搜档网
当前位置:搜档网 › 一次函数经典例题

一次函数经典例题

一次函数经典例题
一次函数经典例题

xxxXXXXX学校XXXX年学年度第二学期第二次月考

XXX年级xx班级

姓名:_______________班级:_______________考号:_______________

题号一、填空

二、选择

三、未分

四、简答

总分

得分

一、填空题

(每空?分,共?分)

1、在函数y=中,自变量x的取值范围是______.

2、点(填:“在”或“不在”)直线上

3、已知,当x=2时,y=_________.

4、某音像公司对外出租光盘的收费方法是:每张光盘出租后的前2天每天收费0.8元,以后每天收费0.5元,那么一张光盘在出租第n天后(n > 2且为整数)应收费___________元.

5、某水果批发市场香蕉的价格如下表:

购买香蕉数(千克) 不超过

20千克

20千克以上

但不超过40千克

40千克以上

每千克价格6元5元4元

若小强购买香蕉x千克(x大于40千克)付了y元,则y关于x的函数关系式

为.

6、弹簧的长度y(cm)与所挂物体的质量x (kg)的关系是一次函数,图象如右图所示,则弹簧不挂物体时的长度是___________cm;

评卷人得分

7、为鼓励居民节约用水,北京市出台了新的居民用水收费标准:(1)若每月每户居民用水不超过4立方米,则按每立方米2米计算;(2)若每月每户居民用水超过4立方米,则超过部分按每立方米4.5米计算(不超过部分仍按每立方米2元计算)。现假设该市某户居民某月用水x立方米,水费为y元,则y与x的函数关系用图象表示正确的是( )

8、一根弹簧的原长为12 cm,它能挂的重量不能超过15 kg并且每挂重1kg就伸长0.5cm写出挂重后的弹簧长度y (cm)与挂重x(kg)之间的函数关系式是_______________.

9、已知:2x-3y=1,若把看成的函数,则可以表示为

二、选择题

(每空?分,共?分)

10、一天,王老师从学校坐车去开会,由于途中塞车,他只好步行赶到会场,?开完会后,他直接回到学校,下图中

能体现他离学校的距离y(千米)与时间x

?时)的关系的图象是(

11、小英早上从家里骑车上学,途中想到社会实践调查资料忘带了,立刻原路返回,返家途中遇到给她送资料的妈妈,接过资料后,小英加速向学校赶去.能反映她离家距离s与骑车时间t的函数关系图象大致是评卷人得分

高中数学必修一《集合与函数的概念》经典例题

高中数学必修一第一章《集合与函数概念》综合测 试题试题整理:周俞江 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正 确答案的代号填在题后的括号内(本大题共12个小题, 每小题5分,共60分). 1.已知全集}5,4,3,2{},3,2,1{==B A ,则=B A I ( ) A. }{5,4,3,2,1 B.{}3,2,1 C.{}3,2 D.{}7,6,3 2. 若{{}|0,|12A x x B x x =<<=≤<,则A Y B=( ) A . {}|0x x ≤ B .{}|2x x ≥ C .{0x ≤≤ D .{}|02x x << 3 .在下列四组函数中,f (x )与g (x )表示同一函数的是( ) A.x x y y ==,1 B .1,112-=+?-=x y x x y C.55 ,x y x y == D .2)(|,|x y x y == 4.函数x x x y +=的图象是( ) 5.0≤f 不是映射的是A .1:3f x y x ?? →= B .1 :2 f x y x ??→= C .1:4f x y x ??→= D .1:6f x y x ??→= 6.函数y =f (x )的图象与直线x =1的公共点数目是( ). A .1 B .0 C .0或1 D .1或2 7.函数1)2(++=x k y 在实数集上是增函数,则k 的范围是( ) A .2-≥k B .2-≤k C .2->k D .2-

