搜档网
当前位置:搜档网 › 小波分解和重构算法作业

小波分解和重构算法作业

小波分解和重构算法作业
小波分解和重构算法作业

小波的分解和重构

小波分析第二次作业

在实际操作中,一般我们是应用matlab在计算机上处理小波变换。信号总是离散的。一般包括单层分解重构,多层分解重构等方法。下面探讨一维离散小波变换在matlab中的应用。

1.单层小波分解

%读入信号

load leleccum;

s=leleccum(1:4000);

%通过db4小波基进行离散小波变换

[cA1,cD1]=dwt(s,'db4');

figure(1), subplot(311);

plot(s)

title('Original signal');

subplot(323); plot(cA1);title('Approx.coef.for db4');

subplot(324); plot(cD1);title('Detail coef.for db4');

上图我们可以看到经过db4小波一层分解之后的高频信息和低频信息。

2.单尺度一维小波的重构

%用小波函数db4进行信号重构

ss=idwt(cA1,cD1,'db4');

err=norm(s-ss);

figure(2),plot(ss);

重构完成后的误差为3.53e-10。

重构完成后的函数与分解前的函数相同,仅仅存在很小很小可以忽略为0的误差。

3.多层小波分解

上文是使用单层小波分解,下面使用wavedec函数进行多层小波分解,并显示分解后的低频高频信息。

%通过db4小波基进行三尺度小波分解

[c,l]=wavedec(s,3,'db4');

a1=appcoef(c,l,'db4',1);%提取尺度1的低频系数

a2=appcoef(c,l,'db4',2);%提取尺度2的低频系数

a3=appcoef(c,l,'db4',3);%提取尺度3的低频系数

figure(3);

subplot(321);plot(a1);title('尺度1的低频系数');

subplot(323);plot(a2);title('尺度2的低频系数');

subplot(325):plot(a3):title('尺度3的低频系数');

d1=detcoef(c,l,1);

d2=detcoef(c,l,2);

d3=detcoef(c,l,3);

figure(3);subplot(322);plot(d1);title('尺度1的高频系数');

figure(3);subplot(324);plot(d2);title('尺度2的高频系数');

figure(3);subplot(326);plot(d2);title('尺度3的高频系数');

由上图可以清晰的看出低频的信息和高频的信息。

4.多层小波重构

(1)重构原信号

上文中,使用wavedec函数对小波进行了db4,三尺度分解,现在,使用waverec将原信号重构,(包括低频和高频)。

c1=[a3,d3,d2,d1];

s1=waverec(c1,l,'db4');

figure(4);

plot(s1);

title('重构信号);

err2=norm(s-s1);

重构后误差为1.09E-09

(2)高频置零后重建

当然,如果认为高频信息是不需要的时候,我们可以将高频信息置零后重构低频信息。d3=zeros(1,length(d3));

d2=zeros(1,length(d2));

d1=zeros(1,length(d1));

c1=[a3,d3,d2,d1];

s1=waverec(c1,l,'db4');

figure(4);

subplot(211),plot(s);title('原始信号');

subplot(212),plot(s1);title('重构信号');

这样的话,将全部高频信息置零后重构,当然,也可以将其中一层,两层置零,取决于具体的应用。

总结:

通过分解重构算法的实践,对于我这个对matlab一点基础都没有的人来说,学习到很多。不仅仅是小波的算法,而是所有的操作的一种学习。这是一种很不错的学习经历。

主要参考文献:

孔玲军.MATLAB小波分析超级学习手册.北京.人民邮电出版社.2014.

小波分析考试题(附答案)

《小波分析》试题 适用范围:硕士研究生 时 间:2013年6月 一、名词解释(30分) 1、线性空间与线性子空间 解释:线性空间是一个在标量域(实或复)F 上的非空矢量集合V ;设V1是数域K 上的线性空间V 的一个非空子集合,且对V 已有的线性运算满足以下条件 (1) 如果x 、y V1,则x +y V1; (2) 如果x V1,k K ,则kx V1, 则称V1是V 的一个线∈∈∈∈∈性子空间或子空间。2、基与坐标 解释:在 n 维线性空间 V 中,n 个线性无关的向量,称为 V 的一组n 21...εεε,,,基;设是中任一向量,于是 线性相关,因此可以被基αn 21...εεε,,,线性表出:,其中系数 αεεε,,,,n 21...n 21...εεε,,,n 2111an ...a a εεεα+++=是被向量和基唯一确定的,这组数就称为在基下的坐标,an ...a a 11,,,αn 21...εεε,,,记为 () 。an ...a a 11,,,3、内积 解释:内积也称为点积、点乘、数量积、标量积。,()T n x x x x ,...,,21= ,令,称为x 与y 的内积。 ()T n y y y y ,...,,21=[]n n y x y x y x y x +++=...,2211[]y x ,4、希尔伯特空间 解释:线性 完备的内积空间称为Hilbert 空间。线性(linearity ):对任意 f , g ∈H ,a ,b ∈R ,a*f+b*g 仍然∈H 。完备(completeness ):空间中的任何柯西序列都收敛在该空间之内。内积(inner product ):,它满足:,()T n f f f f ,...,,21=时。 ()T n g g g g ,...,,21=[]n n y x y x y x y x +++=...,22115、双尺度方程 解释:所以都可以用空间的一个1010,V W t V V t ?∈?∈)()(ψ?) ()和(t t ψ?1V

