搜档网
当前位置:搜档网 › 有关传声器位置的几个问题

有关传声器位置的几个问题

有关传声器位置的几个问题
有关传声器位置的几个问题

有关传声器位置的几个问题

【摘要】:要做到在任何场合下使拾取的声音达到令人满意的效果并不容易,这与传声器的位置有着密切的关系。

【关键词】:传声器;声源;高度;传声器的指向角度

传声器在使用的过程中,面对各种声源,它的位置也各不相同,这是由声源的多样性和声场环境的复杂性所决定的。下面根据个人的经验谈谈关于传声器位置的三个重要因素。

一、声源的距离因素

传声器拾音距离的选择,主要是从音乐风格的角度上来考虑的。通常情况下,采用同期录音的乐队或乐器组需要进行远距离拾音,而流行音乐则以近距离拾音为主。当传声器在较远的距离拾音时:

1)直达声/混响声的比例将有所下降,从而加强了声音的空间感和距离感;

2)有更多的高频能量被空气吸收,声音更趋于平衡,接近听众正常听音时的效果;

3)避免了过多的机械噪声;

4)需要有良好的厅堂声学特性以避免发生声染色的现象。

当传声器在较近的距离拾音时:

1)拾取的声音基本上没有空间感,感觉声音距离听音人很近;

2)有较好的高频响应,声音瞬态、冲击感强,较为明亮、清晰,但是如果传声器设置不当,则很容易使声音尖锐、刺耳;

3)传声器的有效拾音范围比较小,尤其是乐器的尺寸比较大时,不容易拾取到乐器的”全貌”,造成音色上的不平衡;容易拾取到更多的机械噪声;

4)多传声器拾音时,容易出现声相位问题;采用指向性传声器时,有低频近讲效应。

声源有单一声源和综合声源之分,在录音之前,首先要根据声源环境选用传声器,由于各种传声器的指向性和灵敏度有较大的差异,所以应视声源的响度以及是单一声源还是综合声源而定。

指向性传声器应用参考以及区别

指向性传声器 一、 内部电路图: 单指向性MIC 的内部电路与通常的MIC 的内部电路是完全相同的: Term.1 Mic Case Term.2 IC 33 pF 10 pF C1C2GND 2 C=10μF R L =2.2K 1 3.0V Vs +OUTPUT 由于内部采用的是IC ,因此其偏值电压为3.0V , 二、 内部结构图: 2 电 容 F E T P C B 三、关于指向性 一)指向性定义 传声器的指向性又称方向性,是指传声器对不同角度入射的声波的响应,当声波从不同角度入射到传声器振膜时,振膜所受的作用力不同,因此相应的输出也不同,这种因为入射声波的入射角不同而使传声器灵敏度产生变化的特

性,称为传声器指向性。 二)全指向MIC: 全指向传声器只从外壳底部的声孔接收声音,对来自四面八方的入射声波都灵敏,具有大体相同的灵敏度,极坐标图为“○”型,主要应用于手机、PDA、电脑、免提耳机和一般的头戴耳机, 三)单指向性MIC 1.概念及工作原理: 单指向性MIC 根据其工作原理又称为压强压差复合式,在工作时必须保证其0度与180度方向上同时接收声波,即除在MIC的外壳底部有声孔外,在其PCB上也有声孔,在接收声波时,0度与180度方向上同时接收声波,0度方向上的声波可以直接到达振膜,但是,由于在MIC内部存在的阻尼具有延迟声波的作用,180度方向上的声波相对于0度的声波到达振膜就会存在一个时间差,当这个时间差与声波以0度角到达振膜的时间相同,则会出现180度的入射声波被抵消掉,其极坐

标图如下: 2.单指向MIC在手机中应用: 目前,在一些带有摄像功能的手机中开始采用单指向MIC用在摄像时的录音,由于单指向MIC具有极强的方向性,因此在使用时可以有效地降低甚至屏蔽掉目标方向以外的噪音,达到良好的录音效果,单指向MIC在使用时应该注意,因为根据其工作原理,单指向MIC必须保证其0度与180度方向上同时接收声波形成一定的压强与压差才能工作,所以手机设计时必须保证MIC两端都留有声孔,如下示意图: 摄像头

录音技术基础知识

录音技术基础知识基本录音/多轨录音 无论是盒式磁带录音机、数码多轨录音机、硬盘录音机,还是其它录音媒体,其录音过程大致相同,目的都是将声音获取到缩混带上。 做此工作,录音工程师采用两个步骤: 1、多轨录音——各种乐器和人声的录音与叠加录音的过程,每种录音都有各 自的“音轨”。 2、多轨缩混——将这些多轨内容同步录在一组立体声轨上(“母带录音”),可 以用某种播放系统如CD播放机或磁带卡座等进行再制作。 录音基础/多轨录音 多轨录音指多种乐器或人声的互相“叠加”,以便在播放任意一种音色时,同时听到其它的音色。有的录音设备具备将不同乐器录在每个“轨”上的能力。多轨录音好比将16个盒带录音机的磁带并列在一起。就成为16轨磁带(实际32轨,因为盒式磁带是立体声,有两个轨),从而具备了每轨录制不同乐器的潜力。 换言之,假如您为一个鼓手、一个贝司和一个伴奏吉他手弹奏的曲子录音,用一台多轨录音机将每种乐器录在各自轨上。由于是一起演奏的曲子,音符要互相合拍,播放时,听起来仍好象几个乐手在一起演奏一般。如果您要在歌曲中加入一个主音吉他,既然每个乐器都录在各自音频上,就要先播放前三个轨,使吉他手在第四轨上录制主音吉他时,能与其它乐器“合拍”。这个过程就叫叠加。 按传统方式,录音师要先录制“节奏轨”,包括:鼓、贝司、伴奏吉他、键盘以及一个将被替换的主音人声,所有都录在一起。下一步,录音师开始做叠加,加入其它节奏,主声部,背景人声,所有其它乐器,最后录制主音人声。而现代

