搜档网
当前位置:搜档网 › 解三角形常见题型

解三角形常见题型

解三角形常见题型
解三角形常见题型

解三角形常见题型

正弦定理和余弦定理是解斜三角形和判定三角形类型的重要工具,其主要作用是将已知条件中的边、角关系转化为角的关系或边的关系。

题型之一:求解斜三角形中的基本元素

指已知两边一角(或二角一边或三边),求其它三个元素问题,进而求出三角形的三线(高线、角平分线、中线)及周长等基本问题.

1. 在ABC ?中,AB=3,AC=2,BC=10,则AB AC ?=

( )

A .23-

B .3

2- C .32 D .23

【答案】D

2.(1)在?ABC 中,已知032.0=A ,081.8=B ,42.9=a cm ,解三角形;

(2)在?ABC 中,已知20=a cm ,28=b cm ,040=A ,解三角形(角度精确到01,边长精确到1cm )。 3.(1)在?ABC

中,已知=a

c 060=B ,求b 及A ;

(2)在?ABC 中,已知134.6=a cm ,87.8=b cm ,161.7=c cm ,解三角形 4(2005年全国高考江苏卷) ABC ?中,3

π

=

A ,BC =3,则ABC ?的周长为( )

A .33sin 34+???

?

?

+

πB B .36sin 34+??? ?

?

+πB C .33sin 6+???

?

?

+

πB D .36sin 6+??? ?

?

+πB 分析:由正弦定理,求出b 及c ,或整体求出b +c ,则周长为3+b +c 而得到结果.选(D). 5 (2005年全国高考湖北卷) 在ΔABC 中,已知6

6

cos ,364=

=

B AB ,A

C 边上的中线B

D =5,求sin A 的值.

分析:本题关键是利用余弦定理,求出AC 及BC ,再由正弦定理,即得sin A . 解:设E 为BC 的中点,连接DE ,则DE //AB ,且3

6

221=

=

AB DE ,设BE =x 在ΔBDE 中利用余弦定理可得:BED ED BE ED BE BD cos 22

2

2

?-+=,

x x 6

6

36223852??++=,解得1=x ,37-=x (舍去)

故BC =2,从而328

cos 22

22=

?-+=B BC AB BC AB AC ,即3212=AC 又6

30sin =B ,

故2sin A =1470

sin =A

在△ABC 中,已知a =2,b =22,C =15°,求A 。

答案:0

018030B A A A ><<=∴,且,∴

题型之二:判断三角形的形状:给出三角形中的三角关系式,判断此三角形的形状.

1. (2005年北京春季高考题)在ABC ?中,已知C B A sin cos sin 2=,那么ABC ?一定是( )

A .直角三角形

B .等腰三角形

C .等腰直角三角形

D .正三角形 解法1:由C B A sin cos sin 2==sin(A +B )=sin A cos B +cos A sin B ,

即sin A cos B -cos A sin B =0,得sin(A -B )=0,得A =B .故选(B).

解法2:由题意,得cos B =sin 2sin 2C c A a =,再由余弦定理,得cos B =222

2a c b ac

+-.

∴ 2222a c b ac

+-=2c a ,即a 2=b 2

,得a =b ,故选(B).

评注:判断三角形形状,通常用两种典型方法:⑴统一化为角,再判断(如解法1),⑵统一化为边,再判

断(如解法2).

2.在△ABC 中,若2cos B sin A =sinC ,则△ABC 的形状一定是( )

A.等腰直角三角形

B.直角三角形

C.等腰三角形

D.等边三角形 答案:C

解析:2sin A cos B =sin (A +B )+sin (A -B )又∵2sin A cos B =sin C , ∴sin (A -B )=0,∴A =B

3.在△ABC 中,若a b

A

B 22=tan tan ,试判断△AB

C 的形状。

答案:故△ABC 为等腰三角形或直角三角形。 4. 在△ABC 中,αβcos cos A b =,判断△ABC 的形状。

答案:△ABC 为等腰三角形或直角三角形。

题型之三:解决与面积有关问题

主要是利用正、余弦定理,并结合三角形的面积公式来解题.

1. (2005年全国高考上海卷) 在ABC ?中,若120A ∠=

,5AB =,7BC =,

则ABC ?的面积S =_________

2.在?ABC 中,sin cos A A +=

2

2

,AC =2,AB =3,求A tan 的值和?ABC 的面积。 答案:S AC AB A ABC ?=

?=???+=+12122326434

26sin ()

3. (07浙江理18)已知ABC △1,且sin sin A B C +. (I )求边AB 的长;(II )若ABC △的面积为

1

sin 6

C ,求角C 的度数.

解:(I )由题意及正弦定理,得1AB BC AC ++=,BC AC +=,

两式相减,得1AB =.

(II )由ABC △的面积

11sin sin 26BC AC C C = ,得13

BC AC = , 由余弦定理,得222cos 2AC BC AB C AC BC +-=

22()21

22

AC BC AC BC AB AC BC +--== , 所以60C =

题型之四:三角形中求值问题

1. (2005年全国高考天津卷) 在ABC ?中,C B A ∠∠∠、、所对的边长分别为c b a 、、,

设c b a 、、满足条件2

22a bc c b =-+和32

1+=b c ,求A ∠和B tan 的值.

分析:本题给出一些条件式的求值问题,关键还是运用正、余弦定理.

解:由余弦定理2

1

2cos 222=-+=

bc a c b A ,因此,?=∠60A 在△ABC 中,∠C=180°-∠A -∠B=120°-∠B.

