搜档网
当前位置:搜档网 › 支持向量机课件

支持向量机课件

支持向量机课件
支持向量机课件

(SVM )

最优分类面

SVM 是从线性可分情况下的最优分类面发展而来的, 基本思想可用图中的 两维情况说明.

所谓最优分类线就是要求分类线不但能将两类正确分开(训练错误率为0),而且使分类间隔最大,推广到高维空间,最优分类线就变为最优分类面。

设线性可分的样本集(),,1,,,i i x y i n = {},1,1d

x R y ∈∈+-,d 维空间中的线性

判别函数:()g x wx b =+,分类面方程为0wx b +=

我们可以对它进行归一化,使得所有样本都满足()1g x ≥,即使离分类面最近的样本满足()1g x =,这样分类间隔就等于2w 。因此要求分类间隔最大,就是要求w (或2

w )最小。要求分类线对所有样本正确分类时,对于任意学习样本()n n y X ,其分布必然在直线1H 之上或直线2H 之下。即有

()(

)1

21;1, 1;1, n n n n n n n n g b y C g b y C ?=?+≥=∈?

=?+≤-=-∈?

X W X X X W X X 将以上两式合并,有

1n n y b ???+?≥??W X

就是要求满足

[]10n n y wx b +-≥,1,,,i n =

图中, 方形点和圆形点代表两类样本, H 为分类线,H1, H2分别为过各类中离分类线最近的样本且平行于分类线的直线, 它们之间的距离叫做分类间隔(margin)。

所谓最优分类线就是要求分类线不但

2

w 最小的分类面就是最优分类面。过两类样本中离分

类面最近的点且平行于最优分类面的超平面1H ,2H 上的训练样本,就是使上式等号成立的那些样本,它们叫做支持向量。因为它们支撑了最优分类面。

下面看如何求解最优分类面,由上面的讨论,最优分类面问题可以表示成如下的约束问题,即在条件(1)的约束下,求函数:

2

1()2

w w φ= (2) 的最小值,这里目标函数中的2

1没有其他意义,只是为了下一步导出求解方法时方便。由此得到两类分类机算法:

(1). 给定学习样本集(){}N

n n n y 1 ,=X ,d R X ∈n 、

{}1- ,1+∈n y 。1=n y 表示n X 属于1C 类,1-=n y 表示n X 属于2C 类;

(2). 构造并求解关于变量W 和b 的优化问题(目标函数加上平方)

()2,11min 22

..1, 1, 2, , T b n n st y b n N

=???+≥=W W W W

W X (3)

求得最优解*W 和*b ; (3). 构造分类函数

()**g b =?+X W X (4)

对于任意的未知模式X ,可以由上式判断其所属类别:

()()2

1

0 0C g C g ∈<∈>X X X X 则则 (5)

从以上分析过程可知,对于任意学习样本n X ,有

()()2

1

1 1C g C g n n n n ∈-≤∈≥X X X X 则则 (6)

学习样本是实际模式的抽样或特例,工作中的实际模式可能超过学习样本的分布范围。如果能够预测到实际模式的分布,并且根据其分布确定分类函数,我

总是实际问题的抽样或特例,以这些数据所做的任何估计都只是以局部推测全局。以上得到的“支持向量机”取两类样本之间最大边带的中心为分类函数,显然是对现有学习样本的最佳分类。尽管这样的分类函数未必是“预测最优”,但这种方法比只能得到一个可行的分类函数来说,有更强的合理性。我们称支持向量机获得的分类函数具有“结构最优”性。

从结构上还可以看出,最宽边界只取决于个别样本,大量位于直线1H 和直线

2H 外边的样本对最宽边界并没有影响。称恰好位于直线1H 和直线2H 上的样本为

“支持向量”。这正是这种算法称为“支持向量机”的原因。 求解线性分类问题的优化方法

求解(3)式是一个典型的优化问题,而且,(3)式中只涉及到变量W 的二次关系W ,因此,是一个二次规划问题。二次规划问题有唯一的最优解,不存在局部最优,这是本算法的突出优点。后面还可以看到,借助Lagrange 方法求解(3)式优化问题时,只涉及到n X 之间的点积运算,这将这种方法推广到非线性可分问题提供了极大的方便。为此,首先介绍最优化问题的基本概念。 优化问题的几个基本定义和定理; (一) 无约束优化问题

对变量没有限制无约束优化问题的一般形式: min (),n

f x x R ∈ (7)

定理(无约束问题解的必要条件):若函数()f x 是n R 上的连续可微函数,且x *

无约束条件(7)的局部解,则()f x 在x *

处沿着任意方向导数都是零,或者等价

的说,()f x 在x *

处的梯度向量是零向量,即()*0f ?=X

:设()X f 是n R 上的连续可微凸函数,则*n

∈X R 是无约束问题全局最优的充分必要条件是()*0f ?=X 。 (二) 最优性条件 1.等式约束

等式约束问题的必要条件 等式约束的一般形式:

min (),n f x x R ∈, ()0,1,i c x i q == ( 1-1)