录音方式通常是一次制作一个轨,按排序的乐器、鼓的循环,或者人声开始录音。 关键点是最终你的乐器必须被同时录制在一起。一旦完成后,混音过程才能开始。 录音基础/多轨缩混 缩混的目的是将你所录制的轨道缩到两个轨道(立体声)上或一个轨(单声)上。这样就可以在传统的播放系统如卡带或CD播放机上今昔播放了。 按传统方法,多轨录音机连在多通道的调音台上,这样每一个轨在调音面板上都可以被单独进行处理了。换句话说,多轨录音机的每一个输出都连接到调音台的每一个输入通道上,从那里再进行合并,成为单一的立体声输出。这个立体声的输出可以连接到母带处理机上录制立体声信号。 在合并许多通道到两个通道时,调音台还处理其它一些重要工作,如: -调节乐器的频率内容,一般称为EQ。 -给乐器增加效果,如混响,回声或合唱。 -调节每一轨的音量,保证不会有单独的乐器音量太过于大或者小。 如今,多轨录音机,多通道调调音台,均衡和效果器上的所有功能都可以集中在一个装置上。而且还可以用光盘刻录机、数码录音机或硬盘作为母带处理机。当然重要的是您的曲子中的所有的乐器都被录音、加工、缩混最后成为一种媒介而被大众听到。 一般连接端子 输入端子 在开始录音之前,你需要将乐器或者是话筒连接到录音机或调音台的输入部分。可能你会注意到有一些不同的连接类型,如:RCA型(在家用的立体声设备上也可

麦克风阵列模组设计方案

麦克风阵列模组设计方案 一、麦克风阵列基本原理 二、麦克风阵列的应用 三、麦克风阵列模组的设计 一、麦克风阵列基本原理 阵列(Array): 数学定义--有限个相同资料形态之元素组成之集合 麦克风阵列是指按一定距离排列放置的一组麦克风,通过声波抵达阵列中每个麦克风之间的微小时差的相互作用,麦克风阵列可以得到比单个的麦克风更好地指向性。在麦克风阵列的设计中首要的改进是引入了波束成形、阵列指向性与波束宽度的概念。 波束的形成 通过对所有麦克风信号的综合处理,麦克风阵列可以组合成为所要求的强指向性麦克风,形成被称为“波束”的指向特性。麦克风阵列的波束可以经由特殊电路或程序算法软件控制使其指向声源方向而加强音频采集效果。 阵列算法处理后的指向性波束形成技术能精确的形成一个锥状窄波束,只接受说话人的声音同时抑制环境中的噪音与干扰。

图一使用单麦克风与采用波束形成技术麦克风阵列接收讲话者声音效果的对比

阵列指向性 由于麦克风阵列的输出信号中包含比单只麦克风更低的噪声和回声成份, 。麦克风阵列在1000Hz的典型指所以其固有噪声抑制能力要远高于单只麦克风 所以其固有噪声抑制能力要远高于单只麦克风。 向性波束图型如图二所示。其指向性图形要远好于任一款价格昂贵的高性能超心形麦克风。 图二麦克风阵列在1000Hz的典型指向性波束图型

指向性指数 另一个表证波束的参数是指向性指数。 波束轴线))检测到指向性指数D表征的是麦克风阵列主响应轴(波束轴线 的声源信号与需要屏蔽的各种噪声与回声信号的比值

二麦克风阵列的应用 正确的麦克风阵列几何排列(数量,类型及麦克风的位置)关系到最后的声学效果。为了保证成功的设计和用户满意度,双元件麦克风阵列适用于在较安静的办公场所及室内的条件使用。这种阵列形成的是水平方向压缩后的较窄波束,使用时应将两个麦克风连线中点指向讲话者。其几何排布如图三、图四所示 图三小型双麦克风阵列图四大型双麦克风阵列 四元件麦克风阵列适用于在一般的办公场或较嘈杂的环境使用,当讲话者到麦克风的距离达到3-5M距离时,仍有很好的录音效果,见图五、图六 图五4麦克风阵列图六L-形状的4麦克风阵列

演出中话筒的选择和使用技巧资料

演出中话筒的选择和 使用技巧

演出中话筒的选择和使用技巧 为了使演出中各种不同种类的乐器及各种不同风格的演唱都能取得最佳音色的演唱效果,就需要选择最适合演出风格的话筒来进行拾音。 1话筒在音响系统中的重要性 话筒是将音源的声波转换成电能(音频电压)的换能器,为电声系统提供初始的音频信号。如果在拾音的过程中,由于话筒的技术原因使音源中的频率有所丢失或失真,后面的各级设备放大处理后通过音箱播放出的声音也是一个被放大的频率缺失和失真的声音。故话筒是音响系统中极为关键的一个环节。 2话筒的分类及其应用范围 话筒的种类繁多,这是因为舞台上有不同风格的演出。如交响乐、民族音乐、通俗音乐、摇滚音乐,其乐队由弦乐器、木管乐器、铜管乐器、打击乐器等不同乐器组成;声乐中有美声风格、民族风格、通俗歌曲、摇滚歌曲等,其风格不同,演唱特点不同,音质也不同。所以要想使用一种话筒就把世界上的各种不同音源的最佳音色、最佳音质状态拾取进来是不可能的,音响工程师们就设计并制造出了各种不同结构的话筒,用来匹配各种不同音源。常用的可分为如下几种。 1) 动圈式话筒 动圈式话筒适用于语音、通俗歌曲演唱以及强声级的乐器拾音。 2) 电容式话筒

