搜档网
当前位置:搜档网 › 中子散射

中子散射

中子散射
中子散射

中子散射方法测定结构

中子是在二十世纪初被发现的. 中子和质子一样是组成原子核的基本粒子. 中子的质量与质子相近, 中子不带电荷但具有磁矩, 其自旋为1/2. 早在二十世纪三十年代, 就发现中子可以被散射. 但直到二十世纪中期, 核反应堆的建立提供了稳定的强中子源, 使得中子散射研究成为可能. 二十世纪八十年代散裂脉冲中子源的出现使人们可以得到更强的中子流. 由于中子散射研究的迅速发展及其在科学上的重大贡献, 1994年诺贝尔物理奖授予了中子散射领域的两位代表人物 C.G. Shull 和B.N. Brockhouse, 以表彰他们分别在中子弹性散射和非弹性散射领域做出的卓越贡献.

3.11.10.1 中子散射的特点

热中子(下面一般简称为中子)的波长与一般晶胞的线度相近, 可用来测定晶体结构和磁结构. 与X射线相比, 中子具有如下特点:

z X射线的散射体是核外电子, 其相干散射长度与各元素的原子序数成比例; 而中子的散射体是原子核, 其相干散射长度与各元素的原子序数无关, 且各同位素因核结构不同而具有不同的相干散射长度. 因此中子散射可以精确测定较轻原子特别是H的位置, 也可区分元素周期表上的近邻原子, 还可以识别同位素.

z中子具有磁矩, 是直接探测磁结构的唯一手段.

z中子具有极强的穿透力, 适于研究在各种环境条件, 如高温, 低温及高压等, 下的结构及其变化.

3.11.10.2 中子结构分析的基本原理

3.11.10.2.1 晶体结构分析

中子晶体结构分析的原理与X射线基本相同, 区别仅在于散射体不同.

晶体产生中子衍射的条件是布拉格方程

2 d Sinθ = λ

式中d 为晶面间距, λ 为中子波长, θ 为入射角(=反射角).

在此条件下可测到晶面间距为d, 晶面指标为 (hkl ) 的晶面产生的衍射强度I hkl , 它与结构因子F hkl 的模的平方成正比

I hkl = k | F hkl |2

式中, k 为常数, 其中包括洛伦兹因子, 吸收因子, 消光因子等. 温度因子的影响暂不考虑.

结构因子F hkl 是复数, 其相角为 αhkl

F hkl =| F hkl | exp(i αhkl )

结构因子与晶胞内各原子的关系为:

F hkl =∑=n

j 1

b j exp{2π i (hx j +ky j +lz j

)} 式中对一个晶胞中的所有原子求和, x j ,y j ,z j 是第 j 个原子在晶胞中的分数坐标, b j 是第 j 个原子的中子相干散射长度. 与X 射线不同, 由于是核散射, 中子的相干散射长度b 是常数, 不随角度或晶面间距而变化.

结构因子F hkl 是晶胞内散射长度分布, 即晶体结构, 的傅立叶变换. 此傅立叶变换的反变换为:

b j =∑hkl F

hkl exp{-2π i (hx j +ky j +lz j )}

此式给出了相干散射长度随晶胞内位置的变化, 即晶体结构.

衍射实验给出的是衍射强度. 由此可直接得到结构因子F hkl 的模. 因此寻找F hkl 的相角就成了晶体结构分析的核心内容.

对于那些完全未知的结构, 一般需要利用单晶的衍射数据. 因为单晶的衍射数据是完全独立的, 信息量大, 利用直接法(中子散射长度的差别不大, 最适用于直接法)可以通过位相关系得到部分衍射的相角. 以此为基础, 利用傅立叶变换就可以得到部分原子的位置. 利

用这些原子位置又可以得到更多的相角. 反复多次就可以得到绝大多数原子的位置. 差傅立叶法可以给出其余的原子位置. 依此为模型进行最小二乘法修正就可得到精确的晶体结构. 散裂脉冲中子源上的高分辨粉末衍射仪的分辨率很高, 其数据也可用来解出较小的未知结构.

对于那些基本结构已知部分结构待定的晶体结构, 中子衍射研究的对象大多属于这一范畴, 分析方法较为简单. 在一般情况下, 模型法(基于晶体结构的初步模型, 对其进行修正的方法)可以解出晶体结构.

3.11.10.2.2 磁结构分析

中子磁矩与原子磁矩间的相互作用导致核散射之外附加的磁散射.正是中子散射揭示了在固体的原子结构中存在磁结构的概念. 由于磁性原子的磁散射长度与原子的核散射长度可以相比, 中子衍射可以精确测定磁结构. 本文简要介绍利用非极化中子测定铁磁和反铁磁材料的磁结构的基本原理.