由已知条件,应用正弦定理

B

B B

C b c sin )

120sin(sin sin 321-?===+ ,2

1

cot 23sin sin 120cos cos 120sin +=?-?=

B B B B 解得,2cot =B 从而.21tan =B

2.ABC ?的三个内角为A B C 、、,求当A 为何值时,cos 2cos 2

B C

A ++取得最大值,并求出这个最大值。

解析:由A+B+C=π,得B+C 2=π2 -A 2,所以有cos B+C 2 =sin A

2

cosA+2cos B+C 2 =cosA+2sin A 2 =1-2sin 2A 2 + 2sin A 2=-2(sin A 2 - 12)2+ 3

2;

当sin A 2 = 12,即A=π3 时, cosA+2cos B+C 2取得最大值为3

2

3.在锐角ABC △中,角A

B C ,,所对的边分别为a b c ,,,已

知sin A =,(1)求2

2tan sin 22

B C A

++的值;(2)若2a =

,ABC S △b 的值。 解析:(1)因为锐角△ABC 中,A +B +C =π

,sin A =

cosA =13,则

2

2222B C

sin B C A A 1cos B C 11cos A 172tan sin sin 1cos A B C 2221cos B C 21cosA 33cos 2

++-(+)++=+=+(-)=+=

++(+)-

(2

)ABC ABC 11S S bcsin A bc 223

? 因为==bc =3。 将a =2,cosA =

13,c =3b

代入余弦定理:222

a b c 2bccos A =+-中, 得4

2

b 6b 90-+=解得b

点评:知道三角形边外的元素如中线长、面积、周长等时,灵活逆用公式求得结果即可。 4.在ABC △中,内角A B C ,,对边的边长分别是a b c ,,,已知2c =,3

C π

=. (Ⅰ)若ABC △

a b ,;

(Ⅱ)若sin sin()2sin 2C B A A +-=,求ABC △的面积.

本小题主要考查三角形的边角关系,三角函数公式等基础知识,考查综合应用三角函数有关知识的能力.满

分12分.

解:(Ⅰ)由余弦定理及已知条件得,2

2

4a b ab +-=, 又因为ABC △

1

sin 2

ab C =4ab =. ························ 4分 联立方程组2244a b ab ab ?+-=?=?,

解得2a =,2b =. ·············································· 6分

(Ⅱ)由题意得sin()sin()4sin cos B A B A A A ++-=,

即sin cos 2sin cos B A A A =, ········································································ 8分 当cos 0A =时,2A π=

,6B π=

,a =

b =, 当cos 0A ≠时,得sin 2sin B A =,由正弦定理得2b a =,

联立方程组2242a b ab b a ?+-=?=?,,

解得3a =

3b =.

所以ABC △

的面积1sin 23

S ab C =

=

. ················· 12分 题型之五:正余弦定理解三角形的实际应用

利用正余弦定理解斜三角形,在实际应用中有着广泛的应用,如测量、航海、几何等方面都要用到解

三角形的知识,例析如下: (一.)测量问题 1. 如图1所示,为了测河的宽度,在一岸边选定A 、B 两点,望对岸标记物C ,测得∠CAB=30°,∠CBA=75°,AB=120cm ,求河的宽度。

分析:求河的宽度,就是求△ABC 在AB 边上的高,而

在河的一边,已测出AB 长、∠CAB 、∠CBA ,这个三角形

可确定。

图1 A B C D

解析:由正弦定理得sin sin AC AB

CBA ACB

=∠∠,∴AC=AB=120m ,又

∵11

sin 22

ABC

S AB AC CAB AB CD =?∠=? ,解得CD=60m 。 点评:虽然此题计算简单,但是意义重大,属于“不过河求河宽问题”。

(二.)遇险问题

2 某舰艇测得灯塔在它的东15°北的方向,此舰艇以30海里/小时的速度向正东前进,30分钟后又测得灯塔在它的东30°北。若此灯塔周围10海里内有暗礁,问此舰艇继续向东航行有无触礁的危险?

解析:如图舰艇在A 点处观测到灯塔S 在东15°北的方向上;舰艇航行半小时后到达B 点,测得S 在东30°北的方向上。 在△ABC 中,可知AB=30×0.5=15,∠ABS=150°,∠ASB=15°,由正弦定理得BS=AB=15,过点S 作SC ⊥直线AB ,垂足为C ,则SC=15sin30°=7.5。

这表明航线离灯塔的距离为7.5海里,而灯塔周围10海里内有暗礁,故继续航行有触礁的危险。

点评:有关斜三角形的实际问题,其解题的一般步骤是:(1)准确理解题意,分清已知与所求,尤其要理解应用题中的有关名词和术语;(2)画出示意图,并将已知条件在图形中标出;(3)分析与所研究问题有关的一个或几个三角形,通过合理运用正弦定理和余弦定理求解。 (三.)追击问题

3 如图3,甲船在A 处,乙船在A 处的南偏东45°

方向,距A 有9n mile 并以20n mile/h 的速度沿南

偏西15°方向航行,若甲船以28n mile/h 的速度航

行,应沿什么方向,用多少h 能尽快追上乙船?

解析:设用t h ,甲船能追上乙船,且在C 处相遇。

在△ABC 中,AC=28t ,BC=20t ,AB=9,

设∠ABC=α,∠BAC=β。

∴α=180°-45°-15°=120°。根据余弦定理

2222cos AC AB BC AB BC α=+-?,

()()22

12881202920()2

t t t =+-???-,212860270t t --=,

(4t -3)(32t+9)=0,解得t=34,t=9

32

(舍)

∴AC=28×34=21 n mile ,BC=20×3

4

=15 n mile 。

根据正弦定理,

得15sin 2sin 2114BC AC

α

β=

==,又∵α=120°,∴β为锐角,β=arcs

<4π

∴甲船沿南偏东

4π-

的方向用34h 可以追上乙船。

点评:航海问题常涉及到解三角形的知识,本题中的 ∠ABC 、AB 边已知,另两边未知,但他们都是航行

西 北 南 东 A B C 30° 15°

图2

图3

°

的距离,由于两船的航行速度已知,所以,这两边均与时间t 有关。这样根据余弦定理,可列出关于t 的一元二次方程,解出t 的值。

4.如图,当甲船位于A 处时获悉,在其正东方向相距20海里的B 处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30

,相距10海里C 处的乙船,试问乙船应朝北偏东多少度的方向沿直线前往B 处救援(角度精确到1

)?