引入Lagrange 乘子α,构造Lagrange 函数

()())( ,x 1

x c x f L i q

i i ∑=+=αα

可以看到,在*X 约束问题解的条件可以表达为

()()()()()****

, ***0

, *0

L f c L c αααααααα====?=?+??=?==X X X X X X X X X X

用矢量函数()()()()()021==T p c c c X X X X C 表示多个等式约束,令Lagrange 乘子矢量()T p ααα 21=Α,则多个等式约束情况下Lagrange 函数为

()()()()()1, *p

T

i i i L f c f α==+?=+?∑X ΑX X X C X Α

解的必要条件可以表达为

()()()()()****

, ***0

, *0

T

L f L ====?=?+??=?==X X X ΑΑX X ΑΑΑX ΑX C X ΑX ΑC X (1-2)

其中()()()()()021=???=?T p c c c X X X X C 。显然,最优点满足(4-12) 但满足(1-2)不一定是最优点。

2.不等式约束问题的必要条件

运用EO-1 Hyperion数据和单类支持向量机方法提取岩性信息

411 国家重点基础研究发展计划(2009CB219302)资助 收稿日期: 2011-06-17; 修回日期: 2011-08-22; 网络出版日期: 2012-02-24 网络出版地址: https://www.sodocs.net/doc/b33843047.html,/kcms/detail/11.2442.N.20120224.1047.011.html 北京大学学报(自然科学版), 第48卷, 第3期, 2012年5月 Acta Scientiarum Naturalium Universitatis Pekinensis, Vol. 48, No. 3 (May 2012) 运用EO-1 Hyperion 数据和单类支持 向量机方法提取岩性信息 张西雅 徐海卿 李培军? 北京大学地球与空间科学学院遥感与地理信息系统研究所, 北京 100871; ?通信作者, E-mail: pjli@https://www.sodocs.net/doc/b33843047.html, 摘要 将扩展的单类支持向量机方法运用到高光谱岩性识别中, 并分析和评价该方法的性能。利用单类支持向量机分别提取各个感兴趣的岩性类别, 对于被识别为多个岩性类别的像元, 根据该像元与每个单类支持向量机所确定的分类超平面的距离来确定属于哪一类别, 这样, 利用扩展的单类支持向量机来可提取多个感兴趣的岩性类别。将该方法运用到新疆准噶尔地区的EO-1 Hyperion 高光谱数据岩性分类中, 并与传统的光谱角制图方法进行比较。结果表明, 扩展的单类支持向量机方法的岩性分类精度显著高于光谱角制图方法, 是一种新的可用于高光谱数据的岩性分类方法。 关键词 高光谱; 单类支持向量机; 光谱角制图; 岩性分类 中图分类号 P627 Lithologic Mapping Using EO-1 Hyperion Data and Extended OCSVM ZHANG Xiya, XU Haiqing, LI Peijun Key words hyperspectral data; OCSVM; SAM; lithologic classification 参考文献 ? Institute of Remote Sensing and Geographic Information System, Peking University, Beijing 100871; ? Corresponding author, E-mail: pjli@https://www.sodocs.net/doc/b33843047.html, Abstract An extended one-class support vector machine (OCSVM) was applied to lithologic mapping from the EO-1 Hyperion hyperspectral data, and it has been evaluated in terms of classification accuracy. First OCSVM was separately used to extract each lithologic unit of interest. The pixel which was classified to different classes simultaneously was then assigned as the class with smallest distance to the hyperplane. In this way, the extended OCSVM can be used for extracting several lithologic units of interest. The extended OCSVM method was used in lithologic classification from the EO-1 Hyperion hyperspectral data in Junggar area, Xinjiang and compared with the spectral angle mapper (SAM) method. The results showed that the extended OCSVM method outperformed the SAM method in lithologic classification. The extended OCSVM is a useful and effective method for lithologic classification from hyperspectral remote sensing data. [1] Chica-Olmo M, Arbarca-Hernandez F. Computing geostatistical image texture for remotely sensed data classification. Computers & Geosciences, 2000, 26(4): 373–383 [2] Schetselaar E M, Chung J F, Kim K E. Integration of Landsat TM, Gamma-ray, magnetic, and field data to discriminate lithological units in vegetated granite-gneiss terrain. Remote Sensing of Environment, 2000, 71: 89–105 [3] Rowan L C, Mars J C. Lithologic mapping in the mountain pass, California area using advanced spaceborne thermal emission and reflection