小波分解与重构代码

load leleccum; s = leleccum(1:3920); % 用db1小波函数对信号进行三尺度小波分解 [C,L]=wavedec(s,2,'db1'); figure(1); plot(s); title('leleccum原始信号'); % 提取尺度1的低频系数 cA1 = appcoef(C,L,'db1',1); %用小波分解框架[C.L]计算1层低频系数的近似值,小波基为db1 % 提取尺度2的低频系数 cA2 = appcoef(C,L,'db1',2); figure(2); subplot(2,1,1); plot(cA1); title('尺度1的低频系数'); subplot(2,1,2); plot(cA2); title('尺度2的低频系数'); % 提取尺度1的高频系数 cD1 = detcoef(C,L,1); %用小波分解框架[C.L]计算1层高频系数的近似值,小波基为db1 % 提取尺度2的高频系数 cD2 = detcoef(C,L,2); figure(3); subplot(2,1,1); plot(cD1); title('尺度1的高频系数'); subplot(2,1,2); plot(cD2); title('尺度2的高频系数');

我给你大概标注了一下,但是你的程序有问题, % 小波图像压缩 - RGB 图像 clear all; close all; % 读取图像 im = input('输入图像');%输入图像名称,要加分号 X=imread(im); % 输入要分解的小波层数和小波 n=input('输入要分解的小波层数');%输入所要分解的层数 wname = input('输入小波名称');%输入小波名称,也要加分号 x = double(X); NbColors = 255; map = gray(NbColors); x = uint8(x); %把RGB图像转换成灰度图 % x = double(X); % xrgb = 0.2990*x(:,:,1) + 0.5870*x(:,:,2) + 0.1140*x(:,:,3); % colors = 255; % x = wcodemat(xrgb,colors); % map = pink(colors); % x = uint8(x); % 对图像x进行n维小波分解 x=imread(’ D:\a.jpg’); map=x; n=3 wname='sym5'; [c,s] = wavedec2(x,n,wname); % 使用默认参数选择各层不同的阈值 alpha = 1.5; m = 2.7*prod(s(1,:)); [thr,nkeep] = wdcbm2(c,s,alpha,m) % 使用上面的阈值和硬阈值处理进行图像压缩 [xd,cxd,sxd,perf0,perfl2] = wdencmp('lvd',c,s,wname,n,thr,'h'); disp('压缩效率'); disp(perf0); % 重构(下面这个地方有问题,你这里是原始图像小波变换后进行重构,xd才是小波阀值压缩后重构的图像,cxd,sxd,是c,s经过阀值处理后得到的小波分解结构,也就是说xd=waverec2(cxd,sxd,wname);这个wdencmp函数不需要另外进行重构,你下面那些关于重构的都没用,而下面压缩后的图像才是重构后的图像,) R = waverec2(c,s,wname); rc = uint8(R); % 显示原始图像和压缩图像 subplot(221), image(x); colormap(map); title('原始图像') subplot(222), image(xd); colormap(map); title('压缩后的图像') % 显示结果 xlab1 = ['图像压缩后保留能量百分比',num2str(perfl2)];

小波变换的基本原理

10.2小波变换的基本原理 地质雷达的电磁波信号和地震波信号都是非平稳随机时变信号,长期以来,因非平稳信号处理的理论不健全,只好将其作为平稳信号来处理,其处理结果当然不满意。近年来,随着科学技术的发展和进步,国内外学术界已将注意力转向非平稳随机信号分析与处理的研究上,其中非平稳随机信号的时频表示法是研究热点之一。在这一研究中,戈勃展开、小波变换、维格纳分布与广义双线性时频分布等理论发展起来,这些方法既可以处理平稳信号过程,也可以处理非平稳随机时变信号。 小波变换是上世纪80年代中后期逐渐发展起来的一种数学分析方法。1984年法国科学家J.M OLET在分析地震波的局部特性时首先使用了小波这一术语,并用小波变换对地震信号进行处理。小波术语的含义是指一组衰减震动的波形,其振幅正负相间变化,平均值为零,是具有一定的带宽和中心频率波组。小波变换是用伸缩和平移小波形成的小波基来分解(变换)或重构(反变换)时变信号的过程。不同的小波具有不同带宽和中心频率,同一小波集中的带宽与中心频率的比是不变的,小波变换是一系列的带通滤波响应。它的数学过程与傅立叶分析是相似的,只是在傅立叶分析中的基函数是单频的调和函数,而小波分析中的基函数是小波,是一可变带宽内调和函数的组合。 小波变换在时域和频域都具有很好的局部化性质,较好地解决了时域和频域分辨率的矛盾,对于信号的低频成分采用宽时窗,对高频成分采用窄时窗。因而,小波分析特别适合处理非平稳时变信号,在语音分析和图象处理中有广泛的应用,在地震、雷达资料处理中将有良好的应用前景。 下边就小波分析的基本原理、主要作用及在雷达资料处理中的应用三方面作以介绍。 10.2.1小波分析的基本原理 小波函数的数学表达

近代数学 小波 简答题+答案

1什么是小波函数?(或小波函数满足什么条件?) 答:设)()(2R L t ∈?,且其Fourier 变换)(ω? 满足可允许性(admissibility )条件 +∞