解析:连接BC,由余弦定理得BC 2=202+102-2×20×10COS120°=700. 于是,BC=107。 ∵

7

10120sin 20sin ?

=

ACB ,∴sin ∠ACB=73, ∵∠ACB<90°,∴∠ACB=41°。

∴乙船应朝北偏东71°方向沿直线前往B 处救援。

20

10 A B ?

?C

新课标高考数学题型全归纳正余弦定理常见解题类型典型例题

正余弦定理常见解题类型 1. 解三角形 正弦定理常用于解决以下两类解斜三角形的问题:①已知两角和任一边,求其他两边和一角;②已知两边和其中一边的对角,求另一边的对角及其他的边和角. 余弦定理常用于解决以下两类解斜三角形的问题:①已知三边,求三个角;②已知两边和它们的夹角,求第三边和其他两个角. 例1 已知在ABC △中,4526A a c ∠===,,,解此三角形. 解:由余弦定理得22(6)26cos 454b b +-=, 从而有31b =±. 又222(6)222cos b b C =+-?, 得1cos 2 C =±,60C ∠=或120C ∠=. 75B ∴∠=或15B ∠=. 因此,31b =+,60C ∠=,75B ∠= 或31b =-,120C ∠=,15B ∠=. 注:此题运用正弦定理来做过程会更简便,同学们不妨试着做一做. 2. 判断三角形的形状 利用正余弦定理判断三角形的形状主要是将已知条件中的边、角关系转化为角的关系或

边的关系,一般的,利用正弦定理的公式2sin 2sin 2sin a R A b R B c R C ===,,,可将边转化为角的三角函数关系,然后利用三角函数恒等式进行化简,其中往往用到三角形内角和定理: A B C ++=π;利用余弦定理公式222222 cos cos 22b c a a c b A B bc ac +-+-==,, 222 cos 2a b c C ab ++=,可将有关三角形中的角的余弦转化为边的关系,然后充分利用代数知识来解决问题. 例2 在ABC △中,若2222sin sin 2cos cos b C c B bc B C +=,判定三角形的形状. 解:由正弦定理2sin sin sin a b c R A B C ===,为ABC △外接圆的半径, 可将原式化为22228sin sin 8sin sin cos cos R B C R B C B C =, sin sin 0B C ≠∵, sin sin cos cos B C B C ∴=,即cos()0B C +=. 90B C ∴+=,即90A =,故ABC △为直角三角形. 3. 求三角形中边或角的范围 例3 在ABC △中,若3C B ∠=∠,求c b 的取值范围. 解: A B C ∠+∠+∠=π,4A B ∴∠=π-∠. 04B π∴<∠<.可得210sin 2 B <<. 又2sin sin 334sin sin sin c C B B b B B ===-∵, 2134sin 3B ∴<-<.故13c b <<. 点评:此题的解答容易忽视隐含条件B ∠的范围,从而导致结果错误.因此,解此类问题应注意挖掘一切隐含条件. 4. 三角形中的恒等式证明 根据所证等式的结构,可以利用正、余弦定理化角为边或角的关系证得等式. 例4 在ABC △中,若2()a b b c =+,求证:2A B =. 证明:2222cos 2222a c b bc c b c a B ac ac a b +-++====∵, 222222 22222cos 22cos 1214222a a b b bc b c b B B b b b b -+--∴=-=?-===.

解三角形常见题型

绝密★启用前 2014-2015学年度???学校8月月考卷 试卷副标题 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第I 卷(选择题) 请点击修改第I 卷的文字说明 一、选择题(题型注释) 1.在ABC ?中,若00120306===B A a ,,,则△ABC 的面积是= ( ). A .93 B.9 C.183 D.18 【答案】A 【解析】 试题分析:在ABC ?中,0 30180,120,30=--=∴==B A C B A Θ,ABC ?∴是等腰三角形, 6==a c ,由三角形的面积公式得 392 36621sin 21=???== ?B ac S ABC . 考点:解三角形. 2.[2014·广西模拟]在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,ac =3,且a =3bsinA ,则△ABC 的面积等于( ) A. 12 B.32 C.1 D.34 【答案】A 【解析】∵a =3bsinA ,∴由正弦定理得sinA =3sinBsinA.∴sinB = 1 3 .∵ac =3,∴△ABC 的面积S =12acsinB =12×3×13=1 2 ,故选A.

第II 卷(非选择题) 请点击修改第II 卷的文字说明 二、填空题(题型注释) 3.在ABC ?中,已知tan AB AC A ?=u u u r u u u r ,当6 A π =时,ABC ?的面积为________. 【答案】1 6 【解析】由tan AB AC A ?=u u u r u u u r 得,tan tan 26||||cos tan ,||||cos 3 cos 6 A AB AC A A AB AC A π π?=?== =u u u r u u u r u u u r u u u r , 所以,11221 ||||sin sin 223636 ABC S AB AC A π?=?=??==u u u r u u u r . 考点:平面向量的数量积、模,三角形的面积. 4.在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,已知a 、b 、c 成等比数列,且a 2 -c 2 =ac -bc ,则A =________,△ABC 的形状为________. 【答案】60° 正三角形 【解析】∵a 、b 、c 成等比数列,∴b 2 =ac . 又a 2-c 2=ac -bc ,∴b 2+c 2-a 2 =bc . 在△ABC 中,由余弦定理得cos A =2222b c a bc +-=2bc bc =1 2 ,∴A =60°. 由b 2 =ac ,即a =2b c ,代入a 2-c 2 =ac -bc , 整理得(b -c )(b 3+c 3+cb 2 )=0, ∴b =c ,∴△ABC 为正三角形. 三、解答题(题型注释) 5.在△ABC 中,角A ,B ,C 所对的边分别为,,a b c ,设S 为△ABC 的面积,且 22 2)S b c a = +-。 (Ⅰ)求角A 的大小; (Ⅱ)若6a =,求△ABC 周长的取值范围. 【答案】(1)3 π = A ;(2)周长的取值范围是(12,18]. 【解析】 试题分析:(1)在解决三角形的问题中,面积公式