非极化中子使得核散射与磁散射之间不相干. 因此总的散射强度等于核散射强度与磁散射强度之和.

| F hkl | 2 = | F hkl cry | 2 + | F hkl mag | 2

式中F hkl cry 为(晶体学)结构因子, F hkl mag 为磁结构因子.

F hkl mag =∑=n

j 1

q j p j exp{2π i (hx j +ky j +lz j

)} 式中p 为原子的磁散射长度, 其数值与该原子的磁量子数和磁形状因子在该散射角的数值成正比; q 为磁相互作用矢量, 其方向取决于原子磁矩在反射面上投影的方向, 其数值等于原子磁矩与反射面法线间的夹角的正弦.

与晶体学中的结构因子不同, 磁结构因子F hkl mag 是一矢量.

从实验中得到的衍射强度中减去核散射的贡献就得到了磁散射的强度. 将此磁散射强度的实验数据与根据各种磁结构模型计算出的磁散射强度相比较可以解出磁结构.

铁磁体的磁晶胞与晶体学晶胞相同, 因此磁衍射峰的位置与核衍射峰的位置完全重合. 反铁磁体的磁晶胞会在某个方向上为晶体学晶胞的两倍, 因此会出现衍射指标为半整数(如1/2, 3/2, …)的磁衍射峰. 这是由于用较小的晶体学晶胞来描述较大的磁晶胞而引起的.

3.11.10.2.3 小角散射

小角散射是指在直射束附近的散射. 利用波长为2~30?的长波(冷)中子可以探测不同尺度上的不均运性, 其中包括缺陷的分布, 磁畴的大小, 聚合物和生物大分子的结构等. 在下文中这些研究对象统称为颗粒.

小角散射中包括衍射和折射两部分, 其比率取决于中子穿过颗粒引起的位相变化与中子穿过同样长度的真空引起的位相变化之间的差值Φ,

Φ = (4π / λ) (1- n) R p

式中λ为中子波长, n 为颗粒的中子折射率, R p 为颗粒的半径.

当Φ>>1 时, 折射占主导地位, 散射峰的展宽只与颗粒数相关, 而与颗粒大小无关.

当Φ<<1 时, 衍射占主导地位, 散射峰由两部分组成: 一部分是直接穿过的中子, 另一部分是衍射峰. 后者出现的展宽与颗粒的半径相关. 依此可以得到颗粒的大小和形状.

衍射峰上每一点的强度I 与峰值强度I0的关系为

I = I0 exp (-Q2 R2 / 3 )

式中Q = 4π Sinθ / λ

R 被称为参与散射的颗粒的回旋半径.

利用log I - Q2 图可以得到R2. 一个圆球的回旋半径为其半径的5/3倍.

R2 定义为每个原子到通过颗粒的重心且与散射矢量平行的轴的距离的平方的散射长度加权平均值.

R2 = ∑b i r i2 / ∑b i

利用此公式可对颗粒大小及形状的各种模型计算出相应的R2 来与实验值进行比较, 以确定颗粒的结构.

3.11.10.3 中子散射实验

3.11.10.3.1 中子源

(1) 反应堆中子源

核反应堆能够提供稳定的热中子流来进行中子散射研究. 反应堆中可以安装冷源和烫源, 他们可以使那些通过他们的中子的波长分布发生变化. 冷源可以增加长波(冷)中子的通量, 烫源可以增加短波中子的通量.

(2)散裂脉冲中子源

加速器用来加速脉冲质子. 当质子达到一定的能量后, 被用来轰击重金属靶以产生脉冲中子. 经慢化器后, 脉冲中子可用来进行中子散射研究. 通过不同慢化器的脉冲中子的波长分布是不同的, 分别适用于不同的谱仪.

3.11.10.3.2谱仪

(1)反应堆中子源上的谱仪

a.粉末衍射仪

对反应堆上的粉末衍射仪而言, 在一次实验中波长λ保持不变. 因此探测器的扫描角度2θ对应于相应的晶面间距d. 当2θ远离衍射峰时, 探测到的是本底; 而2θ在衍射峰上时, 探测到的是衍射峰上一点的中子计数, 一个衍射峰上全部测点的计数之和对应于该峰的衍射强度.

中子粉末衍射谱中包含了全部晶体学和磁结构的信息, 但 d 值相同或相近的衍射峰会出现不同程度的重叠, 降低了提取信息的能力. 中子粉末衍射谱能提供基本的晶体学信息, 如晶胞参数和对称性, 也能给出磁结构的基本模型, 为单晶结构分析打下基础. 在结构分析中, 一般用于基本结构已知, 部分参数待定或结构精修的研究.