小波分析考试题及答案

一、叙述小波分析理论发展的历史和研究现状 答:傅立叶变换能够将信号的时域和特征和频域特征联系起来,能分别从信号的时域和频域观察,但不能把二者有机的结合起来。这是因为信号的时域波形中不包含任何频域信息,而其傅立叶谱是信号的统计特性,从其表达式中也可以看出,它是整个时间域内的积分,没有局部化分析信号的功能,完全不具备时域信息,也就是说,对于傅立叶谱中的某一频率,不能够知道这个频率是在什么时候产生的。这样在信号分析中就面临一对最基本的矛盾——时域和频域的局部化矛盾。 在实际的信号处理过程中,尤其是对非常平稳信号的处理中,信号在任一时刻附近的频域特征很重要。如柴油机缸盖表明的振动信号就是由撞击或冲击产生的,是一瞬变信号,单从时域或频域上来分析是不够的。这就促使人们去寻找一种新方法,能将时域和频域结合起来描述观察信号的时频联合特征,构成信号的时频谱,这就是所谓的时频分析,亦称为时频局部化方法。 为了分析和处理非平稳信号,人们对傅立叶分析进行了推广乃至根本性的革命,提出并开发了一系列新的信号分析理论:短时傅立叶变换、时频分析、Gabor 变换、小波变换Randon-Wigner变换、分数阶傅立叶变换、线形调频小波变换、循环统计量理论和调幅—调频信号分析等。其中,短时傅立叶变换和小波变换也是因传统的傅立叶变换不能够满足信号处理的要求而产生的。 短时傅立叶变换分析的基本思想是:假定非平稳信号在不同的有限时间宽度内是平稳信号,从而计算出各个不同时刻的功率谱。但从本质上讲,短时傅立叶变换是一种单一分辨率的信号分析方法,因为它使用一个固定的短时窗函数,因而短时傅立叶变换在信号分析上还是存在着不可逾越的缺陷。 小波变换是一种信号的时间—尺度(时间—频率)分析方法,具有多分辨

8.2小波分解与重构

8.2信号分解与合成的Mallat算法 一维信号的分解与合成 1. 正交镜像滤波器 H伽1IH㈣1 X Higk W --- L 血b&nd o K n A 2. 一维信号的小波分解与重构算法 (Mallat ' herringbone 算法) X

、二维信号的分解与重构 rl 比 horizontal HL LL venic aJ HH

三、用Matlab实现图像的分解与合成 1. dwt2 与idwt2 dwt2为一层二维离散小波分解函数,调用格式: [cA,cH,cV,cD]=dwt2(X, 'wname' %用指定小波基对图像X进行一层二维离散小波变换分解。 wname'为小波基的名称,cA为近似 (低频)图像矩阵,cH, cV, cD分别为小波分解的水平方向细节系数,垂直方向细节系数,对角线方向细节系数。 [cA,cH,cV,cD]=dwt2(X丄o_D,Hi_D) %用指定的低通分解滤波器Lo_D和高通分解滤波 器Hi_D对图像X进行二维离散小波分解。Lo_D与

Hi_D 的长度必须一致。 idwt2 为一层二维离散小波重构函数,调用格式为: X=idwt2(cA,cH,cV ,cD,'wname') % 用指定小波重构图像X ,wname 为小波基的名称 X=idwt2(cA,cH,cV ,cD,Lo_R,Hi_R) % 用指定低通重构滤波器Lo_R 和高通重构滤波器Hi_R 重构图像X,Lo_R 与Hi_R 的长度必须一致。 2. wavedec2与vaverec2 wavedec2为多层二维离散小波分解函数,其调用 格式为: [C,S]=wavedec2(X,N,'wname') % 用指定小波基对图像X 进行N 层二维离散小波分解。N 为正整数,C为小波分解矢量,S为相应的标记矩阵。 C = [ A(N) | H(N) | V(N) | D(N) | ... H(N-1) | V(N-1) | D(N-1) | ... | H(1) | V(1) | D(1) ]. A = approximation coefficients H = horizontal detail coefficients V = vertical detail coefficients D = diagonal detail coefficients

小波分析结课论文

小波分析结课论文 基于正交滤波器组的Daubechies 小波设计及Quartus ll 仿真 1.非平稳信号的局部变换 信号s(t)和其频谱S(w)构成Fourier 变换对,由于Fourier 变换或反变换都属于全局变换,不能告知某种频率分量发生在那些时间内,因此用来不能描述信号的局部统计特性。对于非平稳信号s(t),应该采用局部变换来描述其随时间变化的统计特性。并且信号的局部性能需要使用时域和频域是我二维联合表示,才能精确描述。 1.1用内积构造信号变换 任何一种信号变换都可以写成该信号与某个选定的核函数之间的内积,因此可以用下面两种基本形式来构造。 信号s(t)的局部变换 = <取信号s(t)的局部,核函数无穷长> 或 信号s(t)的局部变换 = <取信号s(t)的全部,核函数局域化> 1.2小波变换 1.2.1选用小波变换的原因 三个信号局部变换的典型例子是短时Fourier 变换、Gabor 变换、小波变换,它们都是时频信号分析的线性变换。而短时Fourier 变换和Gabor 变换都属于“加窗Fourier 变换”,都以固定的滑动窗对信号进行分析,可以表征信号的局部频率特性。显然,这种时域固定等宽的滑动窗处理并不是对所有的信号都合适。因为有较多的自然界信号在低频端应具有很高的频率分辨率,在高频端的频率分辨率可以比较低。而从不相容原理的角度看,这类信号的高频分量应该具有高的时间分辨率,低频分量应该具有低的时间分辨率。对这类非平稳信号的线性时频分析,应该在时频平面的不同位置具有不同的分辨率,小波变换就是这样一种多分辨(率)分析方法,其目的是既见森林——信号概貌,又见树木——信号细节,所以,小波分析被称为数学显微镜。 1.2.2连续小波变换的定义及参数含义 平方可积分函数s(t)的连续小波变换定义为 (,)()*( )(),()s ab t b W T a b s t dt s t t a ψψ∞ -= =??? , a > 0