解三角形高考真题汇总

2017高考真题解三角形汇编 1.(2017北京高考题)在△ABC 中,A ∠ =60°,c =37 a . (Ⅰ)求sin C 的值; (Ⅱ)若a =7,求△ABC 的面积. 2.(2017全国卷1理科)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ ABC 的面积为2 3sin a A (1)求sin B sin C ; (2)若6cos B cos C =1,a =3,求△ABC 的周长. 3.(2017全国卷1文科)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c 。已知 sin sin (sin cos )0B A C C +-=,a =2,c ,则C =B A .π 12 B .π6 C .π4 D .π3 4.(2016全国卷2理科)ABC ?的内角,,A B C 的对边分别为,,a b c ,已知 2 sin()8sin 2 B A C +=. (1)求cos B (2)若6a c += , ABC ?面积为2,求.b 5.(2017全国卷2文科16)△ABC 的内角A,B,C 的对边分别为a,b,c,若2b cosB=a cosC+c cosA,则B= 6.(2017全国卷3理科)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin A cos A =0,a b =2. (1)求c ;(2)设D 为BC 边上一点,且AD ⊥ AC,求△ABD 的面积. 7.(2017全国卷3文科)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c 。已知 C =60°,b c =3,则A =_________。 8.(2017山东高考题理科)在C ?AB 中,角A ,B ,C 的对边分别为a ,b ,c .若 C ?AB 为锐角三角形,且满足()sin 12cosC 2sin cosC cos sinC B +=A +A ,

必修五解三角形常考题型非常全面

必修五解三角形常考题型 1.1正弦定理和余弦定理 1.1.1正弦定理 【典型题剖析】 考察点1:利用正弦定理解三角形 例1 在V ABC 中,已知A:B:C=1:2:3,求a :b :c. 【点拨】 本题考查利用正弦定理实现三角形中边与角的互化,利用三角形内角和定理及正弦定理的变形形式 a :b :c=sinA: sinB: sinC 求解。 解:::1:2:3,A . ,,, 6 3 2 1::sin :sin :sin sin :sin :sin :1 2.6 3 2 2A B C B C A B C a b A B C ππ π π π π π =++=∴= = = ∴=== =Q 而 【解题策略】要牢记正弦定理极其变形形式,要做到灵活应用。 例2在ABC 中,已知 ,C=30°,求a+b 的取值范围。 【点拨】 此题可先运用正弦定理将a+b 表示为某个角的三角函数,然后再求解。 解:∵C=30°, ,∴由正弦定理得: sin sin sin a b c A B C === ∴ )sin (150°-A ). ∴ )[sinA+sin(150° )·2sin75°·cos(75° -A)= 2 cos(75°-A) ① 当75°-A=0°,即A=75°时,a+b 取得最大值 2 ; ② ∵A=180°-(C+B)=150°-B,∴A <150°,∴0°<A <150°, ∴-75°<75°-A <75°,∴cos75°<cos(75°-A)≤1, ∴> 2 cos75° = 2 × 4 . 综合①②可得a+b 的取值范围为 ,8+ 考察点2:利用正弦定理判断三角形形状 例3在△ABC 中,2 a ·tanB=2 b ·tanA ,判断三角形ABC 的形状。 【点拨】通过正弦定理把边的关系转化为角的关系,利用角的关系判断△ABC 的形状。

解三角形专题题型归纳

解三角形专题题型归纳

《解三角形》知识点、题型与方法归纳 一、知识点归纳(★☆注重细节,熟记考点☆★) 1.正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径) 变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式) 2sin ,sin ,sin 222a b c A B C R R R ===()(角化边公式) 3::sin :sin :sin a b c A B C =() sin sin sin (4),,sin sin sin a A a A b B b B c C c C === 2.正弦定理适用情况: (1)已知两角及任一边; (2)已知两边和一边的对角(需要判断三角形解的情况). 3.余弦定理及其推论 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+- 222 222222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab +-=+-=+-= 4.余弦定理适用情况: (1)已知两边及夹角; (2)已知三边. 注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式. 5.常用的三角形面积公式 (1)高底??=?2 1ABC S ; (2)()111=sin sin sin 2224abc S ab C ac B bc A R ABC R ===?为外接圆半径 (两边夹一角); 6.三角形中常用结论 (1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边) (2)sin sin (ABC A B a b A B ?>?>?>在中,即大边对大角,大角对大边) (3)在ABC ?中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-; ③()tan tan A B C +=-;④sin cos ,22A B C +=⑤cos sin 22 A B C += 7.实际问题中的常用角 (1)仰角和俯角

必修五解三角形常考题型

必修五解三角形常考题型1.1正弦定理和余弦定理 1.1.1正弦定理 【典型题剖析】 考察点1:利用正弦定理解三角形 例1在ABC中,已知A:B:C=1:2:3,求a :b :c. 例2在ABC中,已知,C=30°,求a+b的取值范围。 考察点2:利用正弦定理判断三角形形状 例3在△ABC中,2a·tanB=2b·tanA,判断三角形ABC的形状。

例4在△ABC 中,如果lg lg lg sin a c B -==-,并且B 为锐角,试判断此三角形的形状。 考察点3:利用正弦定理证明三角恒等式 例5在△ABC 中,求证 222222 0cos cos cos cos cos cos a b b c c a A B B C C A ---++=+++.

例6在△ABC 中,a,b,c 分别是角A,B,C 的对边,C=2B ,求证2 2 c b ab -=. 考察点4:求三角形的面积 例7在△ABC 中,a,b,c 分别是三个内角A,B,C 的对边,若2,,cos 4 25 B a C π == =,求△ABC 的面积S.