电容式话筒灵敏度高、频率响应范围宽、失真度小、噪声低,适用于美声歌曲演唱和弦乐器的拾音。 3) 强指向性话筒 由于强指向性话筒对音源的方向有选择性,因此多用于歌剧、话剧、戏曲舞台台口的拾音和新闻采访。 4) 压力区话筒(PZM话筒) 这种话筒是由一个话筒极头安置在一个反射区域内,所有的声波都要经过反射面的反射进入话筒的极头,所以也称之为反射型话筒。由于各种声波几乎是同时进入话筒的极头,所以就消除了由于多个音源而造成疏状波形的失真。 压力区话筒(PZM话筒)适用于歌舞晚会舞台台口拾音和某些乐器,如钢琴、大提琴的拾音和集合采访录音。 5) 驻极体话筒 驻极体话筒因其高频特性好,适用于某些中高音乐器拾音,如长笛、双簧管、萨克斯管、吊镲等以及语音的拾音使用。 6) 无线话筒 无线话筒的极头有三种模式,其应用范围与有线话筒相似。 (1) 动圈式话筒适用于主持人、流行歌曲和摇滚歌曲的演唱,以及大型文艺演出活动。 (2) 领夹式无线话筒适用于歌剧、话剧、戏曲艺术舞台的主要演员使用,也可以应用在小品艺术节目中。

(整理)常见传声器的结构及工作原理

常见传声器的结构及工作原理 传声器又称话筒,它是将声音信号转换为电信号的电声器件。传声器的种类很多,若按换能原理分有电容式、压电式、驻极体电容式、电动动圈式、带式电动式以及碳粒式等,现在应用最广的是电动动圈式和驻极体电容式两大类。 1.动圈式传声器 动圈式传声器又叫电动式传声器,它在结构上与电动式扬声器相似,也是由磁铁、音圈以及音膜等组成的,如图12-11 所示。 动圈式传声器的音圈处在磁铁的磁场中,当声波作用在音膜使其产生振动时,音膜便带动音圈相应振动,使音圈切割磁力线而产生感应电压,从而完成声一电转换。由于音圈的阻数很少.它的阻抗很低,阻抗匹配变压器的作用就是用来改变传声器的阻抗,以便与放大器的输入阻抗相匹配。动圈式传声器的输出阻抗分高阻和低阻两种,高阻抗的输出阻抗一般为1000 - 2000Ω,低阻抗的输出阻抗为200 - 600Ω。动圈式传声器的频率响应一般为200 5000Hz,质量高的可达30 - 18000Hz。动圈式传声器具有坚固耐用、工作稳定等特点,具有单向指向性,价格低廉,适用于语言、音乐扩音和录音。 2. 电容式传声器 电容式传声器是一种利用电容量变化而引起声电转换作用的传声器,它的结构如图12-12所示,它是由一个振动膜片和固定电极组成的一个间距很小的可变电容器。当膜片在声波作用下产生振动时,振动膜片与固定电极间的距离便发生变化,引起电容量的变化。如果在电容器的两端有一个负载电阻R 及直流极化电压E. 则电容量随声波变化时,在R 的两端就会产生交变的音频电压。电容式传声器的输出阻抗呈容性,因电容量小,但低频时容抗会很大。为保证低频的灵敏度,应有一个输入阻抗大于或等于传声器输出阻抗的阻抗变换器与其相连,经阻抗变换后,再用传输线与放大器相连。这个阻抗变换器一般采用场效应管。电容式传声器灵敏度高,输出功率大,结构简单,音质较好,但要使用电源,并不太方便,因此多用于剧场及要求较高的语言及音乐播送场合。 3. 驻极体传声器 驻极体传声器由声电转换和阻抗转换两部分组成,如图12-13 所示。声电转换部分的关键元件是驻极体振动膜,它是一个极静的塑料膜片,在它上面蒸发一层纯金薄膜,然后经高压电场驻极后,两面分别驻有异性电荷。膜片的蒸金面向外与金属外壳相连通,膜片的另一面用薄的绝缘垫圈隔开,这样蒸金膜面与金属极板之间就形成了一个电容器。阻抗转换部分由场效应管担任,它的主要作用就是把几十兆欧的

线性麦克风阵列定向性能的研究

线性麦克风阵列定向性能的研究? 段进伟, 史元春, 陈孝杰 (清华大学计算机科学与技术系,北京市海淀区, 100084) Study on the Directing Performance of the Linear Microphone Array Duan Jin-wei, Shi Yuan-chun, Chen Xiao-jie (Department of Computer Science and Technology, Tsinghua University, Beijing, 100084, China) + Corresponding author: Phn: +86-010-********-805, E-mail: saundradjw945@https://www.sodocs.net/doc/b12992165.html, Received 2007-07-31; Accepted 2007-08-31 Abstract: Speech source localization technology, using microphone array, plays an important role in the area of human-computer interaction, especially that in smart space. The information of source position provided by the microphone array can be used in many place, such as dynamically adjust the parameters of the array in order to acquire high-quality speech audio, etc. Therefore, speech source localization has become a hot topic in both research and application areas. The objective of this paper is to analyze the affection on the symmetrical linear microphone array directing performance caused by the changes of microphone numbers, the spacing between microphones, the sampling frequency and so on. In order to accomplish this, we set up two linear microphone arrays with different hardware and designed comparative experiments. After the speech data was captured, an algorithm called SRP-PHAT was used to estimate the speech source direction. We analyzed the possible theoretic errors existed in the experiments carefully, and after the experiments, we analyzed the directing results, and compared the actual directing errors with the possible theoretic errors. At last, we summarized the performance of the two linear microphone arrays, and educed the configuration of the linear microphone array system when its integrative performance achieves the peak. Key words: linear microphone array; speech source directing; theoretic error; directing performance 摘 要: 麦克风阵列在人机交互中有着重要的研究和应用价值。而线性均匀麦克风阵列最简单,其基本功能是声源的定向。本文通过实验分析各种参数变化对线性麦克风阵列定向性能的影响。我们搭建了硬件参数不同的两套线性麦克风阵列并设计了对比实验。使用SRP-PHAT算法定向声源。我们分析了声源定向时各种可能的理论误差,对实验结果进行了误差分析,并与可能的理论误差做了对比。通过理论分析和对比实验,本文提出了线性麦克风阵列系统的性能评价指标,并给出了综合性能最优时的麦克风阵列系统参数配置。 关键词: 线性麦克风阵列; 声源定向; 理论误差; 定向性能 中图法分类号: ****文献标识码: A ?Supported by National High-Tech Research and Development Plan of China under Grant No. 2006AA01Z198; 作者简介: 段进伟(1985-),男,云南昆明人,大学本科,主要研究领域为人机交互与普适计算;