9.有下面四个命题: ①偶函数的图象一定与y 轴相交; ②奇函数的图象一定通过原点; ③偶函数的图象关于y 轴对称; ④既是奇函数,又是偶函数的函数一定是f (x )=0(x ∈R ). 其中正确命题的个数是( ). A .1 B .2 C .3 D .4 10.图中阴影部分所表示的集合是( ) A.B ∩[C U (A ∪C)] B.(A ∪B) ∪(B ∪C) C.(A ∪C)∩(C U B) D.[C U (A ∩C)]∪B 11.若函数))(12()(a x x x x f -+= 为奇函数,则=a ( ) A.21 B.32 C.43 D.1 12.已知函数x x x x f 22 11)11(+-=+-,则函数)(x f 的解析式可以是( ) A.x x 21+ B.x x 212+- C.x x 212+ D.x x 21+- 13.二次函数y =x 2+bx +c 的图象的对称轴是x =2,则有( ). A .f (1)<f (2)<f (4) B .f (2)<f (1)<f (4) C .f (2)<f (4)<f (1) D .f (4)<f (2)<f (1) 14.已知函数[](]?????∈--∈-=5,2,32,13)(,2x x x x f x 则方程1)(=x f 的解是( ) A.2或2 B.2或3 C.2或4 D.±2或4 15.函数()f x 的定义域为),(b a ,且对其内任意实数12,x x 均有:1212()[()()]0x x f x f x --<,则()f x 在),(b a 上是 A .增函数 B .减函数

必修1 第三章函数的应用经典例题讲解

第三章 函数的应用 1:函数的零点 【典例精析】 例题1 求下列函数的零点。 (1)y=32x 2-+x ;(2)y =(2 x -2)(2 x -3x +2)。 思路导航:判断函数零点与相应的方程根的关系,就是求与函数相对应的方程的根。 答案:(1)①当x≥0时,y=x 2 +2x -3,x 2 +2x -3=0得x=+1或x=-3(舍) ②当x <0时,y=x 2 -2x -3,x 2-2x -3=0得x=-1或x=3(舍) ∴函数y=x 2 +2|x|-3的零点是-1,1。 (2)由(2x -2)(2 x -3x +2)=0,得(x +2)(x -2)(x -1)(x -2)=0, ∴x 1=-2,x 2=2,x 3=1,x 4=2。 ∴函数y =(x 2 -2)(x 2 -3x +2)的零点为-2,2,1,2。 点评:函数的零点是一个实数,不是函数的图象与x 轴的交点,而是交点的横坐标。 例题2 方程|x 2-2x|=a 2+1 (a∈R + )的解的个数是______________。 思路导航:根据a 为正数,得到a 2 +1>1,然后作出y=|x 2 -2x|的图象如图所示,根据图象得到y=a 2 +1的图象与y=|x 2 -2x|的图象总有两个交点,得到方程有两解。 ∵a∈R + ∴a 2 +1>1。而y=|x 2 -2x|的图象如图, ∴y=|x 2 -2x|的图象与y=a 2 +1的图象总有两个交点。 ∴方程有两解。 答案:2个 点评:考查学生灵活运用函数的图象与性质解决实际问题,会根据图象的交点的个数判断方程解的个数。做题时注意利用数形结合的思想方法。 例题3 若函数f (x )=ax +b 有一个零点为2,则g (x )=bx 2 -ax 的零点是( ) A. 0,2 B. 0,12 C. 0,-12 D. 2,-1 2 思路导航:由f (2)=2a +b =0,得b =-2a ,∴g (x )=-2ax 2-ax =-ax (2x +1)。令g (x )=0,得x 1=0,x 2=-1 2 ,故选C 。 答案:C 【总结提升】 1. 函数y =f (x )的零点就是方程f (x )=0的根,因此,求函数的零点问题通常可转化为求相应的方程的根的问题。 2. 函数与方程二者密不可分,二者可以相互转化,如函数解析式y =f (x )可以看作方程y -f (x )=0,函数有意义则方程有解,方程有解,则函数有意义,函数与方程体现了

高一数学必修一函数经典题型复习

1集合 题型1:集合的概念,集合的表示 1.下列各项中,不可以组成集合的是( ) A .所有的正数 B .等于2的数 C .接近于0的数 D .不等于0的偶数 2.下列四个集合中,是空集的是( ) A .}33|{=+x x B .},,|),{(2 2 R y x x y y x ∈-= C .}0|{2 ≤x x D .},01|{2 R x x x x ∈=+- 3.下列表示图形中的阴影部分的是( ) A .()()A C B C B .()()A B A C C .()()A B B C D .()A B C 4.下面有四个命题: (1)集合N 中最小的数是1; (2)若a -不属于N ,则a 属于N ; (3)若,,N b N a ∈∈则b a +的最小值为2; (4)x x 212 =+的解可表示为{ }1,1; 其中正确命题的个数为( ) A .0个 B .1个 C .2个 D .3个 题型2:集合的运算 例1.若集合}1,1{-=A ,}1|{==mx x B ,且A B A =?,则m 的值为( D ) A .1 B .1- C .1或1- D .1或1-或0 例2. 已知{25}A x x =-≤≤,{121}B x m x m =+≤≤-,B A ?,求m 的取值范围。 解:当121m m +>-,即2m <时,,B φ=满足B A ?,即2m <; 当121m m +=-,即2m =时,{}3,B =满足B A ?,即2m =; 当121m m +<-,即2m >时,由B A ?,得12 215m m +≥-??-≤? 即23m <≤; ∴3≤m 变式: 1.设2 2 2 {40},{2(1)10}A x x x B x x a x a =+==+++-=,其中x R ∈, 如果A B B =,求实数a 的取值范围。 A B C