例8已知△ABC 中a,b,c 分别是三个内角A,B,C 的对边,△ABC 的外接圆半径为12,且3 C π =, 求△ABC 的面积S 的最大值。 考察点5:与正弦定理有关的综合问题 例9已知△ABC 的内角A,B 极其对边a,b 满足cot cot ,a b a A b B +=+求内角C 例10在△ABC 中,A ,B ,C 所对的边分别为a,b,c,且c=10, cos 4 cos 3 A b B a ==,求a,b 及△ABC

高考中《解三角形》题型归纳

1 《解三角形》题型归纳 【题型归纳】 题型一正弦定理、余弦定理的直接应用 例1ABC ?的内角A ,B ,C 的对边分别为a ,b ,c ,已知2sin()8sin 2B A C +=. (1)求cos B (2)若6a c +=,ABC ?面积为2,求b . 【答案】(1)15 cos 17B =(2)2b =. 【解析】由题设及A B C π++=得2sin 8sin 2B B =,故sin 4(1cos )B B =-. 上式两边平方,整理得217cos 32cos 150B B -+=, 解得cos 1B =(舍去),15 cos 17B =. (2)由15cos 17B =得8sin 17B =,故1 4 sin 217ABC S ac B ac ?==. 又2ABC S ?=,则17 2ac =. 由余弦定理及6a c +=得22222cos ()2(1cos ) b a c ac B a c ac B =+-=+-+17 15 362(14217=-??+=. 所以2b =. 【易错点】二倍角公式的应用不熟练,正余弦定理不确定何时运用 【思维点拨】利用正弦定理列出等式直接求出 例2ABC △的内角,,A B C 的对边分别为,,a b c ,若2cos cos cos b B a C c A =+,则B =.【答案】π3【解析】1 π 2sin cos sin cos sin cos sin()sin cos 23B B A C C A A C B B B =+=+=?=?= .

2【易错点】不会把边角互换,尤其三角恒等变化时,注意符号。 【思维点拨】边角互换时,一般遵循求角时,把边换成角;求边时,把角转换成边。 例3在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若b =1,c =3,C =23 π,则S △ABC =________.【答案】34 【解析】因为c >b ,所以B <C ,所以由正弦定理得b sin B =c sin C ,即1sin B =3sin 2π3=2,即sin B =12,所以B =π6,所以A =π-π6-2π3=π6.所以S △ABC =12bc sin A =12×3×12=34 .【易错点】大边对大角,应注意角的取值范围 【思维点拨】求面积选取公式时注意,一般选取已知角的公式,然后再求取边长。题型二利用正弦定理、余弦定理判定三角形的形状 例1在ABC ?中,角,,A B C 的对边分别为,,a b c ,且,,A B C 成等差数列 (1)若2b c ==,求ABC ?的面积 (2)若sin ,sin ,sin A B C 成等比数列,试判断ABC ?的形状 【答案】(1)32(2)等边三角形 【解析】(1)由A ,B ,C 成等差数列,有2B =A +C (1) 因为A ,B ,C 为△ABC 的内角,所以A +B +C =π.(2) 得B =3π, b 2=a 2+ c 2-2accosB (3)所以3 cos 44)32(22πa a -+=解得4=a 或2-=a (舍去)所以323 sin 2421sin 21=??==?πB ac s ABC (2)由a ,b ,c 成等比数列,有b 2=ac (4) 由余弦定理及(3),可得b 2=a 2+c 2-2accosB =a 2+c 2-ac 再由(4),得a 2+c 2-ac =ac ,即(a -c )2=0。因此a =c 从而A =C (5) 由(2)(3)(5),得A =B = C =3 π

解三角形(历届高考题)

历届高考中的“解三角形”试题精选(自我测试) 1.( ) (A )135° (B)90° (C)45° (D)30° 2.(2007重庆理)在ABC ?中,,75,45,300=== C A AB 则BC =( ) A.33- B.2 D.33+ ` 3.(2006山东文、理)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A = 3 π ,a =3,b =1,则c =( ) (A )1 (B )2 (C )3—1 (D )3 4.(2008福建文)在中,角A,B,C 的对应边分别为a,b,c,若2 2 2 a c b +-=,则角B 的值为( ) A.6 π B. 3π C.6 π或56π D. 3 π或23π 5.(2005春招上海)在△ABC 中,若C c B b A a cos cos cos = =,则△ABC 是( ) ( (A )直角三角形. (B )等边三角形. (C )钝角三角形. (D )等腰直角三角形. 6.(2006全国Ⅰ卷文、理)ABC ?的内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c 成等 比数列,且2c a =,则cos B =( ) A . 14 B .3 4 C .4 D .3 7.(2005北京春招文、理)在ABC ?中,已知C B A sin cos sin 2=,那么ABC ?一定是( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形 D .正三角形 . 8.(2004全国Ⅳ卷文、理)△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边.如果a 、b 、c 成等差数列,∠B=30°,△ABC 的面积为2 3 ,那么b =( ) A .2 31+ B .31+ C .2 32+ D .32+ 二.填空题: (每小题5分,计30分) 9.(2007重庆文)在△ABC 中,AB =1, B C =2, B =60°,则AC = 。 … 10. (2008湖北文)在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,已知3,30,a b c ===? 则A = . 11.(2006北京理)在ABC ?中,若sin :sin :sin 5:7:8A B C =,则B ∠的大小是___ __.