传声器(话筒)使用注意事项

传声器(话筒)使用注意事项 一、普通话筒 1.阻抗匹配 在使用话筒时,话筒的输出阻抗与放大器的输入阻抗两者相同是最佳的匹配,如果失配比在3:1以上,则会影响传输效果。例如把50Ω话筒接至输入阻抗为150Ω放大器时,虽然输出可增加近7Db,但高低频的声音都会受到明显的损失。 2.连接线 话筒的输出电压很低,为了免受损失和干扰,连接线必须尽量短,高质量的传声器应选择双芯绞合金属隔离线,一般传声器可采用单芯金属隔离线。高阻抗式传声器传输线长度不宜超过5米,否则高音将显著损失。低阻传声器的连线可延长至30-50m。 3.工作距离与近讲效应 通常,话筒与嘴之间的工作距离在30-40cm为宜,如果距离太远,则回响增加,噪音相对增长;距离过近,会因信号过强而失真,低频声过重而影响语言的清晰度。这是因为指向性传声器存在着“近讲效应”,即近距离播讲时,低频声会得到明显的提高。不过,有时歌唱家有意利用“近讲效应”,使演唱效果更加美妙、动听。 4.声源与话筒之间的角度 每个话筒都有它的有效角度,一般声源应对准话筒中心线,两者间偏角越大,高音损失越大。有时使用话筒时,带有“隆嘤”的声音,这时把话筒偏转一些角度,就可减轻一些。

5.话筒位置和高度 在扩音时,话筒不要先靠近扬声器放置或对准扬声器,否则会引起啸叫。话筒放置的高度应依声源高度而定,如果是一个人讲话或几个人演唱,话筒的高度应与演唱者口部一致;当人数众多时,话筒应选择平均高度放置,并适当调配演唱者和伴奏以及队中各种乐器的位置,勿使响的过响,轻的过轻,而且要使全部声响都在话筒有效角度以内。如果有领唱或领奏,必要时,应放置专用话筒。 6.其他 此外,话筒在使用中应防止敲击或跌倒。不宜用吹气或敲击的方法试验 .............,否则很易损坏话筒。话筒在室外使用时,应该使用防风罩,避免录进 话筒 .. 风的“噗噗”声。防风罩还能防止灰尘沾污传声器。 二、无线话筒 现在,很多学校都给教师配备了无线话筒,方便教师在教室里灵活走动,开展生动的教学活动。教师在使用无线话筒时,必须主要以下几点: 1.选择安放接收器的位置,要使其避开“死点”。 2.接收时,调整接收天线的角度,调准频率,调好音量使其处在最佳状态。 3.无线传声器的天线应自然下垂,露出衣外。 4.防止电池极性接反,使用完毕,将电池及时取出。 5.有些传声器(如驻极体电容传声器、无线传声器)是用电池供电的。如果电压下降,会使灵敏度降低,失真度增大。所以,当声音变差时,应检查一下电池电压。 6.话筒不用时应关掉电源开关,长时间不用时应将电池取出。

录音技术基础知识

录音技术基础知识 基本录音/多轨录音 无论是盒式磁带录音机、数码多轨录音机、硬盘录音机,还是其它录音媒体,其录音过程大致相同,目的都是将声音获取到缩混带上。 做此工作,录音工程师采用两个步骤: 1、多轨录音——各种乐器和人声的录音与叠加录音的过程,每种录音都有各自的“音轨”。 2、多轨缩混——将这些多轨内容同步录在一组立体声轨上(“母带录音”),可以用某种播 放系统如CD播放机或磁带卡座等进行再制作。 录音基础/多轨录音 多轨录音指多种乐器或人声的互相“叠加”,以便在播放任意一种音色时,同时听到其它的音色。有的录音设备具备将不同乐器录在每个“轨”上的能力。多轨录音好比将16个盒带录音机的磁带并列在一起。就成为16轨磁带(实际32轨,因为盒式磁带是立体声,有两个轨),从而具备了每轨录制不同乐器的潜力。 换言之,假如您为一个鼓手、一个贝司和一个伴奏吉他手弹奏的曲子录音,用一台多轨录音机将每种乐器录在各自轨上。由于是一起演奏的曲子,音符要互相合拍,播放时,听起来仍好象几个乐手在一起演奏一般。如果您要在歌曲中加入一个主音吉他,既然每个乐器都录在各自音频上,就要先播放前三个轨,使吉他手在第四轨上录制主音吉他时,能与其它乐器“合拍”。这个过程就叫叠加。 按传统方式,录音师要先录制“节奏轨”,包括:鼓、贝司、伴奏吉他、键盘以及一个将被替换的主音人声,所有都录在一起。下一步,录音师开始做叠加,加入其它节奏,主声部,背景人声,所有其它乐器,最后录制主音人声。而现代录音方式通常是一次制作一个轨,按排序的乐器、鼓的循环,或者人声开始录音。 关键点是最终你的乐器必须被同时录制在一起。一旦完成后,混音过程才能开始。 录音基础/多轨缩混 缩混的目的是将你所录制的轨道缩到两个轨道(立体声)上或一个轨(单声)上。这样就可以在传统的播放系统如卡带或CD播放机上今昔播放了。 按传统方法,多轨录音机连在多通道的调音台上,这样每一个轨在调音面板上都可以被单独进行处理了。换句话说,多轨录音机的每一个输出都连接到调音台的每一个输入通道上,从那里再进行合并,成为单一的立体声输出。这个立体声的输出可以连接到母带处理机上录制立体声信号。 在合并许多通道到两个通道时,调音台还处理其它一些重要工作,如: -调节乐器的频率内容,一般称为EQ。 -给乐器增加效果,如混响,回声或合唱。 -调节每一轨的音量,保证不会有单独的乐器音量太过于大或者小。 如今,多轨录音机,多通道调调音台,均衡和效果器上的所有功能都可以集中在一个装置上。而且还可以用光盘刻录机、数码录音机或硬盘作为母带处理机。当然重要的是您的曲子中的所有的乐器都被录音、加工、缩混最后成为一种媒介而被大众听到。 一般连接端子 输入端子 在开始录音之前,你需要将乐器或者是话筒连接到录音机或调音台的输入部分。可能你会注