(完整word版)支持向量机(SVM)原理及应用概述分析

支持向量机(SVM )原理及应用 一、SVM 的产生与发展 自1995年Vapnik (瓦普尼克)在统计学习理论的基础上提出SVM 作为模式识别的新方法之后,SVM 一直倍受关注。同年,Vapnik 和Cortes 提出软间隔(soft margin)SVM ,通过引进松弛变量i ξ度量数据i x 的误分类(分类出现错误时i ξ大于0),同时在目标函数中增加一个分量用来惩罚非零松弛变量(即代价函数),SVM 的寻优过程即是大的分隔间距和小的误差补偿之间的平衡过程;1996年,Vapnik 等人又提出支持向量回归 (Support Vector Regression ,SVR)的方法用于解决拟合问题。SVR 同SVM 的出发点都是寻找最优超平面(注:一维空间为点;二维空间为线;三维空间为面;高维空间为超平面。),但SVR 的目的不是找到两种数据的分割平面,而是找到能准确预测数据分布的平面,两者最终都转换为最优化问题的求解;1998年,Weston 等人根据SVM 原理提出了用于解决多类分类的SVM 方法(Multi-Class Support Vector Machines ,Multi-SVM),通过将多类分类转化成二类分类,将SVM 应用于多分类问题的判断:此外,在SVM 算法的基本框架下,研究者针对不同的方面提出了很多相关的改进算法。例如,Suykens 提出的最小二乘支持向量机 (Least Square Support Vector Machine ,LS —SVM)算法,Joachims 等人提出的SVM-1ight ,张学工提出的中心支持向量机 (Central Support Vector Machine ,CSVM),Scholkoph 和Smola 基于二次规划提出的v-SVM 等。此后,台湾大学林智仁(Lin Chih-Jen)教授等对SVM 的典型应用进行总结,并设计开发出较为完善的SVM 工具包,也就是LIBSVM(A Library for Support Vector Machines)。LIBSVM 是一个通用的SVM 软件包,可以解决分类、回归以及分布估计等问题。 二、支持向量机原理 SVM 方法是20世纪90年代初Vapnik 等人根据统计学习理论提出的一种新的机器学习方法,它以结构风险最小化原则为理论基础,通过适当地选择函数子集及该子集中的判别函数,使学习机器的实际风险达到最小,保证了通过有限训练样本得到的小误差分类器,对独立测试集的测试误差仍然较小。 支持向量机的基本思想:首先,在线性可分情况下,在原空间寻找两类样本的最优分类超平面。在线性不可分的情况下,加入了松弛变量进行分析,通过使用非线性映射将低维输

基于数据数量对支持向量机和BP神经网络性能分析

基于数据数量对支持向量机和BP神经网络性能分析 摘要 本文在阐述创新型预测模型理论的基础上,分别利用基于BP神经网络和支持向量机的玉米开盘预测模型,在样本大小不同情况下对玉米开盘价格指数进行了研究和预测。研究结果表明,基于支持向量机的预测模型在预测精度、运算时间、最优性等方面均优于基于BP神经网络的预测模型。 近年来,以GARCH类模型、SV类模型等为代表的预测模型在资产价格预测方面获得了广泛的应用,但是这些模型在研究中往往受到样本数据分布、样本容量等方面的限制。因此,包括以神经网络、支持向量机等智能算法为基础的创新型预测模型,在金融资产价格预测方面得到了广泛的应用。本文在阐述创新型预测模型理论的基础上,分别利用基于神经网络、支持向量机的预测模型,在不同样本大小的基础上,就玉米开盘价格分别用支持向量机和单隐层和双隐层的BP神经网络做预测,比较预测结果,对比分析支持向量机和BP神经网络在样本大小不同的情况下两者的性能分析。 关键词:支持向量回归BP神经网络libsvm工具箱

一、模型介绍 1、模型介绍1.1 支持向量机回归 1.1.1 支持向量机回归模型的介绍 在机器学习中,支持向量机(SVM,还支持矢量网络)是与相关的学习算法有关的监督学习模型,可以分析数据,识别模式,用于分类和回归分析。给定一组训练样本,每个标记为属于两类,一个SVM 训练算法建立了一个模型,分配新的实例为一类或其他类,使其成为非概率二元线性分类。一个SVM 模型的例子,如在空间中的点,映射,使得所述不同的类别的例子是由一个明显的差距是尽可能宽划分的表示。新的实施例则映射到相同的空间中,并预测基于它们落在所述间隙侧上属于一个类别。 除了进行线性分类,支持向量机可以使用所谓的核技巧,它们的输入隐含映射成高维特征空间中有效地进行非线性分类。1.1.2 支持向量回归求解过程图 1.1.3核函数的介绍 利用支持向量机解决回归问题时,需要根据求解问题的特性,通过使用恰当的核函数来代替内积。这个核函数不仅要在理论上要满足Mercer 条件,而且在实际应用中要能够反映训练样本数据的分布特性。因此,在使用支持向量机解决某一特定的回归问题时,选择适当的核函数是一个关键因素。在实际的应用中,最常用的核函数有4种:线性核、多项式核、径向基(简称RBF)核、多层感知机核等。函数关系表达式分别如下: (1)线性核函数 ) (),(x x x x K i i ?=