解三角形常见题型

解三角形知识点、常见题型及解题方法 题型之一:求解斜三角形中的基本元素 指已知两边一角(或二角一边或三边),求其它三个元素问题,进而求出三角形的三线(高线、角平分线、中线)及周长等基本问题. 1. 在ABC ?中,AB=3,AC=2,BC=10,则AB AC ?= ( ) A .23- B .3 2- C .32 D .23 【答案】D 2.(1)在?ABC 中,已知032.0=A ,081.8=B ,42.9=a cm ,解三角形; (2)在?ABC 中,已知20=a cm ,28=b cm ,040=A ,解三角形(角度精确到01,边长精确到1cm )。 3.(1)在?ABC 中,已知=a c 060=B ,求b 及A ; (2)在?ABC 中,已知134.6=a cm ,87.8=b cm ,161.7=c cm ,解三角形 4(2005年全国高考江苏卷) ABC ?中,3π= A ,BC =3,则ABC ?的周长为( ) A .33sin 34+??? ?? +πB B .36sin 34+??? ? ?+πB C .33sin 6+??? ?? +πB D .36sin 6+??? ? ?+πB 分析:由正弦定理,求出b 及c ,或整体求出b +c ,则周长为3+b +c 而得到结果.选(D). 5 (2005年全国高考湖北卷) 在ΔABC 中,已知66cos ,364== B AB ,A C 边上的中线B D =5,求sin A 的值. 分析:本题关键是利用余弦定理,求出AC 及BC ,再由正弦定理,即得sin A . 解:设E 为BC 的中点,连接DE ,则DE //AB ,且36221== AB DE ,设BE =x 在ΔBDE 中利用余弦定理可得:BED ED BE ED BE BD cos 22 22?-+=, x x 6 636223852??++=,解得1=x ,37-=x (舍去)

高三第一轮复习解三角形题型总结

2018高三第一轮复习解三角形题型总结 题型一:正选定理的应用 1. ABC ?的三内角A 、B 、C 的对边边长分别为a b c 、、,若,2a A B ==, 则cos _____B = B. C. D. 2. 如果111A B C ?的三个内角的余弦值分别等于222A B C ?的三个内角的正弦值,则( ) A .111A B C ?和222A B C ?都是锐角三角形 B .111A B C ?和222A B C ?都是钝角三角形 C .111A B C ?是钝角三角形,222A B C ?是锐角三角形 D .111A B C ?是锐角三角形,222A B C ?是钝角三角形 3. 在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若 ( ) C a A c b cos cos 3=-,则 =A cos _________________。 4.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =a 2,则=a b A . B . C D 5.ABC ?中,3 π = A ,BC =3,则ABC ?的周长为( ) A . 33sin 34+??? ? ?+πB B . 36sin 34+??? ??+πB C .33sin 6+??? ??+πB D .36sin 6+??? ? ? +πB 6. 在ABC ?中,已知3,1,60===?ABC S b A o ,则 =++++C B A c b a sin sin sin

7.设ABC ?的内角,,A B C 的对边分别为,,a b c ,且35 cos ,cos ,3,513 A B b = ==则c =______ 8.(2017全国卷2文16)ABC ?的内角C B A ,,的对边分别为c b a ,,,若 A c C a B b cos cos cos 2+=,则=B ________. 9.在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是________. 题型二:三角形解的个数的判断 1. 在ABC △中,根据下列条件解三角形,则其中有二个解的是 A 、10,45,70b A C === B 、60,48,60a c B === C 、7,5,80a b A === D 、14,16,45a b A === 2. 在ABC ?中,若30,4A a b ∠===,则满足条件的ABC ? A .不存在 B .有一个 C .有两个 D 不能确定 3.△ABC 中,∠A=60°, a= 6 , b=4, 那么满足条件的△ABC ( ) A 有 一个解 B 有两个解 C 无解 D 不能确定 4.符合下列条件的三角形有且只有一个的是 ( ) A .a=1,b=2 ,c=3 B .a=1,b=2 ,∠A=30°

解三角形常见题型归纳

解三角形常见题型归纳 正弦定理和余弦定理是解斜三角形和判定三角形类型的重要工具,其主要作用是将已知条件中的边、角关系转化为角的关系或边的关系。 题型之一:求解斜三角形中的基本元素 指已知两边一角(或二角一边或三边),求其它三个元素问题,进而求出三角形的三线(高线、角平分线、中线)及周长等基本问题. 1. 在ABC ?中,AB=3,AC=2,BC=10,则AB AC ?= ( ) A .23- B .3 2- C .32 D .23 【答案】D 2.(1)在?ABC 中,已知032.0=A ,081.8=B ,42.9=a cm ,解三角形; (2)在?ABC 中,已知20=a cm ,28=b cm ,040=A ,解三角形(角度精确到01,边长精确到1cm )。 3.(1)在?ABC 中,已知=a c 060=B ,求b 及A ; (2)在?ABC 中,已知134.6=a cm ,87.8=b cm ,161.7=c cm ,解三角形 4(2005年全国高考江苏卷) ABC ?中,3 π = A ,BC =3,则ABC ?的周长为( ) A .33sin 34+??? ? ? + πB B .36sin 34+??? ? ? +πB C .33sin 6+??? ? ? + πB D .36sin 6+??? ? ? +πB 分析:由正弦定理,求出b 及c ,或整体求出b +c ,则周长为3+b +c 而得到结果.选(D). 5 (2005年全国高考湖北卷) 在ΔABC 中,已知6 6 cos ,364== B AB ,A C 边上的中线B D =5,求sin A 的值. 分析:本题关键是利用余弦定理,求出AC 及BC ,再由正弦定理,即得sin A . 解:设E 为BC 的中点,连接DE ,则DE //AB ,且3 6221== AB DE ,设BE =x 在ΔBDE 中利用余弦定理可得:BED ED BE ED BE BD cos 22 2 2 ?-+=,