基于小波变换的去噪方法

文章编号:1006-7043(2000)04-0021-03 基于小波变换的去噪方法 林克正 李殿璞 (哈尔滨工程大学自动化学院,黑龙江哈尔滨150001) 摘 要:分析了信号与噪声在小波变换下的不同特点,提出了基于小波变换的去噪方法,且将该去噪算法 用算子加以描述,给出了具体实例.小波变换硬阈值去噪法和软阈值去噪法的性能比较及仿真实验,表明基于小波变换的去噪方法是非常有效的.!关 键 词:小波变换;去噪;奇异性检测;多尺度分析 中图分类号:TN911.7 文献标识码:A Denoising Method Based on Wavelet Transform Lin Ke-zheng Li Dian-pu (Automation Coiiege ,Harbin Engineering University ,Harbin 150001,China ) Abstract :This paper anaiyzes the different characteristics of noise and signai under waveiet transform and proposes the denoising method based on waveiet transform.The denoising aigorithm based on waveiet transform are described with some operators.Some exampies are demonstrated.The performance of denoising with hard and soft threshoid method based on waveiet transform are compared in computer simuiation.The simuiation shows that the denoising method based on waveiet transform is very effective. Key words :waveiet transform ;denoising ;singuiarity detection ;muitiresoiution anaiysis 提取掩没在噪声中的信号是信号处理的一项重要课题.实际的信号总是含有噪声的,当待检测信号的输入信噪比很低,各种噪声幅值大、分布广,而干扰信号又与真实信号比较接近时,用传统的时域或频域滤波往往不能取得预期效果.D.L.Donoho 提出的非线性小波方法从噪声中提取信号 效果最明显[2-5] ,并且在概念上也有别于其它方 法,其主要思想有局部极大值阈值法、全局单一阈 值法[3]和局部SURE 多阈值法[4] .在此基础上,本文首先分析了信号和噪声在小波变换下的不同特 性,据此可有效地从噪声信号检出有用的信号,用算子的形式对基于小波变换的去噪方法进行了统一的描述,并提出了一种可浮动的自适应阈值选取方法. 1 小波分析基础 1.1 信号的小波变换 [1] 设母波函数是!(t ),伸缩和平移因子分别为a 和6,小波基函数!a ,6(t ) 定义为!a , 6(t )=1! a !(t -6 a )(1)式中,6"R ,a "R -{0}. 函数f (t )" 2 (R ) 的小波变换W a ,6(f )定义为 W a ,6(f )==1!a # - f (t )!(t -6 a )d t (2)小波变换W a ,6(f )就是函数f (t )" 2 (R ) 在对应函数族!a ,6(t )上的分解.这一分解成立的前提是母波函数!(t )满足如下容许性条件 !=# 0I ^!(")I 2" d "< (3)式中^!(")是!(t )的傅立叶变换.由小波变换W a ,6(f ) 重构f (t )的小波逆变换# 收稿日期:1999-10-22;修订日期:2000-7-20;作者简介:林克正(1962-),男,山东蓬莱人,哈尔滨工程大学博士研究生,哈尔滨理工大学副教授,主要研究方向:小波分析理论及图像处理. 第21卷第4期哈尔滨工程大学学报Voi.21,N.42000年8月Journai of Harbin Engineering University Aug.,2000

小波分解与重构原理

“小波工程应用”实验报告 一维信号离散小波分解与重构(去噪)的VC实现 一、目的 在理解了离散小波变换的基本原理和算法的基础上,通过设计VC程序对简单的一维信号在加上了高斯白噪声之后进行Daubechies小波、Morlet小波和Haar小波变换,从而得到小波分解系数;再通过改变分解得到的各层高频系数进行信号的小波重构达到消噪的目的。在这一程序实现的过程中能直观地理解信号小波分解重构的过程和在信号消噪中的重要作用,以及在对各层高频系数进行权重处理时系数的选取对信号消噪效果的影响。 二、基本原理 1、信号的小波分解与重构原理 在离散小波变换(DWT)中,我们在空间上表示信号,也就是说对于每一个在上表示的信号能用在上面提到的两个空间中的基函数来表示。 Where and are the coefficients of the scale metric space (j-1) which are obtained after the Decomposing the coefficient of the scale metric space j . Analogously we could reconstruct the by and . 我们在尺度度量空间对系数进行分解得到在尺度度量空间的两个系数 和。同样的,我们也能从两个系数和通过重构得到系数。

