焊,其中每一层焊道焊完后应及时清理,如发现有影响焊接质量的缺陷,必须清除后再焊。 6、要求焊成凹面的贴角焊缝,可采用船位焊接使焊缝金属与母材平缓过渡。

第六章材料的塑性变形与再结晶

何谓滑移和孪生 滑移:晶体的一部分相对于另一部分沿某些晶面和晶向发生滑动 孪生:晶体的一部分相对于另一部分沿某些晶面和晶向作均匀切变 指出三种典型结构金属晶体的滑移面和滑移方向 1. 面心立方金属:密排面{}111密排晶向1101234=?个滑移系,塑性较好 2. 体心立方金属:密排面{}110密排晶向1111226=?个滑移系,塑性较好 3. 密排六方金属:室温时{}0001密排晶向2011331=?塑性较差 并比较其滑移难易程度 1. 当其他条件相同时,金属晶体中的滑移系越多,则滑移时可供采用的空间位 向也多,塑性也越好 2. 面心立方晶格的金属晶体的滑移系为12个,密排立方结构的金属晶体的滑移 系为3个()2011,0001,所以面心立方晶格的金属晶体更易发生滑移 3. 从此可以看出,面心立方和体心立方金属的塑性较好,而密排六方金属的塑 性较差 4. 金属塑性的好坏,不只是取决于滑移系的多少,还与滑移面上原子的密排程 度和滑移方向的数目有关 5. 例如Fe -α,它的滑移方向不及面心立方金属多,其滑移面上原子密排程度 也比面心立方金属低,因此它的滑移面间距较小,原子间结合力较大,必须在较大的应力作用下才开始滑移,所以它的塑性要比铜铝金银等面心立方金属差些 为何晶体的滑移通常沿着其最密晶面和最密晶向进行

1.在晶体原子密度最大的晶面上,原子间的结合力最强,而面与面之间的距离 却最大,即密排面之间的原子间结合力最小,滑移阻力最小,最易于滑移2.沿最密晶向滑移的步长最小,这种滑移所需要的切应力最小 何谓加工硬化 金属材料在再结晶温度以下塑性变形时强度和硬度升高,而塑性和韧性降低的现象 运用位错理论说明细化晶粒可以提高材料强度的原因 通常金属是由许多晶粒组成的多晶体,晶粒的大小可以用单位体积内晶粒的数目来表示,数目越多,晶粒越细。实验表明,在常温下的细晶粒金属比粗晶粒金属有更高的强度、硬度、塑性和韧性。这是因为细晶粒受到外力发生塑性变形可分散在更多的晶粒内进行,塑性变形较均匀,应力集中较小;此外,晶粒越细,晶界面积越大,晶界越曲折,越不利于裂纹的扩展。故工业上将通过细化晶粒以提高材料强度的方法称为细晶强化 运用位错理论说明细化晶粒可以提高材料强度的原因 来自69页北京工业大学2009细晶强化的位错理论 1.金属多晶体材料塑性变形时,粗大晶粒的晶界处塞积的位错数目多,形成较 大的应力场,能够使相邻晶粒内的位错源启动,使变形继续 2.相反,细小晶粒的晶界处塞积的位错数目少,要使变形继续,必须施加更大 的外加作用力以激活相邻晶粒内的位错源 3.因此,细晶材料要发生塑性变形需要更大外部作用力,即晶粒越细小晶体强 度越高 单相固溶体合金的强度均高于纯溶剂组元的强度,试用位错理论分析之