支持向量机分类器

支持向量机分类器 1 支持向量机的提出与发展 支持向量机( SVM, support vector machine )是数据挖掘中的一项新技术,是借助于最优化方法来解决机器学习问题的新工具,最初由V.Vapnik 等人在1995年首先提出,近几年来在其理论研究和算法实现等方面都取得了很大的进展,开始成为克服“维数灾难”和过学习等困难的强有力的手段,它的理论基础和实现途径的基本框架都已形成。 根据Vapnik & Chervonenkis的统计学习理论 ,如果数据服从某个(固定但未知的)分布,要使机器的实际输出与理想输出之间的偏差尽可能小,则机器应当遵循结构风险最小化 ( SRM,structural risk minimization)原则,而不是经验风险最小化原则,通俗地说就是应当使错误概率的上界最小化。SVM正是这一理论的具体实现。与传统的人工神经网络相比, 它不仅结构简单,而且泛化( generalization)能力明显提高。 2 问题描述 2.1问题引入 假设有分布在Rd空间中的数据,我们希望能够在该空间上找出一个超平面(Hyper-pan),将这一数据分成两类。属于这一类的数据均在超平面的同侧,而属于另一类的数据均在超平面的另一侧。如下图。 比较上图,我们可以发现左图所找出的超平面(虚线),其两平行且与两类数据相切的超平面(实线)之间的距离较近,而右图则具有较大的间隔。而由于我们希望可以找出将两类数据分得较开的超平面,因此右图所找出的是比较好的超平面。 可以将问题简述如下: 设训练的样本输入为xi,i=1,…,l,对应的期望输出为yi∈{+1,-1},其中+1和-1分别代表两类的类别标识,假定分类面方程为ω﹒x+b=0。为使分类面对所有样本正确分类并且具备分类间隔,就要求它满足以下约束条件: 它追求的不仅仅是得到一个能将两类样本分开的分类面,而是要得到一个最优的分类面。 2.2 问题的数学抽象 将上述问题抽象为: 根据给定的训练集

SVM支持向量机白话入门

(一)SVM的八股简介 支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中[10]。 支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Accuracy)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以期获得最好的推广能力[14](或称泛化能力)。 以上是经常被有关SVM 的学术文献引用的介绍,有点八股,我来逐一分解并解释一下。 Vapnik是统计机器学习的大牛,这想必都不用说,他出版的《Statistical Learning Theory》是一本完整阐述统计机器学习思想的名著。在该书中详细的论证了统计机器学习之所以区别于传统机器学习的本质,就在于统计机器学习能够精确的给出学习效果,能够解答需要的样本数等等一系列问题。与统计机器学习的精密思维相比,传统的机器学习基本上属于摸着石头过河,用传统的机器学习方法构造分类系统完全成了一种技巧,一个人做的结果可能很好,另一个人差不多的方法做出来却很差,缺乏指导和原则。 所谓VC维是对函数类的一种度量,可以简单的理解为问题的复杂程度,VC 维越高,一个问题就越复杂。正是因为SVM关注的是VC维,后面我们可以看到,SVM解决问题的时候,和样本的维数是无关的(甚至样本是上万维的都可以,这使得SVM很适合用来解决文本分类的问题,当然,有这样的能力也因为引入了核函数)。 结构风险最小听上去文绉绉,其实说的也无非是下面这回事。

基于支持向量机的模式识别

基于支持向量机的模式识别 摘要 随着人工智能和机器学习学科的不断发展,传统的机器学习方法已经不能适应学科的快速发展。而支持向量机(Support Vector Machine,SVM)则是根据统计学习理论提出的一种新型且有效的机器学习方法,它以结构风险最小化和VC 维理论为基础,适当的选择函数子集和决策函数,使学习机器的实际风险最小化,通过对有限的训练样本进行最小误差分类。支持向量机能够较好的解决小样本、非线性、过学习和局部最小等实际问题,同时具有较强的推广能力。支持向量机的样本训练问题实质是求解一个大的凸二次规划问题,从而所得到的解也是全局最优的,通常也是唯一的解。 本文以支持向量机理论为基础,对其在模式识别领域的应用进行系统的研究。首先运用传统的增式支持向量机对历史数据分类,该分类结果表明对于较复杂的数据辨识时效果不佳。然后运用改进后的增式支持向量机对历史数据进行分类,再利用支持向量机具有的分类优势对数据进行模式识别。 本文对传统增式支持向量机算法和改进增式支持向量机算法进行了仿真对比,仿真结果体现了改进增式支持向量机算法的优越性,改进增式支持向量机算法减少了训练样本集的样本数量,优化了时间复杂度和空间复杂度,提高了分类效率。该方法应用于模式识别领域中能明显提高系统的准确率。 关键词:支持向量机;模式识别;多类分类;增式算法