粉末衍射仪要求粉末样品尽可能做到各向同性, 以保证衍射峰强度比的真实性和结构的可靠性. 圆柱形样品管有利于做到这一点. 现在各结构分析程序都能对各相异性做出修正, 但只是某种程度上的近似. 对于那些特殊形状的样品, 如针状或片状, 无法做到各向同性, 只能依靠程序来修正. 样品量要求较大, 一般为几个立方厘米, 这取决于谱仪和样品种类.

基本构件:

z单色器用来选择所需波长的中子. 通常采用提高单晶嵌镶度的方法, 适当牺牲分辨率来提高中子通量. 近来聚焦单色器得到广泛应用.

z准直器用来选择合格的中子, 提高谱仪的分辨率;

z计数器用来接收中子. 为了提高计数效率, 多探头探测器(包括准直器) 得到广泛应用. 位置灵敏计数器的计数率较高, 但分辨率较低.

b.单晶衍射仪

单晶的优点在于可以单独测量每个衍射峰, 没有粉末衍射中的重叠现象. 单晶中子衍射中影响强度的主要因素是次级消光. 通常要求单晶的大小适中(取决于谱仪和样品种类), 线度一般为几个毫米, 且三个方向上差别不要太大. 要求单晶的嵌镶度较大. 这可以通过在液氮中急冷等方法来实现. 单晶衍射仪的特点是它的样品架可以绕几个轴旋转, 使得单晶的一些晶面分别转到特定的方位来观测其衍射峰. 例如四园衍射仪, 欧拉环可将单晶的所有晶面自动就位进行测量. 由于每个衍射峰都是单独测量的, 因此精度高, 信息量大. 可以精确测定晶体结构和磁结构. 特别适于测定未知的晶体结构.

c.小角衍射仪

基本构件:

z冷源用于得到长波(冷)中子.

z中子导管避开直射束, 截断热中子, 使冷中子无损失的传输.

z机械速度选择器选出所需波长的中子.

z探测器目前通用二维位置灵敏探测器.

(2)散裂脉冲中子源上的谱仪

飞行时间法经加速器加速到一定能量的脉冲质子轰击重金属靶可以产生脉冲中子. 每个脉冲都是由各种波长的中子组成的. 慢化器用来改变中子的波长分布, 以适应各种研究的需要. 不同波长的中子具有不同的速度, 因此不同波长的中子从慢化器出发经样品散射到计数管所用的时间不同. 这种利用测量从慢化器到计数器中子飞行的时间来得到波长的方法被称作飞行时间法. 飞行时间法的主要优点是分辨率高, 且一个脉冲中的中子基本上(除去两端的延伸部分, 特别是特短波长部分)都可以得到利用.

a. 粉末衍射仪

根据布拉格方程, 对于一个固定的θ角, 晶面间距d与波长λ成正比. 因此, 利用固定的探测器, 通过测量中子的飞行时间就可以得到对应于晶面间距d值的中子衍射谱. 粉末衍射仪一般装有三组固定的探测器, 每一组都由多个探测器组成以提高计数率. 背散射探测器可得到最高的分辨率, 90ο探测器适用于有环境条件的测量. 低角度探测器适于较大分子的测量. 散裂脉冲中子源上的粉末衍射仪的主要优点是高分辨率和高通量. 高分辨衍射仪需要较长的中子飞行距离, 谱仪需要安置在距中子靶站较远的地方. 目前最高的分辨率达到?d/d=4x10-4, 且不随d 值而变化. 这样的高分辨率不但能提供更多的更高精度的结构参数, 而且能解决一些原先只有单晶才能解决的问题, 例如解出完全未知的晶体结构. 高通量衍射仪距靶站较近. 由于每一个脉冲的中子基本上都得到利用, 样品处得到较高的中子通量. 这种衍射仪可以测量较小的样品, 一些衍射仪的样品量可以小於1克. 对于较大的样品测量时间就很短, 这也使得某些实时测量成为可能.

基本构件

z探测器一般分为三组: 背散射, 90ο, 低角度.

z斩波器用来清理本底, 整理每个脉冲和防止相邻脉冲间的重叠.

z中子导管一般用于飞行距离较远的高分辨谱仪, 以减小中子的损失.

b. 单晶衍射仪

散裂脉冲中子源上的单晶衍射仪利用飞行时间劳埃技术, 在一次单独的测量中可以探测到三维倒易点阵的一个很大的部分. 在脉冲中子的波长范围之内, 任何方向的晶面(具有特定的d和θ值) 都会将波长λ符合布拉格方程的中子反射到特定的方向, 并被计数器记录下来. 这样就得到了与每个d值相应的衍射强度. 由于一个脉冲中的中子的波长是连续的, 被探测到的这部分三维倒易点阵中的衍射信息, 如峰的劈裂, 超点阵峰等, 将一览无遗. 这使得散裂脉冲中子源上的单晶衍射仪在涉及到纵观倒易点阵的研究, 例如相变和无公度结构等, 中起到特别重要的作用. 对于那些单晶样品的方向受到限制的结构分析测定, 这种单晶衍射仪是特别适用的.