二次函数经典例题及答案

二次函数经典例题及答案 1.已知抛物线的顶点为P (- 4,—2),与x轴交于A B两点,与y轴交于点C,其中B点坐标为(1 , 0)。 (1) 求这条抛物线的函数关系式; (2) 若抛物线的对称轴交x轴于点D,则在线段AC上是否存在这样的点Q,使得△ ADQ 1 2 9 . 135 y=2 x +4x - 2;存在点Q (-1 , -4 ) , Q (2^5-9,-%'5 ) , Q (--^, -4) ?析 一2 25 试题分析:(1)根据顶点坐标把抛物线设为顶点式形式y=a ( x+4) - 2,然后把点B的坐 标代入解析式求出a的值,即可得解; (2)先根据顶点坐标求出点D 的坐标,再根据抛物线解析式求出点A、C的坐标,从而得 到OA OC AD的长度,根据勾股定理列式求出AC的长度,然后根据锐角三角形函数求出/ OAC勺正弦值与余弦值,再分① AD=QD时,过Q作QE1丄x轴于点E,根据等腰三角形三线合一的性质求出AQ,再利用/ OAC勺正弦求出QE的长度,根据/ OAC勺余弦求出AE的长度,然后求出OE,从而得到点Q的坐标;②AD=AQ时,过Q作QE2丄x轴于点E>,利用/ OAC勺正弦求出QE2的长度,根据/ OAC勺余弦求出AE的长度,然后求出OE,从而得到点Q的坐标;③AQ=DQ时,过Q作QE3丄x轴于点已,根据等腰三角形三线合一的性质求出AE 的长度,然后求出OE,再由相似三角形对应边成比例列式求出QE3的长度,从而得到点Q 的坐标. 试题解析:(1 )???抛物线顶点坐标为( 25 -4 , - 2), ???设抛物线解析式为 2 25 y=a (x+4) - 2 为等腰三角形?若存在,请求出符合条件的点

必修一函数的单调性专题讲解(经典)

第一章 函数的基本性质之单调性 一、基本知识 1.定义:对于函数)(x f y =,对于定义域内的自变量的任意两个值21,x x ,当 21x x <时,都有 ))()()(()(2121x f x f x f x f ><或,那么就说函数)(x f y =在这个区间上是增(或减)函数。 重点 2.证明方法和步骤: (1) 取值:设21,x x 是给定区间上任意两个值,且21x x <; (2) 作差:)()(21x f x f -; (3) 变形:(如因式分解、配方等); (4) 定号:即0)()(0)()(2121<->-x f x f x f x f 或; (5) 根据定义下结论。 3.常见函数的单调性 时, 在R 上是增函数;k<0时, 在R 上是减函数 (2),在(—∞,0),(0,+∞)上是增函数, (k<0时),在(—∞,0),(0,+∞)上是减函数, (3)二次函数的单调性:对函数c bx ax x f ++=2)()0(≠a , 当0>a 时函数)(x f 在对称轴a b x 2- =的左侧单调减小,右侧单调增加; 当0