Pattern Recognition Based on Support Vector Machine Abstract With the discipline of artificial intelligence and machine learning continues to evolve, traditional machine learning methods can not adapt to the rapid development of disciplines. The support vector machine (Support Vector Machine, SVM) is based on statistical learning theory a new and effective machine learning method, which to base on the structural risk minimization and the VC dimension theory, a function subset of appropriate choice and decision-making function of appropriate choice, the learning machine to minimize the actual risk, through the limited training samples for minimum error classification. SVM can solve the small sample, nonlinear, over learning and local minimum practical issues, but also it has a strong outreach capacity. Sample training problems of Support Vector Machines to solve really a large convex quadratic programming problems, and to the global optimal solution is also obtained, usually the only solution. This paper based on support vector machine theory, its application in the field of pattern recognition system. First, by using the traditional incremental support vector machine classification of historical data, the classification results show that the data for the identification of more complex when the results are poor. And then improved by the use of incremental Support Vector Machines to classify the historical data, and then use the classification of Support Vector Machine has advantages for data pattern recognition. This type of traditional incremental Support Vector Machine and improved incremental Support Vector Machine algorithm was simulated comparison, simulation results demonstrate the improved incremental Support Vector Machine algorithm by superiority, improved incremental Support Vector Machine algorithm reduces the set of training samples number of samples,and to optimize the time complexity and space complexity, improving the classification efficiency. The method is applied to pattern recognition can significantly improve the accuracy of the system. Key words: Support Vector Machine; Pattern Recognition; Multi-class Classification; Incremental Algorithm

单实例分类算法研究

第33卷第4期2009年8月 南京理工大学学报(自然科学版) Journal of Nanjing University of Science and Technol ogy (Natural Science ) Vol .33No .4Aug .2009  收稿日期:2008-10-17 修回日期:2009-05-18 基金项目:国家自然科学基金(60603029) 作者简介:潘志松(1973-),男,博士,副教授,主要研究方向:模式识别,网络安全,E 2mail:Hot pzs@hot m ail .com 。 单实例分类算法研究 潘志松1 ,燕继坤2 ,杨绪兵3 ,缪志敏1 ,陈 斌 3 (1.解放军理工大学指挥自动化学院,江苏南京210007;2.西南电子研究所,四川成都610041; 3.南京航空航天大学计算机科学与技术学院,江苏南京210016) 摘 要:针对不平衡分类问题的极端情况,即用于训练的样本极少甚至只有一个实例,该文提出 了一种单实例分类算法,这种方法使用球面作为分类面,在目标类的单实例在球内和反类尽量位于球面外的约束条件下,最大化该分类球面的半径,该方法能够有效地处理线性可分的数据分布。当输入样本分布结构呈高度非线性时,该算法通过核映射将低维输入空间中的非线性可分问题变换为高维特征空间中可能的线性可分问题,并以内积形式刻画,最终在特征空间上通过核技巧获得原问题的解决。通过对标准数据集和实际数据集的实验,验证了单实例分类算法在处理数据不平衡问题上的有效性。 关键词:单实例;核方法;分类;支持向量中图分类号:TP 18 文章编号:1005-9830(2009)04-0444-06 Cl assi fi cati on Algorith m Based on Si n gle Sample P AN Zhi 2s ong 1 ,Y AN J i 2kun 2 ,Y ANG Xu 2bing 3 ,M I A O Zhi 2m in 1 ,CHEN B in 3 (1.I nstitute of Command Aut omati on,P LA University of Science and Technol ogy,Nanjing 210007,China; 2.The W est 2South Electr onics I nstitute,Chengdu 610041,China; 3.Depart m ent of Computer Science and Engineering,Nanjing University of Aer onautics &A str onautics,Nanjing 210016,China )Abstract:I n order t o s olve the extre me situati on that only a few target exa mp les or only one can be used in training the classificati on,a single sa mp le classificati on algorithm is p resented here .Spheri 2cal surfaces are app lied as classified hypers phere,and the largest radius can be obtained encl osing the single sa mp le under the restricti on that all outliers are outside the hy pers phere .It fails when the distributi on of input patterns is comp lex .The classifier app lies kernel means,perfor m ing a nonlinear data transfor mati on int o s ome high di m ensi onal feature s pace,increases the p r obability of the linear separability of the patterns within the feature s pace and theref ore s olves the original classificati on p r oble m.The paper verifies that the algorith m can effectively deal with the unbalanced data classifi 2cati on on vari ous synthetic and UC I datasets . Key words:single sa mp les;kernel means;classificati on;support vect ors