基本构件

z样品台可使单晶样品转到任何方向来测量一组劳埃衍射数据.

z探测器记录劳埃衍射数据.

主要应用

z结构测定(包括氢原子定位).

z漫散射(高温导致的无序, 缺陷导致的无序, 短程有序的磁结构等. )

z相变(包括对称性的变化, 超晶格反射等).

z无公度结构.

c.小角衍射仪

与反应堆上的小角衍射仪相比, 其特点是只采用飞行时间法.

3.11.10.4 数据分析

结构分析一般需要专业研究人员来进行. 有关知识请见有关专著.

参考文献

Neutron Diffraction (Third Edition) G.E. Bacon Clarendon Press Oxford 1975

综述-中子活化分析的应用

中子活化分析的应用情况 王家豪PB5061384 摘要就中子活化分析的应用情况的评述, 包括中子活化分析技术在考古学、土壤科学、地质学、环境分析、材料行业和流行病学,食品安全,法医学等领域中的应用。 关键词中子活化分析应用考古学土壤科学地质学环境科学材料流行病学 前言 中子活化分析(NAA)具有很高的的准确性和可靠性,其准确度在5%左右,相对精度通常优于0.1%[1]。NAA可以测定多达74种元素,并且检测限很低,从1~106ng/g不等。其还具有样本量小(1-200mg),不必用化学试剂处理样品,对样品无损等优点。中子活化分析的应用已经有相当长时间的历史,自从1936年被Hevesy 和Levi发明后不久就得到了广泛应用,并且相对成熟。虽然现在已经有了ICP-AES和PIXE等方法,但是由于NAA的独特优点,其目前的全球应用仍非常广泛行分析。因此本文对中子活化分析的应用情况进行介绍,包括考古学、土壤科学、地质学、环境分析、材料行业和流行病学,食品安全,法医学几个方面。 1.考古学 使用中子活化分析来确定文物标本(如陶器[2,3],黑曜石[4],燧石[5])等的元素特征,并将其与对应文物的来源联系起来。在过去的十数年中,考古学家通过对42,000多个标本中的大约三十种元素的分析,已经积累了大量的粘土,黑曜岩,燧石和玄武岩的化学指纹数据库。这些数据库与强大的多元统计方法(即主成分分析,因子分析,判别分析和马氏距离概率)相结合,可以使很多考古文物的来源具有高度的可信性。这些来源信息可以帮助考古学家重建史前人类的习惯。在中国的考古界主要用于对陶瓷类文物的分析,具体的有对于陶瓷年代的鉴定[6],古瓷的着色机理[7],同一产地出产陶瓷的年代划分[8],陶瓷起源的探究等[9,10]。 2.土壤科学 农业上需要使用大量的化学品如化学肥料,除草剂,杀虫剂等,其中难以降解的化学物质被雨水冲刷后可进入土壤或随水流移动,用稳定的示踪剂(溴化物等)来标记这些化合物,,再用NAA来分析土壤,土壤学家可以量化在各种环境和土地利用影响下的农用化学品的分布。在1998年一项研究中,作者应用低浓度的Br作为示踪剂,研究了农业小分子化学物质渗入深层土壤的路径和这个过程中在什么深度会有最大的残留量等[11]。 3.地质学 通过中子活化分析对岩石样品中的稀土元素和其他微量元素进行分析,可以帮助地球化学家研究不同岩石的形成过程。除了对地球化学过程进行建模之外,中子活化分析在地质学上的其他应用还包括矿床的定位和地质事件的分析。例如,近年来我国活化分析工作者与地质学家合作, 发展了深部隐伏矿探测的“地气法”, 即通过收集和测定深部矿体金属气溶胶经地壳毛细作用, 升至地面的气体中的多种痕量元素, 推断矿体的存在。通过NAA在意大利和丹麦发现形成于6500万年前的石灰石矿床中异常高浓度的铱,该研究结果支持这样的理论,即在大型陨石撞击地球之后不久就发生了恐龙的灭绝。此外,通过NAA对地质样品中某些特定元素的分析, 可以为火山成因说、混合说等不同地质模型提供证据。NAA还可广泛用于陨石学研究, 宇宙尘的研究, 宇宙成因的研究等。