必修一函数经典例题

例4.已知log 4log 4m n <,比较m ,n 的大小。 解:∵log 4log 4m n <, ∴ 4411 log log m n < , 当1m >,1n >时,得4411 0log log m n << , ∴44log log n m <, ∴1m n >>. 当01m <<,01n <<时,得4411 0log log m n <<, ∴44log log n m <, ∴01n m <<<. 当01m <<,1n >时,得4log 0m <,40log n <, ∴01m <<,1n >, ∴01m n <<<. 综上所述,m ,n 的大小关系为1m n >>或01n m <<<或01m n <<<. 例5.求下列函数的值域: (1)2log (3)y x =+;(2)22log (3)y x =-;(3)2log (47)a y x x =-+(0a >且1a ≠). 解:(1)令3t x =+,则2log y t =, ∵0t >, ∴y R ∈,即函数值域为R . (2)令2 3t x =-,则03t <≤, ∴2log 3y ≤, 即函数值域为2(,log 3]-∞. (3)令2247(2)33t x x x =-+=-+≥, 当1a >时,log 3a y ≥, 即值域为[log 3,)a +∞, 当01a <<时,log 3a y ≤, 即值域为(,log 3]a -∞. 例6 .判断函数2()log )f x x =的奇偶性。 x 恒成立,故()f x 的定义域为(,)-∞+∞, 2()log )f x x -= 2 log =- 2 log =- 2log ()x f x =-=-, 所以,()f x 为奇函数。 例7.求函数213 2log (32)y x x =-+的单调区间。 解:令2 2 3 132()2 4u x x x =-+=-- 在3[,)2+∞上递增,在3 (,]2 -∞上递减, 又∵2 320x x -+>, ∴2x >或1x <, 故2 32u x x =-+在(2,)+∞上递增,在(,1)-∞上递减, 又∵13 2log y u =为减函数, 所以,函数213 2log (32)y x x =-+在(2,)+∞上递增,在(,1)-∞上递减。 例8.若函数2 2log ()y x ax a =--- 在区间(,1-∞上是增函数,a 的取值范围。 解:令2 ()u g x x ax a ==--,

对数函数典型例题

对数运算与对数函数复习 例1.求下列函数的定义域: (1)2log x y a =; (2))4(log x y a -=; (3))9(log 2x y a -=. 例2.比较下列各组数中两个值的大小: (1)2log 3.4,2log 8.5; (2)0.3log 1.8,0.3log 2.7; (3)log 5.1a ,log 5.9a . (4)0.91.1, 1.1log 0.9,0.7log 0.8; 例3.求下列函数的值域: (1)2log (3)y x =+;(2)22log (3)y x =-;(3)2log (47) a y x x =-+(0a >且1a ≠).

例4.(1)已知:36log ,518,9log 3018求==b a 值. 例5.判断函数2()log )f x x =的奇偶性。

对数运算与对数函数复习练习 一、选择题 1.3 log 9log 28的值是( ) A .32 B .1 C .2 3 D .2 2.函数)2(x f y =的定义域为[1,2],则函数)(log 2x f y =的定义域为( ) A .[0,1] B .[1,2] C .[2,4] D .[4,16] 3.函数2x log y 5+=(x ≥1)的值域是( ) A .R B .[2,+∞] C .[3,+∞] D .(-∞,2) 4.如果0-+ C .0)a 1(log )a 1(>+- D .0)a 1(log )a 1(<-+ 5.如果02log 2log b a >>,那么下面不等关系式中正确的是( ) A .0b>1 D .b>a>1 6 若a>0且a ≠1,且14 3log a <,则实数a 的取值范围是( ) A .0或 D .4 3a 0<<或a>1 7.设0,0,a b <<且,722ab b a =+那么1lg |()|3 a b +等于( ) A .1(lg lg )2a b + B .1lg()2ab C .1(lg ||lg ||)3a b + D .1lg()3 ab 8.如果1x >,12log a x =,那么( ) A .22a a a >> B .22a a a >> C .22a a a >> D .22a a a >> 二、填空题(共8题) 8.计算=+?+3log 22450lg 2lg 5lg . 10.若4 12x log 3=,则x =________ 11 .函数f(x)的定义域是[-1,2],则函数)x (log f 2的定义域是_____________ 12.函数x )31 (y =的图象与函数x log y 3-=的图象关于直线___________对称.

必修一函数的单调性经典易错习题

函数的单调性 一、选择题 1.下列函数中,在区间(0,2)上为增函数的是…………………………………( ) A.y =3-x B.y =x 2+1 C.y =-x 2 D.y =x 2-2x -3 2.若函数y =(a +1)x +b ,x ∈R 在其定义域上是增函数,则…………………( ) A.a >-1 B.a <-1 C.b >0 D.b <0 3.若函数y =kx +b 是R 上的减函数,那么…………………………………( ) A.k<0 B.k>0 C.k ≠0 D. 4.函数f(x)=??? 2x +6x +7 x ∈[1,2] x ∈[-1,1],则f(x)的最大值、最小值为……( ) A.10,6 B.10,8 C.8,6 D. 5.下列四个函数在()-0∞,上为增函数的有( ) (1)y x = (2)x y x = (3)2 x y x =- (4)x y x x =+ A.(1)和(2) B.(2)和(3) C.(3)和(4) D.(1)和(4) 6.设()f x 是(),-∞+∞上的减函数,则( ) .()(2)A f a f a > 2.()()B f a f a < 2.()()C f a a f a +< 2.(1)()D f a f a +< 7.设函数()()21f x a x b =-+在R 上是严格单调减函数,则( ) 1.2A a ≥ 1.2B a ≤ 1.2C a > 1 .2D a < 8.下列函数中,在区间(0,2)上为增函数的是( ) .3A y x =- 2.1B y x =+ 2.C y x =- 2.23D y x x =-+ 9.已知函数22 4,0()4,0 x x x f x x x x ?+≥?=?-,则实数a 的取值范围是( ) ()().,12,A -∞-+∞ ().1,2B - ().2,1C - ()().,21,D -∞-+∞ 10.已知()f x 为R 上的减函数,则满足()11f f x ?? > ??? 的实数x 的取值范围是( ) ().,1A -∞ ().1,B +∞ ()().,00,1C -∞ ()().,01,D -∞+∞ 11.函数 的增区间是( )。 A . B . C . D .