麦克风基本知识汇总

实际人声频率 男:低音82~392Hz,基准音区64~523Hz 男中音123~493Hz,男高音164~698Hz 女:低音82~392Hz,基准音区160~1200Hz 女低音123~493Hz,女高音220~1.1KHz 录音时各频率效果: 男歌声 150Hz~600Hz影响歌声力度,提升此频段可以使歌声共鸣感强,增强力度。 女歌声 1.6~3.6KHz影响音色的明亮度,提升此段频率可以使音色鲜明通透。 语音 800Hz是“危险”频率,过于提升会使音色发“硬”、发“楞” 沙哑声提升64Hz~261Hz会使音色得到改善。 喉音重衰减600Hz~800Hz会使音色得到改善 鼻音重衰减60Hz~260Hz,提升1~2.4KHz可以改善音色。 齿音重 6KHz过高会产生严重齿音。 咳音重 4KHz过高会产生咳音严重现象(电台频率偏离时的音色) 二、频率响应frequency response 频率响应又称带宽(frequency range),是指麦克风感应声波频率的范围,并将声波能量忠实的转换为电子讯号的能力。麦克风接受到不同频率声音时,输出信号会随着频率的变化而发生放大或衰减。一般以频率响应曲线图标之。 三、灵敏度( Sensitivity) 灵敏度代表麦克风将声音能量转换成电压后所产生的输出讯号强度,是在麦克风单位声压激励下输出电压与输入声压的比值。当输入信号固定时(1kHz),输出讯号越强,代表麦克风灵敏度越高。 测试麦克风的灵敏度是将1kHz的讯号在94dB的音压电平位准( SPL)下量测开路的麦克风,取得的毫伏特( millivolt )值,单位为mV / Pa。 四、等效噪音电平( Equivalent noise level) 等效噪音电平又称内部噪声( self noise)。麦克风的内部噪声在无声音讯号输入状态时可来自若干个方面: 1.供给麦克风电源的电压波动(偏置电压)引起的电子噪音

基于麦克风阵列的语音增强算法概述

- 29 - 基于麦克风阵列的语音增强算法概述 丁 猛 (海军医学研究所,上海 200433) 【摘 要】麦克风阵列语音增强技术是将阵列信号处理与语音信号处理相结合,利用语音信号的空间相位信息对语音信号进行增强的一种技术。文章介绍了各种基于麦克风阵列的语音增强基本算法,概述了各算法的基本原理,并总结了各算法的特点及其所适用的声学环境特性。 【关键词】麦克风阵列;阵列信号处理;语音增强 【中图分类号】TN911.7 【文献标识码】A 【文章编号】1008-1151(2011)03-0029-02 (一)引言 在日常生活和工作中,语音通信是人与人之间互相传递信息沟通不可缺少的方式。近年来,虽然数据通信得到了迅速发展,但是语音通信仍然是现阶段的主流,并在通信行业中占主导地位。在语音通信中,语音信号不可避免地会受到来自周围环境和传输媒介的外部噪声、通信设备的内部噪声及其他讲话者的干扰。这些干扰共同作用,最终使听者获得的语音不是纯净的原始语音,而是被噪声污染过的带噪声语音,严重影响了双方之间的交流。 应用阵列信号处理技术的麦克风阵列能够充分利用语音信号的空时信息,具有灵活的波束控制、较高的空间分辨率、高的信号增益与较强的抗干扰能力等特点,逐渐成为强噪声环境中语音增强的研究热点。美国、德国、法国、意大利、日本、香港等国家和地区许多科学家都在开展这方面的研究工作,并且已经应用到一些实际的麦克风阵列系统中,这些应用包括视频会议、语音识别、车载声控系统、大型场所的记录会议和助听装置等。 文章将介绍各种麦克风阵列语音增强算法的基本原理,并总结各个算法的特点及存在的局限性。 (二)常见麦克风阵列语音增强方法 1.基于固定波束形成的麦克风阵列语音增强 固定波束形成技术是最简单最成熟的一种波束形成技术。1985年美国学者Flanagan 提出采用延时-相加(Delay-and-Sum)波束形成方法进行麦克风阵列语音增强,该方法通过对各路麦克风接收到的信号添加合适的延时补偿,使得各路输出信号在某一方向上保持同步,并在该方向的入射信号获得最大增益。此方法易于实现,但要想获取较高的噪声抑制能力则需要增加麦克风数目,然而对非相干噪声没有抑制能力,环境适应性差,因此实际中很少单独使用。后来出现的微分麦克风阵列(Differential Microphone Arrays)、超方向麦克风阵列(Superairective Microphone Arrays )和固定频率波束形成(Frequency-Invariant Beamformers) 技术也属于固定波束形成。 2.基于自适应波束形成器的麦克风阵列语音增强 自适应波束形成是现在广泛使用的一类麦克风阵列语音增强方法。最早出现的自适应波束形成算法是1972年由Frost 提出的线性约束最小方差(Linearly Constrained Minimum Variance,LCMV)自适应波束形成器。其基本思想是在某方向有用信号的增益一定的前提下,使阵列输出信号的功率最小。在线性约束最小方差自适应波束形成器的基础上,1982年Griffiths 和Jim 提出了广义旁瓣消除器(Generalized Sidelobe Canceller, GSC),成为了许多算法的基本框架(图1)。 图1 广义旁瓣消除器的基本结构 广义旁瓣消除器是麦克风阵列语音增强应用最广泛的技术,即带噪声的语音信号同时通过自适应通道和非自适应通道,自适应通道中的阻塞矩阵将有用信号滤除后产生仅包含多通道噪声参考信号,自适应滤波器根据这个参考信号得到噪声估计,最后由这个被估计的噪声抵消非自适应通道中的噪声分量,从而得到有用的纯净语音信号。 如果噪声源的数目比麦克风数目少,自适应波束法能得到很好的性能。但是随着干扰数目的增加和混响的增强,自适应滤波器的降噪性能会逐渐降低。 3.基于后置滤波的麦克风阵列语音增强 1988年Zelinski 将维纳滤波器应用在麦克风阵列延时—相加波束形成的输出端,进一步提高了语音信号的降噪效果,提出了基于后置滤波的麦克风阵列语音增强方法(图2)。基于后置滤波的方法在对非相干噪声抑制方面,不仅具有良好的效果,还能够在一定程度上适应时变的声学环境。它的基本原理是:假设各麦克风接收到的目标信号相同,接收到的噪声信号独立同分布,信号和噪声不相关,根据噪声特性, 【收稿日期】2010-12-30 【作者简介】丁猛(1983-),男,海军医学研究所研究实习员。