如上图中的分解与重构我们可以通过一定的滤波器组来实现(也就是小波变换算法)。当小波和尺度在空间内是正交的,我们就可以用内积公式计算得到系数和: 下面是内积计算方法的具体公式: 具体的系数计算过程如下: 对于上面的小波分解过程,通过分别设计高通滤波器和低通滤波器两组滤波器的系数(数组g[]和h[])即可实现,特别是对于离散小波变换,程序算法相对简单。而重构也只是分解的逆过程,重构算法和分解的算法是相对应而互逆的。 2、小波去噪原理

小波分析基础及应用期末习题

题1:设{},j V j Z ∈是依尺度函数()x φ的多分辨率分析,101()0x x φ≤

11()3.k k h k p -=为高通分解滤波器,写出个双倍平移正交关系等式 题6:列出二维可分离小波的4个变换基。 题8:要得到“好”的小波,除要求滤波器0()h n 满足规范、双正交平移性、低通等最小条件外,还可以对0()h n 加消失矩条件来得到性能更优良的小波。 (1) 请写出小波函数()t ψ具有p 阶消失矩的定义条件: (2) 小波函数()t ψ具有p 阶消失矩,要求0()h n 满足等式: (3) 在长度为4的滤波器0()h n 设计中,将下面等式补充完整: 222200000000(0)(1)(2)(3)1 (0)(2)(1)(3)0 ,1 2h h h h h h h h n ?+++=???+==??? 规范性低通双平移正交阶消失矩

小波变换去噪基础地的知识整理

1.小波变换的概念 小波(Wavelet)这一术语,顾名思义,“小波”就是小的波形。所谓“小”是指它具有衰减性;而称之为“波”则是指它的波动性,其振幅正负相间的震荡形式。与Fourier变换相比,小波变换是时间(空间)频率的局部化分析,它通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier变换的困难问题,成为继Fourier变换以来在科学方法上的重大突破。有人把小波变换称为“数学显微镜”。 2.小波有哪几种形式?常用的有哪几种?具体用哪种,为什么? 有几种定义小波(或者小波族)的方法: 缩放滤波器:小波完全通过缩放滤波器g——一个低通有限脉冲响应(FIR)长度为2N和为1的滤波器——来定义。在双正交小波的情况,分解和重建的滤波器分别定义。 高通滤波器的分析作为低通的QMF来计算,而重建滤波器为分解的时间反转。例如Daubechies和Symlet 小波。 缩放函数:小波由时域中的小波函数 (即母小波)和缩放函数 (也称为父小波)来定义。 小波函数实际上是带通滤波器,每一级缩放将带宽减半。这产生了一个问题,如果要覆盖整个谱需要无穷多的级。缩放函数滤掉变换的最低级并保证整个谱被覆盖到。 对于有紧支撑的小波,可以视为有限长,并等价于缩放滤波器g。例如Meyer小波。 小波函数:小波只有时域表示,作为小波函数。例如墨西哥帽小波。 3.小波变换分类 小波变换分成两个大类:离散小波变换 (DWT) 和连续小波转换 (CWT)。两者的主要区别在于,连续变换在所有可能的缩放和平移上操作,而离散变换采用所有缩放和平移值的特定子集。 DWT用于信号编码而CWT用于信号分析。所以,DWT通常用于工程和计算机科学而CWT经常用于科学研究。 4.小波变换的优点 从图像处理的角度看,小波变换存在以下几个优点: (1)小波分解可以覆盖整个频域(提供了一个数学上完备的描述) (2)小波变换通过选取合适的滤波器,可以极大的减小或去除所提取得不同特征之间的相关性 (3)小波变换具有“变焦”特性,在低频段可用高频率分辨率和低时间分辨率(宽分析窗口),在高频段,可用低频率分辨率和高时间分辨率(窄分析窗口) (4)小波变换实现上有快速算法(Mallat小波分解算法) 另: 1) 低熵性变化后的熵很低; 2) 多分辨率特性边缘、尖峰、断点等;方法, 所以可以很好地刻画信号的非平稳特性 3) 去相关性域更利于去噪; 4) 选基灵活性: 由于小波变换可以灵活选择基底, 也可以根据信号特性和去噪要求选择多带小波、小波包、平移不变小波等。 小波变换的一个最大的优点是函数系很丰富, 可以有多种选择, 不同的小波系数生成的小波会有不同的效果。噪声常常表现为图像上孤立像素的灰度突变, 具有高频特性和空间不相关性。图像经小波分解后可得到低频部分和高频部分, 低频部分体现了图像的轮廓, 高频部分体现为图像的细节和混入的噪声, 因此, 对图像去噪, 只需要对其高频系数进行量化处理即可。 5.小波变换的科学意义和应用价值