初二函数知识点及经典例题.

第十八章 函数 一次函数 (一)函数 1、变量:在一个变化过程中可以取不同数值的量。 常量:在一个变化过程中只能取同一数值的量。 2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。 *判断Y 是否为X 的函数,只要看X 取值确定的时候,Y 是否有唯一确定的值与之对应 3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。 4、确定函数定义域的方法: (1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。 5、函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式 6、函数的图像 一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象. 7、描点法画函数图形的一般步骤 第一步:列表(表中给出一些自变量的值及其对应的函数值); 第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。 8、函数的表示方法 列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。 解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。 图象法:形象直观,但只能近似地表达两个变量之间的函数关系。 (二)一次函数 1、一次函数的定义 一般地,形如y kx b =+(k ,b 是常数,且0k ≠)的函数,叫做一次函数,其中x 是自变量。当0b =时,一次函数y kx =,又叫做正比例函数。 ⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式. ⑵当0b =,0k ≠时,y kx =仍是一次函数. ⑶当0b =,0k =时,它不是一次函数. ⑷正比例函数是一次函数的特例,一次函数包括正比例函数.

函数概念典型例题

函数概念及其表示---典例分析 例1.下列各组函数中,表示同一函数的是( C ). 选题理由:函数三要素。 A. 1,x y y x == B. 11,y x y = += C. ,y x y == D. 2||,y x y == 点评:有利于理解函数概念,强化函数的三要素。 变式: 1.函数f (x )= 2(1)x x x ??+? ,0,0x x ≥< ,则(2)f -=( ). A. 1 B .2 C. 3 D. 4 例2.集合{}22M x x =-≤≤,{}02N y y =≤≤,给出下列四个图形,其中能表示以M 为定义域,N 为值域的函数关系的是( B ). 选题理由:更好的帮助学生理解函数概念,同时也体现函数的重要表示法图像法,图形法是数形结合思想应用的前提。 变式: 1.下列四个图象中,不是函数图象的是(B ). 2.设集合A ={x |0≤x ≤6},B ={y |0≤y ≤2},从A 到B 的对应法则f 不是映射的是( ). A. f :x →y = 1 2x B. f :x →y = 1 3x C. f :x →y =1 4x D. f :x →y =1 6 x A. B. C. D.

函数的表达式及定义域—典例分析 【例1】 求下列函数的定义域: (1)1 21 y x = +-;(2 )y = . 选题理由:考查函数三要素,定义域是函数的灵魂。 解:(1)由210x +-≠,解得1x ≠-且3x ≠-, 所以原函数定义域为(,3)(3,1)(1,)-∞----+∞. (2 )由30 20 x -≥??≠,解得3x ≥且9x ≠, 所以原函数定义域为[3,9)(9,)+∞. 选题理由:函数的重要表示法,解析式法。 变式: 1 .函数y =的定义域为( ). A. (,1]-∞ B. (,2]-∞ C. 11(,)(,1]22-∞-- D. 1 1(,) (,1]2 2 -∞-- 2.已知函数()f x 的定义域为[1,2)-,则(1)f x -的定义域为( ). A .[1,2)- B .[0,2)- C .[0,3)- D .[2,1)- 【例2】已知函数1( )1x f x x -=+. 求: (1)(2)f 的值; (2)()f x 的表达式 解:(1)由121x x -=+,解得13x =-,所以1 (2)3f =-. (2)设11x t x -=+,解得11t x t -= +,所以1()1t f t t -=+,即1()1x f x x -=+. 点评:此题解法中突出了换元法的思想. 这类问题的函数式没有直接给出,称为抽象函数的研究,常常需要结合换元法、特值代入、方程思想等. 变式: 1.已知()f x =2x +x +1,则f =______;f [(2)f ]=______. 2.已知2(21)2f x x x +=-,则(3)f = . 【例 2】 已知f (x )=33x x -+?? (,1) (1,)x x ∈-∞∈+∞,求f [f (0)]的值. 选题理由:分段函数生活重要函数,是考察重点。 解:∵ 0(,1)∈-∞ , ∴ f 又 ∵ >1, ∴ f )3)-3=2+ 12=52,即f [f (0)]=5 2 . 点评:体现了分类讨论思想。 2.某同学从家里到学校,为了不迟到,先跑,跑累了再走余下的路,设在途中花的时间为 t ,离开家里的路程为d ,下面图形中,能反映该同学的行程的是( ).