基于支持向量机的故障诊断

基于支持向量机的故障诊断 摘要 在化工生产过程中,为了准确检测故障,减少机械的损失和人员的伤亡,提出了支持向量机算法。支持向量机是基于统计学理论的方法,具有较强的逼近能力和泛化能力。但是在最近几年中,一种基于主元分析的过程监控方法已在工业过程中得到应用,主元分析方法通过正常工况下的历史数据建立的统计模型能很好地检测过程的异常变化和故障的发生。本文主要就这两种方法展开运用。在实际生产过程中,一方面,主元分析方法故障诊断能力有限;另一方面,存在着大量的历史数据,既有正常工况下的数据,又有故障数据,如何充分利用各种类别数据,提高故障诊断能力,具有十分重要的意义。 本文首先运用传统支持向量机算法对历史数据进行分类,分类结果表明该方法对于简单的数据比较容易区分,但是在数据复杂,可辨性较低的情况下,效果不明显。然后运用改进了的传统支持向量机算法对历史数据进行分类,即运用主元分析方法提取各数据的主要特征,再利用支持向量机具有的分类优势对过程数据进行在线诊断,从而提高故障诊断能力。 本文对传统支持向量机算法和改进支持向量机算法进行了仿真比较,仿真结果体现了改进支持向量机算法的优越性;改进支持向量机算法提高了传统支持向量机算法分类的正确率。该种方法在实际工程中能够提高系统的诊断性能,减少不必要的损失。 关键词:支持向量机;故障诊断;主元分析方法;田纳西-伊斯曼过程;

Fault Diagnosis Based on Support Vector Machine Abstract In order to detect faults accurately, reduce mechanical lossesand casualties in the chemical production process, the algorithm of support vector machines was proposed. Based on the statistics theories, support vector machine is a method of approximation ability and generalization ability. Recently, a new method of process monitoring based on principal component analysis is applied in industrial production process. The statistical model built by principal component analysis method using historic data could detect unusual changes and faults happening in the process accurately. This research is on the application of these two methods. In the actual production process, principal component analysis has certain limitations in diagnosing fault. Besides, the vast volume of historical data was collected in both normal and unusual conditions. It is of great importance to make full use of the data to improve the capacity of fault diagnosis. Firstly, this paper classified the historical data by applying the traditional support vector machine algorithm. The results showed that traditionalmethod works well on simple data sets. However, it showed insignificant effects under a complex and low-differentiability condition. In succession, an advanced approach was used to improve the traditional method, which was approached to enhance the ability of fault diagnosis by using principal component analysis to extract the main features of the data, then with the use of support vector machine which has the advantages of online diagnostic on process data to classify. In this paper, the traditional support vector machine algorithm and advanced support vector machine algorithm were compared in simulation process, the results indicates the superiority of the advanced method which improved the correctness of the traditional one on classification. It could also improve the diagnostic performance in the actual process and reduce unnecessary losses consequently. Key words: Support Vector Machine; Fault Diagnosis; Principal Component Analysis; Tennessee Eastman Process

支持向量机及支持向量回归简介

3.支持向量机(回归) 3.1.1 支持向量机 支持向量机(SVM )是美国Vapnik 教授于1990年代提出的,2000年代后成为了很受欢迎的机器学习方法。它将输入样本集合变换到高维空间使得其分离性状况得到改善。它的结构酷似三层感知器,是构造分类规则的通用方法。SVM 方法的贡献在于,它使得人们可以在非常高维的空间中构造出好的分类规则,为分类算法提供了统一的理论框架。作为副产品,SVM 从理论上解释了多层感知器的隐蔽层数目和隐节点数目的作用,因此,将神经网络的学习算法纳入了核技巧范畴。 所谓核技巧,就是找一个核函数(,)K x y 使其满足(,)((),())K x y x y φφ=,代 替在特征空间中内积(),())x y φφ(的计算。因为对于非线性分类,一般是先找一个非线性映射φ将输入数据映射到高维特征空间,使之分离性状况得到很大改观,此时在该特征空间中进行分类,然后再返会原空间,就得到了原输入空间的非线性分类。由于内积运算量相当大,核技巧就是为了降低计算量而生的。 特别, 对特征空间H 为Hilbert 空间的情形,设(,)K x y 是定义在输入空间 n R 上的二元函数,设H 中的规范正交基为12(),(),...,(), ...n x x x φφφ。如果 2 2 1 (,)((),()), {}k k k k k K x y a x y a l φφ∞ == ∈∑ , 那么取1 ()() k k k x a x φφ∞ ==∑ 即为所求的非线性嵌入映射。由于核函数(,)K x y 的定义 域是原来的输入空间,而不是高维的特征空间。因此,巧妙地避开了计算高维内 积 (),())x y φφ(所需付出的计算代价。实际计算中,我们只要选定一个(,)K x y ,