2020年高考理科数学《解三角形》题型归纳与训练

2020年高考理科数学 《解三角形》题型归纳与训练 【题型归纳】 题型一 正弦定理、余弦定理的直接应用 例1ABC ?的内角A ,B ,C 的对边分别为a ,b ,c ,已知2 sin()8sin 2 B A C +=. (1)求cos B (2)若6a c +=,ABC ?面积为2,求b . 【答案】(1)15 cos 17 B = (2)2b =. 【解析】由题设及A B C π++=得2 sin 8sin 2 B B =,故sin 4(1cos )B B =-. 上式两边平方,整理得2 17cos 32cos 150B B -+=, 解得cos 1B =(舍去),15 cos 17B =. [ (2)由15cos 17B = 得8sin 17B =,故14 sin 217 ABC S ac B ac ?== . 又2ABC S ?=,则17 2 ac = . 由余弦定理及6a c +=得2 2 2 2 2cos ()2(1cos )b a c ac B a c ac B =+-=+-+ 1715 362(1)4217 =-? ?+=. 所以2b =. 【易错点】二倍角公式的应用不熟练,正余弦定理不确定何时运用 【思维点拨】利用正弦定理列出等式直接求出 例2 ABC △的内角,,A B C 的对边分别为,,a b c ,若2cos cos cos b B a C c A =+,则B = . 【答案】 π3

【解析】1π2sin cos sin cos sin cos sin()sin cos 23 B B A C C A A C B B B =+=+=?= ?=. — 【易错点】不会把边角互换,尤其三角恒等变化时,注意符号。 【思维点拨】边角互换时,一般遵循求角时,把边换成角;求边时,把角转换成边。 例3在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若b =1,c =3,C =2 3π,则S △ABC =________. 【答案】3 4 【解析】因为c >b ,所以B <C ,所以由正弦定理得b sin B =c sin C ,即1 sin B =3sin 2π3 =2,即sin B =1 2,所以B =π6,所以A =π-π6-2π3=π6.所以S △ABC =12bc sin A =12×3×12=34. 【易错点】大边对大角,应注意角的取值范围 【思维点拨】求面积选取公式时注意,一般选取已知角的公式,然后再求取边长。 题型二利用正弦定理、余弦定理判定三角形的形状 例1在ABC ?中,角,,A B C 的对边分别为,,a b c ,且,,A B C 成等差数列 (1)若2b c ==,求ABC ?的面积 | (2)若sin ,sin ,sin A B C 成等比数列,试判断ABC ?的形状 【答案】(1)32 (2)等边三角形 【解析】(1)由A ,B ,C 成等差数列,有2B =A +C (1) 因为A ,B ,C 为△ABC 的内角,所以A +B +C =π.(2) 得B = 3π , b 2=a 2+ c 2-2accosB (3) 所以3 cos 44)32(2 2 π a a -+= 解得4=a 或2-=a (舍去) 所以323 sin 2421sin 21=??== ?π B ac s AB C (2)由a ,b ,c 成等比数列,有b 2=ac (4)

解三角形常用知识点归纳与题型总结-解三角形题型归纳总结

解三角形常用知识点归纳与题型总结 1、①三角形三角关系:A+B+C=180°;C=180°—(A+B); ②.角平分线性质定理:角平分线分对边所得两段线段的比等于角两边之比. ③.锐角三角形性质:若A>B>C 则6090,060A C ?≤c; a-b

高考数学题型全归纳解三角形考点归纳

【考题回放】 1.设,,a b c 分别是ABC ?的三个内角,,A B C 所对的边,则()2a b b c =+是2A B =的( ) (A )充分条件 (B )充分而不必要条件 (C )必要而充分条件 (D )既不充分又不必要条件 2.在ABC ?中,已知C B A sin 2tan =+,给出以下四个论断: ① 1cot tan =?B A ② 2sin sin 0≤ +

解三角形常见题型归纳

解三角形常见题型归纳-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

解三角形常见题型归纳 正弦定理和余弦定理是解斜三角形和判定三角形类型的重要工具,其主要作用是将已知条件中的边、角关系转化为角的关系或边的关系。 题型之一:求解斜三角形中的基本元素 指已知两边一角(或二角一边或三边),求其它三个元素问题,进而求出三角形的三线(高线、角平分线、中线)及周长等基本问题. 1. 在ABC ?中,AB=3,AC=2,BC=10,则AB AC ?= ( ) A .23- B .32- C .32 D .2 3 【答案】D 2.(1)在?ABC 中,已知032.0=A ,081.8=B ,42.9=a cm ,解三角形; (2)在?ABC 中,已知20=a cm ,28=b cm ,040=A ,解三角形(角度精确到01,边长精确到1cm )。 3.(1)在?ABC 中,已知=a c 060=B ,求b 及A ; (2)在?ABC 中,已知134.6=a cm ,87.8=b cm ,161.7=c cm ,解三角形 4(2005年全国高考江苏卷) ABC ?中,3 π = A ,BC =3,则ABC ?的周长为( ) A .33sin 34+??? ??+π B B .36sin 34+??? ? ? +πB C .33sin 6+??? ??+πB D .36sin 6+??? ? ? +πB 分析:由正弦定理,求出b 及c ,或整体求出b +c ,则周长为3+b +c 而得到结果.选(D). 5 (2005年全国高考湖北卷) 在ΔABC 中,已知6 6 cos ,364== B AB ,A C 边上的中线B D =5,求sin A 的值. 分析:本题关键是利用余弦定理,求出AC 及BC ,再由正弦定理,即得sin A .