高一数学必修一知识点总结及经典例题分析

高一数学必修1 1.知识点总结 一、集合有关概念 1. 集合的含义 2. 集合的中元素的三个特性: (1) 元素的确定性, (2) 元素的互异性, (3) 元素的无序性, 3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} (1) 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2) 集合的表示方法:列举法与描述法。注意:常用数集及其记法:非负整数集(即自然数集)记作:N 正整数集 N*或 N+整数集Z 有理数集Q 实数集R 1)列举法:{a,b,c……} 2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法{x| x-3>2} 3)语言描述法:例:{不是直角三角形的三角形} 4) Venn图: 4、集合的分类: (1) 有限集含有有限个元素的集合 (2) 无限集含有无限个元素的集合 (3) 空集不含任何元素的集合例:{x|x2=-5} 二、集合间的基本关系 1.?包含关系—子集 注意:B包含A有两种可能(1)A是B的一部分; (2)A与B是同一集合。 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A不属于B或B不属于A 2.相等?关系:A=B (5≥5,且5≤5,则5=5) 实例:设 A={x|x2-1=0} B={-1,1} ?元素相同则两集合相等?即:①即任何一个集合是它本身的子集。 ②真子集:如果A属于B,且A不属于B那就说集合A是集合B的真子集。 ③如果 A属于B, B属于C ,那么 A属于C ④如果A属于B 同时 B属于A ,那么A=B 3. 不含任何元素的集合叫做空集,记为Φ 1.规定: 空集是任何集合的子集,空集是任何非空集合的真子集。 2.特点有n个元素的集合,含有2n个子集,2n-1个真子集

函数的最值经典例题

函数的最值 根据条件确定函数的参数是否存在 例 已知函数1 log )(223++++=cx x b ax x x f ,是否存在实数a 、b 、c ,使)(x f 同时满足下列三个条件:(1)定义域为R 的奇函数;(2)在[)+∞,1上是增函数;(3)最大值是1.若存在,求出a 、b 、c ;若不存在,说明理由. 分析:本题是解决存在性的问题,首先假设三个参数a 、b 、c 存在,然后用三个已给条件逐一确定a 、b 、c 的值. 解:)(x f 是奇函数.1,0log 0)0(3=∴=?=?b b f 又)()(x f x f -=- ,即1 1log 11log 223223++++-=+-+-cx x ax x cx x ax x , ∴222222222222)1()1(1111x c x x a x ax x cx x cx x ax x -+=-+?++++=-+-+. ∴c a c a =?=2 2或c a -=,但c a =时,0)(=x f ,不合题意;故c a -=.这时1 1l o g )(223+++-=cx x cx x x f 在[)+∞,1上是增函数,且最大值是1. 设1 1)(22+++-=cx x cx x x u 在[)+∞,1上是增函数,且最大值是3. 2 22222222)1()1)(1(2)1()1(2)1()1)(2()1)(2()(++-+=++-=+++-+-++-='cx x x x c cx x x c cx x cx x c x cx x c x x u ,当1>x 时0)(012>'?>-x u x ,故0>c ;又当1-'x u ;当)1,1(-∈x 时,0)(<'x u ; 故0>c ,又当1-'x u ,当)1,1(-∈x 时,0)(<'x u . 所以)(x u 在),1()1,(+∞--∞ 是增函数,在(-1,1)上是减函数. 又1>x 时,1,1)(,1122-=∴<++<+-x x u cx x cx x 时)(x u 最大值为3. ∴.1,1,31 111-===+-++a c c c 经验证:1,1,1==-=c b a 时,)(x f 符合题设条件,所以存在满足条件的a 、b 、c ,即.1,1,1==-=c b a 说明:此题是综合性较强的存在性问题,对于拓宽思路,开阔视野很有指导意义.