中子散射技术

子术 中散射技一丰彩我生个富多的界里们活在世,通过眼睛、子来耳朵和鼻感知周围的事物,能但是所感知到的远不是世界的全部,这是由于我们长的眼睛仅仅能够感知波在390至750米纳的间“见光可”,观察到小距有的最离只约0.1米毫。对小于更的物质,必一须借些我们助工才,蕊段能观到如的花断面可怕具或手测例美丽和的新型冠状病毒。今天,小大观编就为家介绍探寻微世界的好帮手——子中散射技 对子术,于中散射技我们首先要搞清楚两个关键就是子!()一子。中散啦废话首说中和射先简要明下1920年了子了子新西兰家卢福里除质还著名物理学瑟预言原核外子,子子。某存在他给种粒有种粒这取名为中12,年之后了子,试卢瑟福的学生查德威克用验证明中的存在并因此了,荣获诺贝尔物理学奖这种不带电的微粒——子也中被了子。誉打原能时代匙射我们的为开的金钥而散在生活中,,,一,不在如手电筒现束出无处例晚上打开发有光射本,但那并光的非身我们看到的是光与空气中的颗粒发生,彩也撞碰散射到人的眼睛形成的舞台上炫的灯光秀是同,,能看不同的事射样的道理可以说人眼够到物跟散息息。 关相来子术将这两中散技反应堆而者结合起的射就是利用子,加器的中与物发生或速产生质相互作用研究物质的静力。观态结构及物质的微动学性质的方法它能够告诉我们料子,。 在什物质或者材中的原在哪里还有它们做么讲了,子术?这么多那射底哪些应么中散技到有用呢

,子,领域学不带电散过在生物科家利用中在射程中,对不会产生离作电用的特点能够实现DNA ,的无损测量更使我们能够加清楚地认识DNA ,对了的结构和性质这于类义。 的解整个自然界和人自身有着很重要意,,在业领域中接是金属制工很多焊件都由成利用中子术力。,射技可接金属层应例如散就以分析焊深的情况术涡科学利用家该技分析飞机发动机叶片与轮的焊接应 力,对接焊工艺进行指导,大了幅提高发动机的使用寿命。 ,锂子池最用充电电在能源领域离电是目前我们常的池,、本大池。子手机脑的是这种笔记电使用都电利用中术锂子池,找锂子相技展究可以楚到照开离电的研清地离,锂,位置测量浓度的的还可以实时监测电解质在充放电锂子,,部过程中内离的浓度变化等通过这些数据科学家对锂子池,、长全寿和能不断离电进行改进做到高安性命本。 低成,子术。子当射应远不止能然中散技的用这些中穿透力,料、、、强以展文物材构年代产可很好地开的结成分,力;地性质等研究为考古领域提供新的强有的研究手段,子术,在医学与健康领域通过中散射技科学家研究植入,少;使入败事例的效物涂层的结构和性能植失数目有减子术了用散射技石则以解地球利中研究南极化可帮助我们境气变化情况环与候的…… ,子而言总之中发现至今已将近100,年其作为微观,类探领域的索工具已经开始融入科学研究和人生活的方。子术一术,的测析技在方面面中散射技作为种特殊探分。子工和生中发挥用正为业生产国民活着重要的作因中散术来,用处越广很家都在积建设射技越泛多国极能够产生

在线中子活化煤质分析仪在煤矿的应用

在线中子活化煤质分析仪在煤矿的应用 时间:2009-5-11来源:中国煤炭网 在线煤质分析仪应用于煤炭业已有20多年的历史,其稳定的销量足以证明其价值。在线分析仪通过提供实时信息为煤厂各煤种的质量控制和生产管理提供了极大的帮助,如果依赖化验室,这些数据只能在采样后的数小时甚至数天后才能得到。 近年来,随着经济下滑,生产优化和料堆控制变得尤为重要。煤炭业的持续下滑导致该行业重新关注煤炭质量管理,从而提高客户满意度最终增加煤炭销量。同时也提高矿区资源的有效利用,使原先认为煤质不达标的资源可以有选择地开采。为达到上述目的,煤炭生产商和煤炭用户开始寻找更为经济且仍然高精度煤质分析仪。随着人们对环境的日益关注,特别是对硫释放的关注导致法律对污染控制更加严格。新近设计的皮带在线中子活化煤质分析仪(PGN AA)恰好可以满足上述要求。 1在线煤质分析技术与设备 1.1双能量伽玛传输技术(DUET) DUET仪器|仪表自20世纪80年代早期上市以来,已成为在线煤质监测设备家族中的重要一员。该设备价格相对低廉,安装便捷,可以直接在皮带上进行在线煤质分析,只要是分析固定煤种,DUET分析仪测定煤质灰分就可以达到相当的精度。它利用两个γ射线源贯穿煤层而测量灰分。对给定的煤种,该设备的测定精度为:一个标准偏差下0.5%~1%。该设备的主要缺点是其标定与煤种有关,特别是在灰中的铁和钙元素变动很大的情况下。 该设备的用途包括:监测运送到选煤厂的原煤;监测洗净的精煤;给选煤厂提供反馈信息;通过混煤优化资源利用,使之达到一定的质量目标;监测送往用户的煤质是否达到合同要求的质量。 1.2自然伽玛射线技术 另一种广泛使用的简单的分析仪能够测定煤中的自然放射性大小,并将其与灰分联系起来。这种煤质分析仪不需要放射源,对影响DUET系统的铁和钙元素的变化不敏感。 然而,作为一种“被动”的系统,该分析仪的精度大约只为1%~2%,其理想应用是测量厚煤层的灰分,例如原煤输送机或选煤厂入料输送机上的煤质,在煤层很厚时,这仍然是测定