支持向量机数据分类预测

支持向量机数据分类预测 一、题目——意大利葡萄酒种类识别 Wine数据来源为UCI数据库,记录同一区域三种品种葡萄酒的化学成分,数据有178个样本,每个样本含有13个特征分量。50%做为训练集,50%做为测试集。 二、模型建立 模型的建立首先需要从原始数据里把训练集和测试集提取出来,然后进行一定的预处理,必要时进行特征提取,之后用训练集对SVM进行训练,再用得到的模型来预测试集的分类。 三、Matlab实现 3.1 选定训练集和测试集 在178个样本集中,将每个类分成两组,重新组合数据,一部分作为训练集,一部分作为测试集。 % 载入测试数据wine,其中包含的数据为classnumber = 3,wine:178*13的矩阵,wine_labes:178*1的列向量 load chapter12_wine.mat; % 选定训练集和测试集 % 将第一类的1-30,第二类的60-95,第三类的131-153做为训练集 train_wine = [wine(1:30,:);wine(60:95,:);wine(131:153,:)]; % 相应的训练集的标签也要分离出来 train_wine_labels = [wine_labels(1:30);wine_labels(60:95);wine_labels(131:153)]; % 将第一类的31-59,第二类的96-130,第三类的154-178做为测试集 test_wine = [wine(31:59,:);wine(96:130,:);wine(154:178,:)]; % 相应的测试集的标签也要分离出来 test_wine_labels = [wine_labels(31:59);wine_labels(96:130);wine_labels(154:178)]; 3.2数据预处理 对数据进行归一化: %% 数据预处理 % 数据预处理,将训练集和测试集归一化到[0,1]区间 [mtrain,ntrain] = size(train_wine); [mtest,ntest] = size(test_wine); dataset = [train_wine;test_wine]; % mapminmax为MATLAB自带的归一化函数 [dataset_scale,ps] = mapminmax(dataset',0,1); dataset_scale = dataset_scale';

基于支持向量机的分类方法

基于支持向量机的分类方法 摘要:本文首先概述了支持向量机的相关理论,引出了支持向量机的基本模型。当训练集的两类样本点集重合区域很大时,线性支持向量分类机就不适用了,由此介绍了核函数相关概念。然后进行了核函数的实验仿真,并将支持向量机应用于实例肿瘤诊断,建立了相应的支持向量机模型,从而对测试集进行分类。最后提出了一种支持向量机的改进算法,即根据类向心度对复杂的训练样本进行预删减。 1、支持向量机 给定训练样本集1122{[,],[,], ,[,]}()l l l T a y a y a y Y =∈Ω?L ,其中n i a R ∈Ω=,Ω是输入空间,每一个点i a 由n 个属性特征组成,{1,1},1,,i y Y i l ∈=-=L 。分类 就是在基于训练集在样本空间中找到一个划分超平面,将不同的类别分开,划分超平面可通过线性方程来描述: 0T a b ω+= 其中12(;;;)d ωωωω=K 是法向量,决定了超平面的方向,b 是位移项,决定 了超平面与原点之间的距离。样本空间中任意点到超平面的距离为|| |||| T a b r ωω+=。 支持向量、间隔: 假设超平面能将训练样本正确分类,即对于[,]i i a y T ∈,若1i y =+,则有 0T i a b ω+>,若1i y =-,则有0T i a b ω+<。则有距离超平面最近的几个训练样本点使得 11 11 T i i T i i a b y a b y ωω?+≥+=+?+≤-=-? 中的等号成立,这几个训练样本点被称为支持向量;两个异类支持向量到超平面 的距离之和2 |||| r ω=被称为间隔。 支持向量机基本模型: 找到具有最大间隔的划分超平面,即 ,2max ||||..()1,1,2,...,b T i i s t y a b i m ωωω+≥= 这等价于 2 ,||||min 2..()1,1,2,...,b T i i s t y a b i m ωωω+≥= 这就是支持向量机(SVM )的基本模型。 支持向量机问题的特点是目标函数2 ||||2 ω是ω的凸函数,并且约束条件都是 线性的。

支持向量机(SVM)简明学习教程

支持向量机(SVM )简明学习教程 一、最优分类超平面 给定训练数据),(,),,(11l l y x y x ,其中n i R x ∈,}1,1{-∈i y 。 若1=i y ,称i x 为第一类的,I ∈i x ;若1-=i y ,称i x 为第二类的,II ∈i x 。 若存在向量?和常数b ,使得?????II ∈<-I ∈>-i i T i i T x if b x x if b x ,0,0?? (1),则该训练集可被超平面 0=-b x T ?分开。 (一)、平分最近点法 求两个凸包集中的最近点d c ,',做d c ,'的垂直平分面x ,即为所求。 02 )(2 22 2 =-- -?-=-d c x d c x d x c T ,则d c -=?,2 ) ()(d c d c b T +-= 。 求d c ,,?? ?? ?≥==≥==∑∑∑∑-=-===. 0,1, . 0,1,1 111 i y i y i i i y i y i i i i i i x d x c αα ααα α