高一数学必修一函数经典题型复习

高一数学必修一函数经典 题型复习 Prepared on 22 November 2020

函 数奇偶性 例题1:.已知 函数 是奇函数,则常数=a (已知函数奇 偶性求未知数的值) 练习: (1) 若函数1()21 x f x a = +-是奇函数,则实数a = (2)若函数191)(++=x a x f 为奇函数,则a =_____________. 例题2:.已知函数b a bx ax x f +++=3)(2是偶函数,定义域为[]a a 2,1-, 则=)0(f ( ) (已知定义域求未知数的值) A. B. C. 1 D. -1 3.已知2)(35++-=bx ax x x f ,且17)5(=-f ,则)5(f 的值为( ) 例题 (自己先判断函数奇偶性) A .-13 B .13 C .-19 D .19 练习. 已知53()5(,,)f x ax bx cx a b c =+++是常数,且(5)9f =,则(5)f -的值为 . 例题4. 设()f x 在R 上是奇函数,当x >0时,()(1)f x x x =-, 试问:当x <0时,()f x 的表达式是什么(已知函数部分解析式求另外部分的解析式) 练习: (1)设函数()f x 是R 上的偶函数,且当()0,x ∈+∞时,( )(1,f x x = ()0x ∈-∞则当,时,()f x 等于( ) (2)已知)(x f 为R 上的奇函数,且0>x 时2()241f x x x =-++,则(1)f -=____ __ 例题5:若定义在R 上的函数)(x f 满足:对任意R x x ∈21,,有 1)()()(2121++=+x f x f x x f , 下列说法一定正确的是() A 、)(x f 是奇函数 B 、)(x f 是偶函数 C )(x f +1是奇函数 D 、)(x f +1是偶函数 141)(++=x a x f 3132

必修一函数知识点整理和例题讲解(含答案)

高中数学必修一知识点和题型练习 一 集合与函数 1 集合的含义及表示* ???? ?? ????? ∈??? ????? ??? 确定性集合中元素的特征 互异性无序性 集合与元素的关系 : 列举法 集合的表示 描述法常见的数集 N N Z Q R 2,,A B B A A B A B A A A A B A B A B οο φ≠ ??=????? ?????≠??1定义:A=B 2若且则子集: , 集合相等: 集合间的基本关系真子集: 若且 则 空集φ的特殊性: 空集是任何集合的子集,任何非空集合的真子集 *结论 含有n 个元素的集合,其子集的个数为2n ,真子集的个数为21n - 3集合的基本运算{}{}{}|||U A B x x A x B A B x x A x B C A x x U x A ??=∈∈? ?=∈∈??=∈?? 并集:或 交集:且 补集:且 在集合运算中常借助于数轴和文氏图(*注意端点值的取舍) *结论 (1)A A A ?= A A A ?=, A A φ?= A φφ?= (2)A B B A B ?=?若则 A B A A B ?=?若则 练习题 1. 若集合P ={x |2≤x <4},Q ={x |x ≥3},则P ∩Q 等于( ) A .{x |3≤x <4} B .{x |3

高一数学函数经典题目及答案

精选 1函数解析式的特殊求法 例1 已知f(x)是一次函数, 且f[f(x)]=4x -1, 求f(x)的解析式 例2 若x x x f 21 (+=+),求f(x) 例3 已知x x x f 2)1(+=+,求)1(+x f 例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式 例5 已知f(x)满足x x f x f 3)1()(2=+,求)(x f 2函数值域的特殊求法 例1. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域。 例2. 求函数 22 x 1x x 1y +++=的值域。 例3求函数y=(x+1)/(x+2)的值域 例4. 求函数1e 1e y x x +-=的值域。 例1下列各组中的两个函数是否为相同的函数? ①3 )5)(3(1+-+=x x x y 52-=x y ②111-+=x x y )1)(1(2-+=x x y ③21)52()(-=x x f 52)(2-=x x f

精选 2若函数)(x f 的图象经过)1,0(-,那么)4(+x f 的反函数图象经过点 (A))1,4(- (B))4,1(-- (C))1,4(-- (D))4,1(- 例3 已知函数)(x f 对任意的a b R ∈、满足:()()()6,f a b f a f b +=+- 0,()6a f a ><当时;(2)12f -=。 (1)求:(2)f 的值; (2)求证:()f x 是R 上的减函数; (3)若(2)(2)3f k f k -<-,求实数k 的取值范围。 例4已知{(,)|,,A x y x n y an b n ===+∈Z }, 2{(,)|,315,B x y x m y m m ===+∈Z },22{(,)|C x y x y =+≤14},问是否存在实数,a b ,使得 (1)A B ≠?I ,(2)(,)a b C ∈同时成立. 证明题 1.已知二次函数2()f x ax bx c =++对于x 1、x 2∈R ,且x 1<x 2时 12()()f x f x ≠,求证:方程()f x =121[()()]2 f x f x +有不等实根,且必有一根属于区间(x 1,x 2).