声学检测传声器的应用

声学检测传声器的应用 传声器头的应用: 1.传声器前置放大一体的ICP传声器:各种声学试验,测试(IEC651, Type1,2);自由场声音测定时使用; 2.自由场传声器:声场环境的声压测定;环境噪音测定用;消声室内声音测定用。 3.压力场传声器:压力场声音测定用;管内声音测定用;恒音室内声音测定使用;具有坚固的结构样式,可用于高音压的测定。 4.特殊传声器:40AR:随机感应用(=发散/恒音室内用);40AQ:随机感应用(=发散/恒音室内用);40AN :高灵敏度,自由音场用。至1Hz低频测定用;40DP:1/8“至184Db高音压,高频率测定用;40AT:阵列用, 自由音场,多通道内藏前置放大器的麦克风;40SA:探测型麦克风,高温恶劣环境用(可至800℃),靠近声源测定。 5.室外用传声器:41AM:飞机噪音测试用(永久设置用,包含所有的附件),0°入射角;41CN:都市交通噪音测试用(永久设置用, 包含所有的附件),90°入射角;41AS:41AM中的传声器(不包含附件);40AS: 41CN中的传声器(不包含附件);41AL:便携式环境噪音测试用(短时间使用);41AL-S:90 都市交通噪音测定用, 200V外部电源必要;41AL-1:0 飞机场噪音测定用, 200V外部电源必要;41AL-2:90 都市交通噪音测定用,200V外部电源不必要;41AL-6:0 飞机场噪音测定用,200V外部电源不必要。 6.声强传声器:声音强度测定用传声器对(IEC1043 Type 1);直径:1/4“(40BI), 1/2”(50AK)。 7.声强探测器:声音强度测定用探测组件(IEC1043 Type 1)。 8.高压传声器:主要用于圆柱体内压力和声音的测试;可用于测定液体的冲击声,例如核电站管道中液体的冲击现象的测定等。 传声器前置放大器的应用: 1. 1/2" 前置放大器:麦克风用前置放大; 2. 1/4" 前置放大器:麦克风用前置放大; 3. 声音接受器-功放麦克风一体:电容式麦克风+前置放大+电源模块作成一体的便携式器件,可直接插入信号分析器;声音功率,环境噪音测定时使用。 传声器标定器的应用: 1.麦克风校正; 2.声强探头校正; 3.噪音计校正; 4.根据国际标准对音响和电器进行校正。 传声器功放的应用: 1.电容型麦克风输入和增幅; 2.电容型麦克风电源供给。 声学模拟器(人工耳嘴)的应用: 1.电话机或耳机音响测定用; 2.助听机测定用; 3.管状听话筒的音响测定; 4.发声器和高音量喇叭的音响测定 用。

传声器的种类与原理

传声器的种类与原理 一、传声器的作用和种类 传声器俗称话筒,又称麦克风。它是一种将声音信号转换为相应的电信号的电声换能器件。 传声器的分类方法很多,主要有以下儿个。 ①按换能原理分类,有电动式传声器(如动圈式传声器、铝带式传声器等)、电容式传声器(其中包括驻极体式传声器)、电磁式传声器、半导体式传声器和压电式传声器(晶体传声器、陶瓷传声器、压电高聚合物式传声器)。 ②按指向性图分类,有无指向传声器(又称全指向传声器)、双向传声器(又称8字形指向性传声器)和心形传卢器、超心形传声器、超指向传声器(它们又称为单向传声器)。 ③按使用场合分类,有普通传声器、立体声传声器、近讲传声器、佩戴式传声器、无线传声器和测量用传声器等。 从换能原理方面来说,目前用得最多的是动圈式传声器和电容式传声器。动圈式传声器的特点是:结构简单,坚固耐用,工作稳定好,价格较低,频响特性较好等。电容式传声器则具有频响好、失真小、噪声低、灵敏度高和音色柔和等特点,但电容式传声器价贵,而且必须为它提供直流极化电源(如24V),给使用者带来不便。于是人们研制出了驻极体式电容传声器,它不需要外加直流极化电源,而且结构简单,体积小,价格低廉,近来,驻极体式传声器和压电高聚合物式传声器发展很快,且不断有新产品出现。