小波图像分解与合成的设计报告内容

小波图像分解与合成的设计报告内容 小波图像分解与合成的设计报告内容 一、小波图像分解与合成及阈值测试概述 (一)、haar小波与Daubechies小波分解与重构概述 根据haar函数定义,可得出当N=2时,哈尔(haar)正规化变换矩阵为,因为haar矩阵是正交矩阵,具可分离变换性质,对二维的像素矩阵,可由连续2次运用一维的haar小波变换来实现,如对图像像素矩阵的每一行求变换后,再对其每一列求变换可得二维haar小波变换,这叫标准分解,如果交替地对每一行和每一列像素值进行变换,则为非标准分解。并且可利用矩阵形式的优点,对1×N的像素矩阵分解成若干个1×2的矩阵与上述N=2的haar正规化变换矩阵作一维的haar小波变换,减少计算量,实现haar小波分解。因为正规化的haar变换矩阵为对称变换矩阵,其逆变换矩阵和正变换的相同,只要把原来每次变换后得到的矩阵数值再作一次变换,则可以实现重构。Haar小波在时域上是不连续的,因此分析性能并不很好,但它的计算简单。这里程序采用非标准分解方法。在变换矩阵中,第一列变换得到图像像素均值,为图像像素低频分量,第二列得到图像像素差值,为高频分量,原像素值第i对像素分解的低频和高频分量值分别存在矩阵的i和N/2+i处。重构时取回这两个数值,再与逆变换矩阵相乘存回原处,则实现重构。 根据Daubechies小波的定义,可设计出一组满足正交化要求的滤波器,利用卷积模板实现低通和高通功能,主要步骤为: 1.利用Matlab中的Daubechies小波滤波器计算函数dbaux求出滤波器作模板系数,对dbN,滤波器长度为2N,这里求db9,其滤波器长度为18。 2.由于图像像素只有有限的2N个非零值,就需要解决边界问题。Matlab软件里缺省的分解模式sym采用对称周期化扩展技术。也就是将图像的四个边界先做对称处理的矩阵拓展,避免了边界的不连续性。如图(这里以256×256为例,即从标号0到255): _________|______________________________________|______________ |—|—|—|—|—|—|—|———|——|——|——|——|——|——|——| |2 |1 |0 |0 |1 |2 |3 |......|252 |253 |254 |255 |255 |254 |253 | |—|—|—|—|—|—|—|———|——|——|——|——|——|——|——| _________|______________________________________|______________ 对1×M的矩阵像数值,其dbN一次变换(低通、高通)后输出的总长度为M+2(N-1),矩阵拓展长度为M+4×(N-1)。如对1×256,一次变换后低通、高通系数总长度为272,则矩阵需对称拓展至288再作卷积运算。 3.将模板上系数与矩阵(一维)对应象素相乘再求和(卷积运算)。 4.将所得数存到相应位置。 5.模板右移两个像素,再做同样计算,直至计算完最后2N个像素为止。 分解(正变换)与重构(逆变换)的滤波器可在MA TLAB中用以下命令得到: 逆变换的低通滤波器rh=dbaux(N) 逆变换的高通滤波器rg(n)=-(-1)^n×rh(2N-n+1); (n=1,2,...,2N) 正变换的低通滤波器h=rh(2N:-1:1); 正变换的高通滤波器g(n)=(-1)^n×rh(n) ; (n=1,2,…,2N) 重构过程为高低频滤波器与各个矩阵卷积后再相加来恢复图像数据的,卷积解释与分解类似,但要根据分解时扩展矩阵方式,重构时对矩阵向前或向后插入零,保证输出的矩阵长度为原矩阵长度。从定义可以知道,db1变换即为haar小波变换,所以对像素矩阵长度不为2

小波变换的原理及matlab仿真程序讲解学习

小波变换的原理及m a t l a b仿真程序

基于小波变换的信号降噪研究 2 小波分析基本理论 设Ψ(t)∈L 2( R) ( L 2( R) 表示平方可积的实数空间,即能量有限的信号空间) , 其傅立叶变换为Ψ(t)。当Ψ(t)满足条件[4,7]: 2 () R t dw w C ψψ =<∞? (1) 时,我们称Ψ(t)为一个基本小波或母小波,将母小波函数Ψ(t)经伸缩和平移后,就可以得到一个小波序列: ,()( )a b t b t a ψ -= ,,0a b R a ∈≠ (2) 其中a 为伸缩因子,b 为平移因子。 对于任意的函数f(t)∈L 2( R)的连续小波变换为: ,(,),()( )f a b R t b W a b f f t dt a ψψ-=<>= ? (3) 其逆变换为: 211()(,)()f R R t b f t W a b dadb C a a ψ ψ+-= ?? (4) 小波变换的时频窗是可以由伸缩因子a 和平移因子b 来调节的,平移因子b,可以改变窗口在相平面时间轴上的位置,而伸缩因子b 的大小不仅能影响窗口在频率轴上的位置,还能改变窗口的形状。小波变换对不同的频率在时域上的取样步长是可调节的,在低频时,小波变换的时间分辨率较低,频率分辨率较高:在高频时,小波变换的时间分辨率较高,而频率分辨率较低。使用小波变换处理信号时,首先选取适当的小波函数对信号进行分解,其次对分解出的参