解三角形题型总结(原创)

解三角形题型总结(原创)

解三角形题型总结 ABC 中的常见结论和定理: 一、内角和定理及诱导公式: 1 .因为A B C ? 所 以 sin(A B) =sin C, (2)A 、B 、C 成等差数列的充要条件是 B=60°; ⑶△ ABC 是正三角形的充要条件是 A 、B 、C 成等差数列且a 、b 、c 成等比数列. 二、正弦定理: cos(A B) = _cosC, tan (A B) = _ ta nC ; sin( A C) 二 sin B, sin( B C)二 sin A, 因为ABC 二 cos(A C)二-cosB, cos(B C)二-cos 代 tan (A C)二- ta n B ; tan(B C)二-2 2 所以 sin =cos C , 2 ?大边对大角 A B . C cos sin , 2 ? 3.在△ ABC 记并会证 tanA+tanB+tanC=tanA tanB tanC;

公式变形:① a=2Rsin A b=2Rsin B c = 2RsinC (边转化成 角) 边) a:b: c =sin A: sinB: sinC 文字:在- ABC 中,任意一边的平方,等于另外两 边的平方和,减去这两边与它们夹角的余 弦值的乘积的两倍。 符号 : a 2 二 b 2 e 2 —2bccos A 2 2 2 c a b - 2ab cosC a sin A =— 2R b sin B =— 2R c sin C =— 2R (角转化成 ④ __ a be sin A +sinB +sin a _ b _ e sin A sinB sinC =2R 余弦定理: 2 2 2 b a c - 2ac cos B cosC 二 .2 2 2 cosA = b +c t 2bc a 2 b 2 -c 2ab cosB 二 c 2 「b 2ac

必修五解三角形高考题型总结复习

解三角形 一?选择题。 1. ABC中,.A,. B,. C 的对边分别为a,b,c若且.A =755,则b=() A.2 B ? 4+ 2、3 C ? 4 —2.3 D ? .6-^2 2 2 2. 在厶ABC 中,tan A sin B 二tanB sin A,那么△ ABC —定是() A ?锐角三角形B.直角三角形 C ?等腰三角形 D ?等腰三角形或直角三角形 3. 若A ABC的内角,则下列函数中一定取正值的是() 1 A ? sin A B. cos A C. tan A D. tan A C 2 2 4. 关于x的方程x -x cosA cosB - COS 0有一个根为1,则厶ABC 一定是() 2 A.等腰三角形 B .直角三角形 C .锐角三角形 D ?钝角三角形 5. 边长为5,7,8的三角形的最大角与最小角的和是() A. 900 B. 1200 C. 1350 D. 150° 6 .在厶ABC 中,A:B:C =1:2:3,则a:b:c等于() A. 1: 2:3 B. 3: 2:1 C. 1:、“3:2 D. 2: .3:1 7. 在△ ABC中,.C =90。, 00::: A :450,则下列各式中正确的是() A. si nA cosA B. sin B cosA C. sin A cosB D. sin B cosB . 8. (海南)如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为() A. 5/18 B. 3/4 C. .3/2 D. 7/8 二.填空题。 9. (北京).若错误!未找到引用源。的内角错误!未找到引用源。、错误!未找到引用源。、错误!未找到引用源。 满足错误!未找到引用源。,则错误!未找到引用源。________________ 10. (江苏)在厶ABC中,已知BC= 12, A= 60°, B= 45°,贝U AC= ________ 1 「 11. (北京)在△ ABC 中,若tan A , C = 150、, BC = 1,则AB = ______ 3 12. 在厶ABC中,若a =9,b =10,C =12,则厶ABC的形状是____________ 13. (湖南文)在△ ABC中,角A, B, C所对的边分别为a, b, c,若a=1, c二寸3, c= n,则A= _____________ . 3 14. (重庆文)在厶ABC中, AB=1, B C=2, B=60°,贝U AC= ______ 15. (江苏)若AB=2, AC= 2 BC,则S A BC的最大值 __________ ? 16. (湖北)在厶ABC中,三个角代B,C的对边边长分别为a=3,b=4,c=6,则bccosA cacosB abcosC的 值为

解三角形大题专练

解三角形大题专练 1、(2008全国Ⅰ卷)设ABC △的内角A B C ,,所对的边长分别为a b c ,,,且3 20 tan = B a ,sin 4b A =. (Ⅰ)求B cos 和边长a ;(Ⅱ)若AB C △的面积10S =,求C 4cos 的值. 解:(1)由sin 4b A =得4sin =B a , 由320tan =B a 与4sin =B a 两式相除,有:05 3 cos >=B , 又通过320tan =B a 知:0tan >B , 则3cos 5B =,4sin 5B =,34 tan =B 则5a =.…… (2)由1 sin 2 S ac B =,得到5c =.C A =∴ 由25 7 1)53(21cos 21)(cos 212cos 24cos 2222-=-?=-=-+=-=B C A C C 2.(2009(全国Ⅰ理))在ABC ?中,内角A 、B 、C 的对边长分别为a 、b 、c ,已知222a c b -=,且 sin cos 3cos sin ,A C A C = 求b 解法一:在 ABC ?中sin cos 3cos sin ,A C A C =则由正弦定理及余弦定理 有:222222 3,22a b c b c a a c ab bc +-+-=化简并整理得:2222()a c b -=.又由已知222a c b -=24b b ∴=.解得 40(b b ==或舍) . 解法二:由余弦定理得: 2222cos a c b bc A -=-.又222a c b -=,0b ≠. 所以2cos 2b c A =+① 又sin cos 3cos sin A C A C =,sin cos cos sin 4cos sin A C A C A C ∴+= sin()4cos sin A C A C +=,即sin 4cos sin B A C = 由正弦定理得sin sin b B C c = ,故4cos b c A =② 由①,②解得4b =. 3.(2010年高考(全国理1))已知ABC V 的内角A ,B 及其对边a ,b 满足cot cot a b a A b B +=+,求内角C . 【答案】解:由cot cot a b a A b B +=+及正弦定理得 sin sin cos cos sin cos cos sin A B A B A A B B +=+-=- 从而sin cos cos sin cos sin sin cos 4 4 4 4 A A B B π π π π -=- sin()sin()44 A B π π -=- 又0A B π<+<故4 4 A B π π - = -2 A B π += 所以2 C π = 4.(2011年高考(理))(本小题满分l0分) ABC 的内角A 、B 、C 的对边分别为a 、b 、c .己知90A C -=,a c +=,求C . 【答案】解:由a c += 及正弦定理可得sin sin .A C B +=…………3分 又由于90,180(),A C B A C -=?=?-+故 cos sin )C C A C +=+2)C =?+2.C = ………7分

相关主题