各种类型的传声器尽管在结构上有所不同,但它们都有一个振动系统,该系统是声波作用而引起振动,产生出相应的电压、电容或电阻变化。如动圈式传声器就是属于电压变化一类(即音圈输出电压变化),而电容式传声器则属于电容变化一类,但它最终还是利用电容变化使最后的输出仍为电压变化。 二、动圈式传声器的工作原理 把导体置于磁场中,用声音激励振动系统使其振动,通过电磁感应作用,在导体上产生感应电动势。应用这种原理做成的传声器称为电动式传声器。在电动式传声器中,如果传声器中所用的导体为音圈结构,就构成了动圈式传声器:如果所用导体为金属箔(如铝带),就构成了带式(铝带式)传声器。日前广泛使用的电动式传声器,绝大多数为动圈式传声器。 动圈式传声器的结构如图3-1所示,其工作原理是:当声波激励线圈时,粘接在振膜下面的音圈在磁隙的磁场中也作相应振动,从而切割磁力线而产生感应电动势。此时感应电动势输出为 E= Blv (3-1)式中,B为磁隙中的磁通密度:l为音圈导线的总长度;v为音圈的振动速度。

用小型传声器阵列测量环境噪声中简单声源声压级

V ol 35No.2 Apr.2015 噪 声与振动控制NOISE AND VIBRATION CONTROL 第35卷第2期2015年4月 文章编号:1006-1355(2015)02-0141-05 用小型传声器阵列测量环境噪声中简单声源声压级 宋玉来1,岳 磊2,金江明1,卢奂采1 (1.浙江工业大学特种装备制造与先进加工技术教育部/浙江省重点实验室,杭州310014; 2.浙江中科电声研发中心,浙江嘉兴314115) 摘要:常规声级计测量到的是目标声和环境噪声的总声压,不具备抑制环境噪声的功能。为此使用以球面波函数叠加逼近理论为基础的声波分离方法,用以提升环境噪声中简单声源声压级的测量精度。该方法以小型传声器阵列探头作为测量前端,近场声全息和声波分离为核心计算方法进行实施。为验证该方法的有效性,在全消声室内对关键参数进行了实验验证。实验结果表明,该方法在500Hz~2750Hz 频带内,且探头距目标声源5cm~12cm 的近场区域,可以在环境噪声中得到较精确的目标声源的声压级。 关键词:声学;声波分离;小型阵列探头;球波函数叠加;声压级测量;近场声全息;中图分类号:O422.2 文献标识码:A DOI 编码:10.3969/j.issn.1006-1335.2015.02.032 Measurement of Sound Pressure Level of Simple Acoustic Sources in Noisy Environment with Mini-sized Microphone Arrays SONG Yu-lai 1,YUE Lei 2,JIN Jiang-ming 1,LU Huan-cai 1 (1.Key Laboratory of E &M,Ministry of Education &Zhejiang Province, Zhejiang University of Technology,Hangzhou 310014,China;2.Zhejiang Electro-Acoustic R&D Center,Jiaxing 314115,Zhejiang China ) Abstract :Generally,conventional sound-level meters can only measure the total sound pressure of the target sound source and the environment noise instead of measuring them separately.To improve the measurement accuracy of the sound pressure level of the target sound source in noisy environment,the acoustic wave separation method based on spherical wave su-perposition was used with the input of the acoustic pressures measured by a mini-sized microphone array.The impact of param-eters on the accuracy of the sound pressure level was examined in an anechoic chamber.The results show that a reasonable ac-curacy can be obtained when the frequency is ranged from 500Hz to 2750Hz and the measurement distance is from 5cm to 12cm. Key words :acoustics ;acoustic wave separation ;mini-sized array ;spherical wave superposition ;sound pressure level measurement ;near-field acoustic holography 声级计作为现场声压测量的重要工具,具有操作简便快速的优点,可以实时的测量声场中任意一点的声压值[1]。然而,当声场中除了目标声源外还有其它干扰噪声源存在时,声级计测量到的声压大小无法反映目标对象辐射的真实声压,甚至得到错 收稿日期:2014-09-11 基金项目:国家自然科学基金资助项目(51275469;51205354)作者简介:宋玉来(1987-),男,安徽六安人,博士生,主要研 究方向:从事基于阵列信号处理的声源识别定位和声波分离方法研究。 E-mail:songyulai_svlab@https://www.sodocs.net/doc/b12992165.html, 通讯作者:卢奂采,女,教授,博士生导师。 E-mail:huancailu@https://www.sodocs.net/doc/b12992165.html, 误的测量结果。 在近场声全息[2,3]研究领域,可以利用声波分离方法来减弱干扰噪声源对声压测量值的影响,实现有噪声干扰情况下对目标声源声压测量。现有的声波分离方法在实施过程中主要涉及两种测量方式:双层阵列声压测量[4,5]及单层阵列声压—空气粒子速度测量[6,7],前一种测量方法要求在声场中布置存在精确相对位置关系的两层阵列,而后一种测量方法虽然只需要单层的阵列,但是必须同时得到阵列上测点处的复声压信号及空气粒子振速信号。这两种声波分离方法尽管能够实现噪声干扰环境下的目标声信号测量,但所需的测点数量较多,常常需要几十个测点。因此上述方法由于实际操作复杂和较高