中子活化分析

中子活化分析 中子活化分析(NAA)[仪器中子活化分析instrumental neutron-activation analysis (INAA)]最初由匈牙利放射化学家Hevesy和Levi于1936年提出,直到60、70年代才广泛使用并日趋成熟。目前使用中子活化分析技术可分析周期表中的大部分元素,并且随着实验技术和数据处理方法的不断完善,已建立在线分析系统,从而使中子活化分析的应用范围迅速扩大,现已在材料科学、环境科学、地质科学、生物医学、考古学和法学等领域得到广泛应用。 NAA法特别适合考古学中的元素分析。它与其他元素分析法相比较,有许多优点,其一是灵敏度高,准确度、精确度高。NAA法对周期表中80%以上的元素的灵敏度都很高,一般可达10-6-10-12g,其精度一般在±5%。其二是多元素分析,它可对一个样品同时给出几十种元素的含量,尤其是微量元素和痕量元素,能同时提供样品内部和表层的信息,突破了许多技术限于表面分析的缺点。第三取样量少,属于非破坏性分析,不易沾污和不受试剂空白的影响。还有仪器结构简单,操作方便,分析速度快。它适合同类文物标本的快速批量自动分析,其缺点是检测不到不能被中子活化的元素及含量,半衰期短的元素也无法测量。此外,探测 仪器也较昂贵。 1、中子活化分析原理及操作 所谓中子活化分析是利用有一定能量和流强的中子、带电粒子或高能r光子去轰击待分析样品,使样品中核素产生核反应,生成具有放射性的核素,然后则测定放射性核素衰变时放出的瞬发辐射或缓发辐射,对元素作定性定量分析, 从而确定样品中的元素含量。 中子活化分析的基本过程如图所示(见图廿八)。首先寻找最佳方案,熟悉样品的属性,大致特征,计算最佳辐射条件和冷却时间。接着,制备样品和标准样品,后者为防止反应堆中子强度变化带来的误差作参照标准。不同形态的样品采取不同的制备方法。固体块直接截取放入容器中,粉末状还应称重,液体要放在聚乙烯容器或石英安瓶内,气体量好体积后放入石英管中。样品制好后放入金属罐内,等待辐射。接着选择最佳的辐射源,是使用反应堆、加速器还是同位素中子源。然后进行辐射、冷却,辐射源工作的同时探测系统(包括半导体探测器,闪烁计数器等探测器和多道分析器)开始运转,测定核素的半衰期和射线能量、强度, 最后是利用电子计算机进行数据处理。 2、中子活化分析的应用 中子活化分析在考古学中主要用来测量陶瓷器、玻璃、银币、铜镜、燧石、骨头化石等样品中的微量元素和痕量元素,进行统计分析,寻找共同性和差异性,从而确定元素成分的演变、产地及矿源等。不同地区的陶瓷土的元素组成差异,特别是微量、痕量元素组成差异大于它们在同一陶土源不同部位的涨落。以我国古瓷研究为例,古代瓷器原料就地取材,其中所含的微量元素种类不多,一般不影响瓷器质量,但在瓷器中长期保存,因而成为各类瓷器的分辨特征。经中子活化分析不仅确定了古瓷中微量元素的古瓷窑窑系,分析了各处古窑的瓷土来源,