所以2 1 1 2 ∑∑-==-= -i i y i i y i i x x d c αα,只需求出最小的T l ),,(1ααα =。 算法:1)求解. 0,1,1..2121min 1 1 2 12 11≥===-∑∑∑∑∑-===-==i y i y i l i i i i y i i y i i i i i i t s x y x x αααααα;2)求最优超平面0=-b x T ?。 (二)、最大间隔法 附加条件1=?,加上(1)式。记C x C i T x i >=I ∈??min )(1,C x C i T x i <=II ∈??max )(2。 使?????II ∈<-I ∈>-=-= i i T i i T x if b x x if b x t s C C ,0,0,1..2 ) ()()(max 21??????ρ (2) 可以说明在(2)下可以得到一个最优超平面,且该超平面是唯一的。 如何快速生成一个最优超平面??? 考虑等价问题:求权向量w 和b ,使?????II ∈-<-I ∈>-i i T i i T x if b x w x if b x w ,1,1,且?最小。 这种写法已经包含最大间隔。 事实上b C C C x if C b x w x if C b x w i i T i i T =+=??????II ∈=+-))()((21),(1),(121021????中心,而w w =?, 故w b C = ,w C C 1 2)()()(21=-=???ρ。 所以(2)式可以转化为求解: 1 )(..min ≥-b x w y t s w i T i (3) 总结,求最优超平面,只需求解: 1 )(..2 1)(min ≥-= Φb x w y t s w w w i T i T (QP1) 对(QP1)构造lagrange 函数: 令∑=---=l i i T i i b x w y w b w L 1 2]1)([21),,(αα,其中0),,(1≥=T l ααα 为lagrange 乘子。 下求L 的鞍点:

用于分类的支持向量机

文章编号:100228743(2004)0320075204 用于分类的支持向量机 黄发良,钟 智Ξ (1.广西师范大学计算机系,广西桂林541000;  2.广西师范学院数学与计算机科学系,广西南宁530001) 摘 要:支持向量机是20世纪90年代中期发展起来的机器学习技术,建立在结构风险最小化原理之上的支持向量机以其独有的优点吸引着广大研究者,该文着重于用于分类的支持向量机,对其基本原理与主要的训练算法进行介绍,并对其用途作了一定的探索. 关键词:支持向量机;机器学习;分类 中图分类号:TP181 文献标识码:A 支持向量机S VM (Support Vector Machine )是AT&T Bell 实验室的V.Vapnik 提出的针对分类和回归问题的统计学习理论.由于S VM 方法具有许多引人注目的优点和有前途的实验性能,越来越受重视,该技术已成为机器学习研究领域中的热点,并取得很理想的效果,如人脸识别、手写体数字识别和网页分类等. S VM 的主要思想可以概括为两点:(1)它是针对线性可分情况进行分析,对于线性不可分的情况,通过使用非线性映射算法将低维输入空间线性不可分的样本转化为高维特征空间使其线性可分,从而使得高维特征空间采用线性算法对样本的非线性特征进行线性分析成为可能;(2)它基于结构风险最小化理论之上在特征空间中建构最优分割超平面,使得学习器得到全局最优化,并且在整个样本空间的期望风险以某个概率满足一定上界. 1 基本原理 支持向量机理论最初来源于数据分类问题的处理,S VM 就是要寻找一个满足要求的分割平面,使训练集中的点距离该平面尽可能地远,即寻求一个分割平面使其两侧的margin 尽可能最大. 设输入模式集合{x i }∈R n 由两类点组成,如果x i 属于第1类,则y i =1,如果x i 属于第2类,则y i =-1,那么有训练样本集合{x i ,y i },i =1,2,3,…,n ,支持向量机的目标就是要根据结构风险最小化原理,构造一个目标函数将两类模式尽可能地区分开来,通常分为两类情况来讨论,(1)线性可分,(2)线性不可分. 1.1 线性可分情况 在线性可分的情况下,就会存在一个超平面使得训练样本完全分开,该超平面可描述为: w ?x +b =0(1) 其中,“?”是点积,w 是n 维向量,b 为偏移量. 最优超平面是使得每一类数据与超平面距离最近的向量与超平面之间的距离最大的这样的平面.最优超平面可以通过解下面的二次优化问题来获得: min <(w )= 12‖w ‖2(2) Ξ收稿日期:2004202206作者简介:黄发良(1975-),男,湖南永州人,硕士研究生;研究方向:数据挖掘、web 信息检索. 2004年9月 广西师范学院学报(自然科学版)Sep.2004 第21卷第3期 Journal of G u angxi T eachers Education U niversity(N atural Science Edition) V ol.21N o.3

相关主题