传声器的种类与原理完整版

传声器的种类与原理 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

传声器的种类与原理 一、传声器的作用和种类 传声器俗称话筒,又称麦克风。它是一种将声音信号转换为相应的电信号的电声换能器件。 传声器的分类方法很多,主要有以下儿个。 ①按换能原理分类,有电动式传声器(如动圈式传声器、铝带式传声器等)、电容式传声器(其中包括驻极体式传声器)、电磁式传声器、半导体式传声器和压电式传声器(晶体传声器、陶瓷传声器、压电高聚合物式传声器)。 ②按指向性图分类,有无指向传声器(又称全指向传声器)、双向传声器(又称8字形指向性传声器)和心形传卢器、超心形传声器、超指向传声器(它们又称为单向传声器)。 ③按使用场合分类,有普通传声器、立体声传声器、近讲传声器、佩戴式传声器、无线传声器和测量用传声器等。 从换能原理方面来说,目前用得最多的是动圈式传声器和电容式传声器。动圈式传声器的特点是:结构简单,坚固耐用,工作稳定好,价格较低,频响特性较好等。电容式传声器则具有频响好、失真小、噪声低、灵敏度高和音色柔和等特点,但电容式传声器价贵,而且必须为它提供直流极化电源(如24V),给使用者带来不便。于是人们研制出了驻极体式电容传声器,它不需要外加直流极化电源,而且结构简单,体积小,价格低廉,近来,驻极体式传声器和压电高聚合物式传声器发展很快,且不断有新产品出现。

各种类型的传声器尽管在结构上有所不同,但它们都有一个振动系统,该系统是声波作用而引起振动,产生出相应的电压、电容或电阻变化。如动圈式传声器就是属于电压变化一类(即音圈输出电压变化),而电容式传声器则属于电容变化一类,但它最终还是利用电容变化使最后的输出仍为电压变化。 二、动圈式传声器的工作原理 把导体置于磁场中,用声音激励振动系统使其振动,通过电磁感应作用,在导体上产生感应电动势。应用这种原理做成的传声器称为电动式传声器。在电动式传声器中,如果传声器中所用的导体为音圈结构,就构成了动圈式传声器:如果所用导体为金属箔(如铝带),就构成了带式(铝带式)传声器。日前广泛使用的电动式传声器,绝大多数为动圈式传声器。 动圈式传声器的结构如图3-1所示,其工作原理是:当声波激励线圈时,粘接在振膜下面的音圈在磁隙的磁场中也作相应振动,从而切割磁力线而产生感应电动势。此时感应电动势输出为 E=Blv(3-1) 式中,B为磁隙中的磁通密度:l为音圈导线的总长度;v为音圈的振动速度。 由于动圈式传声器的音圈匝数很少,它的输出电压和输出阻抗(约10Ω)都很低,为了提高它的灵敏度,并使其与后接的放大器(或调音台)输入阻抗相匹配,在动圈式传声器中装有输出变压器以提高输出电压和输出阻抗。输出变压器有自耦和互感两种,根据

基于麦克风阵列的声源定位技术毕业设计

毕业设计说明书基于麦克风阵列的声源定位技术 学生姓名:学号: 学院: 专业: 指导教师: 2012年 6 月

基于麦克风阵列的声源定位技术 摘要 声源定位技术是利用麦克风拾取语音信号,并用数字信号处理技术对其进行分析和处理,继而确定和跟踪声源的空间位置。声源定位技术在视频会议、语音识别和说话人识别、目标定位和助听装置等领域有着重要的应用。传统的单个麦克风的拾音范围很有限,拾取信号的质量不高,继而提出了用麦克风阵列进行语音处理的方法,它可以以电子瞄准的方式对准声源而不需要人为的移动麦克风,弥补单个麦克风在噪声处理和声源定位等方面的不足,麦克风阵列还具有去噪、声源定位和跟踪等功能,从而大大提高语音信号处理质量。 本文主要对基于多麦克风阵列的声源定位技术领域中的基于时延的定位理论进行了研究,在此基础上研究了四元阵列、五元阵列以及多元阵列的定位算法,并且分别对其定位精度进行了分析,推导出了影响四元、五元阵列目标方位角、俯仰角及目标距离的定位精度的一些因素及相关定位方程,并通过matlab仿真软件对其定位精度进行了仿真;最后在四元、五元阵列的基础上,采用最小二乘法对多元阵列定位进行了计算;通过目标计算值和设定值对比,对多元阵列的定位精度进行了分析,并得出了多元阵列的目标定位的均方根误差。 关键词:麦克风阵列,声源定位,时延,定位精度,均方根误差

Based on Microphone Array for Sound Source Localization Research Abstract Sound source positioning technology is to use the microphone to pick up voice signals, and digital signal processing technology used for their analysis and processing , Then identify and track the spatial location of sound source. Acoustic source localization techniques have a variety of important uses in videoconferencing, speech recognition and speaker identification, targets’ direction finding, and biomedical devices for the hearing impaired. The pick up range of traditional single microphone is limited, the signal quality picked up is not high, then a voice processing methods with the microphone array has been proposed . It may be electronically aimed to provide a high-quality signal from desired source localization and doe s not require physical movement to alter these microphones’ direction of reception. Microphone array has the functions of de-noising, sound source localization and tracking functions, which greatly improved the quality of voice signal processing. The article discusses some issues of sound source localization based on microphone array, On the basis ,it studies a four element array,five element array and an multiple array positioning algorithm, then the positioning precision is analyzed. Derived some factors of the azimuth and elevation angle targets the target range of the estimation precision affected and positioning equation. And through MATLAB simulation software for its positioning accuracy of simulation. finally ,based on four yuan, five yuan of array, using the least square method ,the multiple array localization were calculated. Through the contrast of the target value and set value, multiple array positioning accuracy is analyzed, and the of diverse array target positioning. Keywords: Microphone Array, Sound Source Localization, Time Delay, Positioning precision, root mean square error

相关主题