中子散射的研究发展

中子散射的研究发展 由于热中子的波长、能量与凝聚态物质的分子、原子间距离和热运动能量相近,利用中子弹性和非弹性散射技术,可以了解物质的微观结构与性能。并且中子对氢原子的散射截面远大于其他元素,使得在利用中子散射研究包含大量氢元素的大分子结构以及动力学特征方面有显著优势。文章对中子散射产生的原理、特点进行总结,并利用中子散射技术在确定物质晶体结构、磁结构、缺陷分析等方面进行探讨,最后对中子散射技术在未来各个研究方向的应用进行了探讨和展望。 在进行用α粒子轰击铍的实验时,人们第一次发现了中子。若想用一种辐射来分析物质结构,那么其波长的量级要与被测物质原子间的距离量级相等。如果是分析分子、原子的运动状态,那么它的能量要与被测分子、原子的能量相差无几。中子在这两个方面都满足条件,适合被用于探究物质结构和其运动状态。 利用中子散射来研究物质微观结构的目的,是了解物质的原子排布。其实验方法包括中子衍射、中子小角散射和中子反射技术。物质微观动力学性质研究是为了解物质中粒子的运动方式。其实验方法包括中子非弹性散射技术和中子准弹性散射技术。 随着科技进步,中子散射技术日益完善。其应用已广泛涉及于航天、生物、地矿和材料等领域。中子散射弥补了X射线在物质微观结构研究的不足之处,并且在磁结构、动力学特性研究方面。它的作用是唯一、不可替代的。 2 中子散射技术的原理及特点 晶体中有序排列的原子对中子波而言相当一个三维光栅,中子波通过时会产生衍射现象。散射波会在某些特定的散射角干涉加强形成衍射峰。峰的位置、强度与晶体中的原子位置、排列方式以及各个位置上原子的种类有关。对于磁性物质衍射峰的位置还与原子的取向、排列方式和磁矩大小有关。 液体和非晶态物质的结构无长程有序,它们的散射曲线不会出现明显的衍射峰。但由于结构中存在短程有序,所以还会在散射曲线中出现少数表征短程有序的矮而宽的小峰。它们仍然可以从统计的意义上为我们提供液体和非晶物质最近邻配位原子的信息。 综上所述,我们可以利用中子衍射研究物质结构和磁结构。

中子活化多元素分析仪

东方测控DF-5701中子活化水泥元素在线分析仪一、产品概述 DF-5701中子活化水泥元素在线分析仪(图1-1)是跨皮带式水泥物料在线检测装置。用于料堆管理、生料配料过程中元素成分的在线检测。 DF-5701的装置为模块化结构,不需切割皮带,可绕皮带安装。DF-5701运行时,皮带从测量装置内托槽上滑过,对流经的所有物料进行检测,整个检测过程不 接触物料,不影响皮带运行。DF-5701每分钟给出一次检测结果,精确分析出各元素含量以及相关的质量控制参数。根据分析仪实时检测信息,对生产过程进行有效 控制,改良生产工艺,降低生产成本,提高产品质量。 图1-1 DF-5701中子活化水泥元素在线分析仪装置

二、产品结构 DF-5701中子活化水泥元素在线分析仪由测量装置、中子源、探测器、信号处理柜以及主机五个部分构成。(图2-1) 图2-1 DF-5701结构图 1.测量装置 测量装置采用模块式框架结构。包含支持测量过程中核相互作用的关键部件,同时对射线进行辐射防护,使装置周围剂量率达到辐射安全国家标准,保证工作人员的健康安全。 2.中子源 中子源安装于测量装置的下部,位于物料皮带的正下方,内部装有一个或多个不锈钢封装的252Cf源芯。252Cf的半衰期为2.6年,放射性活度随着持续发射中子减小,约二年半时间,需补充新的中子源芯达到初始源强度。 3.探测器 探测器安装于测量装置的上部,位于物料皮带的正上方,用于接收物料被中子作用后发出的射线。探测器外包有射线抑制体和恒温部件。其中,射线抑制体用于抑制干扰射线,并由恒温部件对探测器进行恒温。 4.信号处理柜 信号处理柜内有探测器外围部件,电子信号处理部件和温度控制部件。探测器外围部件为探测器运行提供高、低压电源。电子信号处理部件的主要功能是将来自探测器的模拟信号,通过ADC转换为数字信号。温度控制部件用于控制探测器温度和柜内温度。信号处理柜可以安装在墙上或支架上,与探测器相连接的电缆线长度标准为25米。 5.主机

CSNS中子散射谱仪

CSNS中子散射谱仪 中子散射谱仪
王芳卫
for the CSNS Instrument Team
CSNS Engineering Center for Target Station and Neutron Instruments Institute of Physics, Chinese Academy of Sciences

Outline
试验系统简介 ? CSNS试验系统简介 中子产生: ? 中子产生:靶站物理及预制研究 中子利用: ? 中子利用:一期三台谱仪物理设计介绍 ? 中子谱仪各组成部分的设计和预制研究 任务分级细分、 ? 任务分级细分、时间安排与投资概算
散裂中子源进展 November 12, 2008
Page
2