数进行阈值处理,选取合适的阈值进行分析,最后利用处理后的参数进行逆小波变换,对信号进行重构。 3 小波降噪的原理和方法 3.1 小波降噪原理 从信号学的角度看 ,小波去噪是一个信号滤波的问题。尽管在很大程度上小波去噪可以看成是低通滤波 ,但由于在去噪后 ,还能成功地保留信号特征 ,所以在这一点上又优于传统的低通滤波器。由此可见 ,小波去噪实际上是特征提取和低通滤波的综合 ,其流程框图如图所示[6]: 小波分析的重要应用之一就是用于信号消噪 ,一个含噪的一维信号模型可表示为如下形式: (k)()()S f k e k ε=+* k=0.1…….n-1 其中 ,f( k)为有用信号,s(k)为含噪声信号,e(k)为噪声,ε为噪声系数的标准偏差。 假设e(k)为高斯白噪声,通常情况下有用信号表现为低频部分或是一些比较平稳的信号,而噪声信号则表现为高频的信号,下面对 s(k)信号进行如图结构的小波分解,则噪声部分通常包含在Cd1、Cd2、Cd3中,只要对 Cd1,Cd2,Cd3作相应的小波系数处理,然后对信号进行重构即可以达到消噪的目的。

博士复试题目+答案

1、小波变换在图像处理中有着广泛的应用,请简述其在图像压缩中的应用原理? 答:一幅图像经过一次小波变换之后,概貌信息大多集中在低频部分,而其余部分只有微弱的细节信息。为此,如果只保留占总数数量1/4的低频部分,对其余三个部分的系数不存储或传输,在解压时,这三个子块的系数以0来代替,则就可以省略图像部分细节信息,而画面的效果跟原始图像差别不是很大。这样,就可以得到图像压缩的目的。 2、给出GPEG数据压缩的特点。 答:(1)一种有损基本编码系统,这个系统是以DCT为基础的并且足够应付大多数压缩方向应用。 (2)一种扩展的编码系统,这种系统面向的是更大规模的压缩,更高精确性或逐渐递增的重构应用系统。 (3)一种面向可逆压缩的无损独立编码系统。 3、设计雪花检测系统 答:1)获得彩色雪花图像。2)灰度雪花图像。3)图像的灰度拉伸,以增强对比度。4)阈值判断法二值化图像。5)图像的梯度锐化。6)对图像进行自定义模板中值滤波以去除噪声。7)用梯度算子对雪花区域的定位。8)利用hough变换截下雪花区域的图片。 9)雪花图片几何位置调整。 4、用图像处理的原理设计系统,分析木材的年轮结构。 答:1)获得彩色木材年轮图像。2)灰度木材年轮图像。3)灰度拉伸以增加对比度。4)阈值判定法二值化图像。5)图像的梯度锐化。6)对图像进行自定义模板中值滤波以去除噪声。7)用梯度算子对木材年轮圈进行定位。8)图片二值化。9)利用边界描述子对木材的年轮结构进行识别。 5、给出生猪的尺寸和形貌检测系统。 答:1)获得彩色生猪图像。2)灰度生猪图像。3)图像的灰度拉伸,以增强对比度。4)阈值判定法二值化图像。5)图像的梯度锐化。6)对图像进行自定义模板中值滤波以除去噪声。 7)用梯度算子对生猪区域的定位。8)利用hough变换截下生猪区域的图片。9)生猪图片几何位置调整。10)生猪图片二值化。11)利用边界描述子对生猪尺寸和形貌的识别。 第二种答案:(类似牌照检测系统) 1)第一步定位牌照 由图像采集部件采集生猪的外形图像并将图像存储在存储器中,其特征在于:数字处理器由存储器中读入并运行于生猪外形尺寸检测的动态检测软件、从存储器中依次读入两幅车辆外形图像数据、经过对生猪外形图像分析可得到生猪的高度,宽度和长度数据即生猪的外形尺寸。通过高通滤波,得到所有的边对边缘细化(但要保持连通关系),找出所有封闭的边缘,对封闭边缘求多边形逼近,在逼近后的所有四边形中,找出尺寸与牌照大小相同的四边形。生猪形貌被定位。 2)第二步识别 区域中的细化后的图形对象,计算傅里叶描述子,用预先定义好的决策函数,对描述子进行计算,判断到底是数字几。 6、常用的数字图像处理开发工具有哪些?各有什么特点? 答:目前图像处理系统开发的主流工具为Visual C++(面向对象可视化集成工具)和MATLAB的图像处理工具箱(lmage processing tool box)。两种开发工具各有所长且有相互间的软件接口。 微软公司的VC++是一种具有高度综合性能的面向对象可视化集成工具,用它开发出来

小波去噪三种方法

小波去噪常用方法 目前,小波去噪的方法大概可以分为三大类:第一类方法是利用小波变换模极大值原理去噪,即根据信号和噪声在小波变换各尺度上的不同传播特性,剔除由噪声产生的模极大值点,保留信号所对应的模极大值点,然后利用所余模极大值点重构小波系数,进而恢复信号;第二类方法是对含噪信号作小波变换之后,计算相邻尺度间小波系数的相关性,根据相关性的大小区别小波系数的类型,从而进行取舍,然后直接重构信号;第三类是小波阈值去噪方法,该方法认为信号对应的小波系数包含有信号的重要信息,其幅值较大,但数目较少,而噪声对应的小波系数是一致分布的,个数较多,但幅值小。基于这一思想,在众多小波系数中,把绝对值较小的系数置为零,而让绝对值较大的系数保留或收缩,得到估计小波系数,然后利用估计小波系数直接进行信号重构,即可达到去噪的目的。 1:小波变换模极大值去噪方法 信号与噪声的模极大值在小波变换下会呈现不同的变化趋势。小波变换模极大值去噪方法,实质上就是利用小波变换模极大值所携带的信息,具体地说就是信号小波系数的模极大值的位置和幅值来完成对信号的表征和分析。利用信号与噪声的局部奇异性不一样,其模极大值的传播特性也不一样这些特性对信号中的随机噪声进行去噪处理。 算法的基本思想是,根据信号与噪声在不同尺度上模极大值的不同传播特性,从所有小波变换模极大值中选择信号的模极大值而去除噪声的模极大值,然后用剩余的小波变换模极大值重构原信号。小波变换模极大值去噪方法,具有很好的理论基础,对噪声的依赖性较小,无需知道噪声的方差,非常适合于低信噪比的信号去噪。这种去噪方法的缺点是,计算速度慢,小波分解尺度的选择是难点,小尺度下,信号受噪声影响较大,大尺度下,会使信号丢失某些重要的局部奇异性。 2:小波系数相关性去噪方法 信号与噪声在不同尺度上模极大值的不同传播特性表明,信号的小波变换在各尺度相应位置上的小波系数之间有很强的相关性,而且在边缘处有很强的相关