建筑工程钢结构焊接变形的控制措施

建筑工程钢结构焊接变形的控制措施 摘要:在焊接结构施工的过程中,焊接变形是经常出现的,如果在这一过程中,我们不能对钢结构变形予以全面的控制,就会对整个建筑工程的钢结构焊接变形 控制产生十分不利的影响,因此,我们必须要采取有效的措施对其加以控制和完善。本文主要分析了建筑工程钢结构焊接变形的控制措施,以供参考和借鉴。 关键词:钢结构;焊接;变形;控制 当前我国建筑行业发展水平有了十分显著的提升,越来越多的人开始将目光转向钢结构,因为钢结构在应用的过程中其质量小,强度相对较高。安装方面存在着非常强的便利性,施 工的方法相对比较简单,所以在工程建设的过程中,其也逐渐的取代了其他的连接方式,但 是其也同样存在不足。 1、建筑钢结构概论 当前,我国钢铁工业的发展速度和发展水平在不断的提升,建筑钢结构在不应用的过程 中显示出了非常明显的优势,所以在工程建设的过程中也得到了非常广泛的应用,所以,走 不同形式的焊接设备和焊接的方法也在这一过程中有了非常大的发展,在工程建设的过程中,怎样不断的提高当前现有的焊接技术也成为了人们非常关心和关注的一个问题。在建筑结构 高度发展的当今社会,焊接变形问题也越来越严重,对钢结构的尺寸以及美观性都产生了较 大的影响,同时还给日后的焊接工作带来了很多麻烦,需要进行非常多的校正工作。而当构 件出现了严重变形情况的时候,我们还需要将构件直接报废。所以我们需要对焊接变形当中 各方面的因素予以全面的分析,采取有效的措施对其加以控制,这样才能更好的保证结构的 质量和生产的效率。 2、建筑钢结构焊接变形的形式就变形因素 首先,焊接残余变形如果按照其对于结构的影响程度去划分,我们可以将其分成整体变 形和局部变形,按照其自身的特征,我们可以将其分成收缩变形、较变形、弯曲变形、波浪 变形和女扭曲变形等等,在这些焊接残余变形当中,角变形和波浪变形属于是局部变形,其 他的变形属于是整体变形,而建筑钢结构大多数产生的是整体焊接变形问题。 其次是在建筑钢结构路焊接施工的过程中,只有对影响环节变形会产生影响的各种因素 进行全面的分析,掌握其内在的规律,只有这样,才能更好的保证建筑钢结构自身的质量。 在建筑钢结构施工的过程中,影响焊接变形的因素主要有钢结构组成基本构建一定要全 面的满足该构件的技术要求,但是在实际的施工中,一些构件并没有达到其具体的要求,这 样也就使得构件在焊接的过程中没有出现非常严重的超差现象。其次,钢结构各个构件整体 组装研配控制的质量把控并不是十分的严格,比如说出现了严重的空隙,焊接的过程中比较 容易出现变形现象等等。再次是焊缝如果沿着构件截面分布产生了不对称的现象,就会使得 这种结构构件在焊接的过程中会出现非常严重的弯曲变形问题。最后是在组装焊接施工的过 程中,焊缝坡口的形式和焊接次序、方法等选择都不是十分的恰当,钢结构的热性,物理性 质等都存在着非常大的差异,这样也就会出现较为严重的焊接变形问题。 3、建筑钢结构焊接变形控制措施 3.1在建筑钢结构焊接节点构造设计时,应注意以下几点:①焊缝位置应避开高应力区:焊缝区的应力越大,则钢结构越容易产生焊接变形及焊缝裂纹。②焊缝位置应对称于构件截 面的中性轴:焊缝位置尽可能对称于构件截面的中性轴,或者尽量靠近中性轴,这对减少梁、柱等一类钢结构的挠曲变形有良好的效果。③尽量减少焊缝的数量、尺寸:钢结构中焊缝数 量越多、尺寸越大,焊接热源对结构的热输入就越大,产生的焊接变形也就越大。因此在设 计钢结构节点构造时,应力求减少焊缝数量和尺寸。④采用刚性较小的节点形式,避免焊缝 集中和双向、三向相交:这样可减小焊缝交叉点处或焊缝集中处的热量及应力,从而减小焊 接变形。⑤便于焊接操作,避免在仰焊位置施焊:在建筑钢结构加工制作时,应尽量避免将 焊缝置于仰焊位置施焊,以利于操作和保证焊接质量。无法避免时,应要求焊工掌握全位置 焊接的操作技能。⑥不同的建筑钢结构节点形式,对焊缝设置:应有不同的要求。例如,焊 接组合箱形梁、柱的纵向角焊缝,宜采用全焊透(应采用垫板单面焊)或部分焊透的对接与

相关主题