试验系统简介 ? CSNS试验系统简介 中子产生: ? 中子产生:靶站物理及预制研究 中子利用: ? 中子利用:一期三台谱仪物理设计介绍 ? 中子谱仪各组成部分的设计和预制研究 任务分级细分、 ? 任务分级细分、时间安排及投资概算
散裂中子源进展 November 12, 2008
Page
3

中子产生和利用: 中子产生和利用:同一屋檐下的不同任务
散裂中子源进展 November 12, 2008
Page
4

Project of central organization
散裂中子源进展 November 12, 2008
Page
5

中子散射

中子散射方法测定结构 中子是在二十世纪初被发现的. 中子和质子一样是组成原子核的基本粒子. 中子的质量与质子相近, 中子不带电荷但具有磁矩, 其自旋为1/2. 早在二十世纪三十年代, 就发现中子可以被散射. 但直到二十世纪中期, 核反应堆的建立提供了稳定的强中子源, 使得中子散射研究成为可能. 二十世纪八十年代散裂脉冲中子源的出现使人们可以得到更强的中子流. 由于中子散射研究的迅速发展及其在科学上的重大贡献, 1994年诺贝尔物理奖授予了中子散射领域的两位代表人物 C.G. Shull 和B.N. Brockhouse, 以表彰他们分别在中子弹性散射和非弹性散射领域做出的卓越贡献. 3.11.10.1 中子散射的特点 热中子(下面一般简称为中子)的波长与一般晶胞的线度相近, 可用来测定晶体结构和磁结构. 与X射线相比, 中子具有如下特点: z X射线的散射体是核外电子, 其相干散射长度与各元素的原子序数成比例; 而中子的散射体是原子核, 其相干散射长度与各元素的原子序数无关, 且各同位素因核结构不同而具有不同的相干散射长度. 因此中子散射可以精确测定较轻原子特别是H的位置, 也可区分元素周期表上的近邻原子, 还可以识别同位素. z中子具有磁矩, 是直接探测磁结构的唯一手段. z中子具有极强的穿透力, 适于研究在各种环境条件, 如高温, 低温及高压等, 下的结构及其变化. 3.11.10.2 中子结构分析的基本原理 3.11.10.2.1 晶体结构分析 中子晶体结构分析的原理与X射线基本相同, 区别仅在于散射体不同. 晶体产生中子衍射的条件是布拉格方程 2 d Sinθ = λ

光散射原理及其应用

安徽大学 本科毕业论文(设计、创 作) 题目: 光散射原理及其应用 学生姓名:彭果学号:B21114051 院(系):物理与材料科学学院专业:光信息科学与技术入学时间:二〇一一年九月 导师姓名:喻远琴所在单位:安徽大学物理与材料科学学院完成时间:二〇一五年六月

光散射原理及其应用 彭果 (安徽大学物理与材料科学学院,安徽合肥230061) 摘要:光通过不均匀物质时朝四面八方散射的现象称为光散射。本文首 先简要阐述了光散射的原理和分类;然后运用光散射的知识解释了一些 生活中常见的大气现象,例如蓝天、白云、朝霞、晚霞以及夕阳等;最 后介绍了光散射在医疗和摄影等方面的应用。 关键词:光散射,瑞利散射,拉曼散射,偏振 Light scattering principle and application Pengguo (School of Physics & Material Science, Anhui University, Hefei 230061, China) Abstract: Light scattering by the light passing through the inhomogeneous material is called light scattering. In this paper, the principle and classification of optical scattering are briefly introduced. Introduces the application of light scattering in the phenomenon of life, and the application of light scattering in medical treatment, photography, etc Key words:Light scattering and Rayleigh scattering, Raman scattering, polarization 晚霞满天,一片又一片的火烧云,把天空织成美丽的锦缎,真是一幅绮丽的奇景,晚霞有多少种颜色?红色,黄色,金色,紫色,蓝色,或许还有别的颜色。这是小学语文课文的《火烧云》,火烧云的形成其实包含了光散射的原理。在生活中光散射的现象随处可见,蓝天、白云、晓霞、彩虹、雾中光的传播等等常见的自然现象中都包含着光的散射现象。 随着科技的发展,光散射在各个科学技术部门中有广泛应用。例如,根据胶体体系中光散射理论,光散射可用于判断溶胶还是分子液体,照相补光,利用共振光散射法做DNA的定量分析,基于光散射流式细胞仪的广泛应用,瑞利光散射光谱法研究牛血红蛋白与镝(Ⅲ)的相互作用等,复杂结构光散射的射线跟踪方法及其应用。光散射的应用在生活中的各方面都有重要意义。

相关主题