基于多小波的图像分解和重构

基于多小波的图像分解和重构 摘要与单小波相比较,多小波同时具备诸如紧支性,正交性,对称性等诸多在信号处理中非常重要的良好性质。这决定了多小波是一种优于单小波的信号处理技术。在应用中,对于单小波可以直接利用分解与重构公式对信号进行滤波。但是多小波是用矢量滤波器组对信号进行分解、重构.滤波对象必须是满足一定要求的矢量信号。因此,在进行多小波分解前必须通过前置滤波器对原始离散信号进行预处理得到初始矢量,然后才能进行多小波变换。同样,对重构后的数据也要进行后处理才能得到需要的结果。本文以GHM多小波为例,实现了对图像的预处理、分解和变换后的重构、后处理过程,并将解压缩后的结果与单小波相比较,获得较好的结果。 关键词多小波;多尺度函数;多小波变换 一、概述 多小波是标量小波向矢量空间的一种很自然的拓展。是传统小波理论中正在兴起的一个分支,它具备一些比标量小波更好的性质,如同时具有正交性和对称性、紧支性等诸多在信号处理中非常重要的良好性质。这决定了多小波是一种优于单小波的信号处理技术。这决定了多小波是一种优于单小波的信号处理技术。这就意味着多小波不但可以对信号提供一种更新的分析手段,而且对信号的逼近性质更好,重构信号在边界位置的性能也将更完善。多小波的研究最早开始于1993年,随后其理论与应用方面的研究得到了迅猛的发展。在图像处理的实际应用中,正交性能保持能量;而对称性(线性相位)既适合于人眼的视觉系统,又使信号在边界易于处理,所以,分析工具同时拥有这两种性质是十分重要的。可是,实数域中,紧支、对称、正交的非平凡单小波是不存在的。多小波开创性的将单小波中由单个尺度函数生成的多尺度分析空间,扩展为由多个尺度函数生成,以此来获得更大的自由度。它既保持了单小波所具有的良好的时域与频域的

数字图像处理复习题(选择题及相应答案)解析

第一章 1.1.1可以用f(x,y)来表示:(ABD) A、一幅2-D数字图像 B、一个在3-D空间中的客观景物的投影; C 2-D空间XY中的一个坐标的点的位置; D、在坐标点(X,Y)的某种性质F的数值。 提示:注意3个符号各自的意义 1.1.2、一幅数字图像是:(B) A、一个观测系统; B、一个有许多像素排列而成的实体; C、一个2-D数组中的元素 D、一个3-D空间的场景。 提示:考虑图像和数字图像的定义 1.2.2、已知如图1.2.2中的2个像素P和Q,下面说法正确的是:(C) A、2个像素P和Q直接的De距离比他们之间的D4距离和D8距离都短: B、2个像素p和q之间的D4距离为5; C、2个像素p和q之间的D8距离为5; D、2个像素p和q之间的De距离为5。 1.4.2、半调输出技术可以:(B) A、改善图像的空间分辨率; B、改善图像的幅度分辨率; C、利用抖动技术实现; D、消除虚假轮廓现象。 提示:半调输出技术牺牲空间分辨率以提高幅度分辨率 1.4.3、抖动技术可以(D) A、改善图像的空间分辨率; B、改善图像的幅度分辨率; C、利用半输出技术实现; D、消除虚假轮廓现象。 提示:抖动技术通过加入随即噪声,增加了图像的幅度输出值的个数 1.5.1、一幅256*256的图像,若灰度级数为16,则存储它所需的比特数是:(A) A、256K B、512K C、1M C、2M 提示:表达图像所需的比特数是图像的长乘宽再乘灰度级数对应的比特数。1.5.2、图像中虚假轮廓的出现就其本质而言是由于:(A)(平滑区域内灰度应缓慢变化,但当图像的灰度级数不够多时会产生阶跃) A、图像的灰度级数不够多造成的; B、图像的空间分辨率不够高造成; C、图像的灰度级数过多造成的 D、图像的空间分辨率过高造成。 提示:图像中的虚假轮廓最易在平滑区域内产生。 1.5.3、数字图像木刻画效果的出现是由于下列原因所产生的:(A) A、图像的幅度分辨率过小; B、图像的幅度分辨率过大; C、图像的空间分辨率过小; D、图像的空间分辨率过大;

相关主题