必修一函数的单调性专题讲解(经典)

(2)第一章函数的基本性质之单调性 一、基本知识 1 .定义:对于函数y f (x),对于定义域内的自变量的任意两个值x「X2,当捲x2时,都有f(x i) f (X2)(或f (x i) f(X2)),那么就说函数y f (x)在这个区间上是增(或减)函数。 重点2 .证明方法和步骤: (1) 取值: 设X i,X2是给定区间上任意两个值,且X i X2 ; (2) 作差: f(xj f(X2); (3) 变形: (如因式分解、配方等); (4) 宀口 定 号: 即f (x i) f(x2) 0或f (x i) f(x2) 0 ; (5) 根据定义下结论。 3?常见函数的单调性 ⑴ 心) 也+乩k o|时,回在R上是增函数;k

5.函数的单调性的应用: 判断函数y f(x)的单调性;比较大小;解不等式;求最值(值域) 例题分析 T 2 例1 :证明函数f(x)=区_1在(0, + 上是减函数。 例2 :证明F@) = / + 3|在定义域上是增函数。 例3 :证明函数f(x)=x 3的单调性。 例4 :讨论函数y =一; 1 — x2在[—1,1]上的单调性. 3 例5 :讨论函数f(x) =W 的单调性.

高中数学最全必修一函数性质详解及知识点总结及题型详解

(经典)高中数学最全必修一函数性质详解及知识点总结及题型详解 分析 一、函数的概念与表示 1、映射:(1)对映射定义的理解。(2)判断一个对应是映射的方法。一对多不是映射,多对一是映射 集合A ,B 是平面直角坐标系上的两个点集,给定从A →B 的映射f:(x,y)→(x 2+y 2,xy),求象(5,2)的原象. 3.已知集合A 到集合B ={0,1,2,3}的映射f:x →11 -x ,则集合A 中的元素最多有几个?写出元素最多时的集合A. 2、函数。构成函数概念的三要素 ①定义域②对应法则③值域 函 数 解 析 式 的 七 种 求 法 待定系数法:在已知函数解析式的构造时,可用待定系数法。 例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f 配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。 例2 已知221 )1(x x x x f +=+ )0(>x ,求 ()f x 的解析式 三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。与配凑法一样,要注意所换元的定义域的变化。 例3 已知x x x f 2)1(+=+,求)1(+x f 四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法。 例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式

五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过 解方程组求得函数解析式。例5 设,)1 (2)()(x x f x f x f =-满足求)(x f 例6 设)(x f 为偶函数,)(x g 为奇函数,又,1 1 )()(-= +x x g x f 试求)()(x g x f 和的解析式 六、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。 例7 已知:1)0(=f ,对于任意实数x 、y ,等式)12()()(+--=-y x y x f y x f 恒成立,求)(x f 七、递推法:若题中所给条件含有某种递进关系,则可以递推得出系列关系式,然后通过迭加、迭乘或者迭代等运算求得函数解析式。 例8 设)(x f 是+N 上的函数,满足1)1(=f ,对任意的自然数b a , 都有ab b a f b f a f -+=+)()()(,求 )(x f 1、求函数定义域的主要依据: (1)分式的分母不为零;(2)偶次方根的被开方数不小于零,零取零次方没有意义; (3 2(1) ()x 已知f 的定义域是[-2,5],求f(2x+3)的定义域。 (2) (21)x x 已知f -的定义域是[-1,3],求f()的定义域 1求函数值域的方法 ①直接法:从自变量x 的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数; ②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式; ③判别式法:运用方程思想,依据二次方程有根,求出y 的取值范围;适合分母为二次且x ∈R 的分式; ④分离常数:适合分子分母皆为一次式(x 有范围限制时要画图); ⑤单调性法:利用函数的单调性求值域; ⑥图象法:二次函数必画草图求其值域; ⑦利用对号函数

(word完整版)高中函数典型例题.doc

§ 1.2.1 函数的概念 ¤知识要点: 1. 设 A 、B 是非空的数集,如果按某个确定的对应关系 f ,使对于集合 A 中的任意一个数 x ,在集合 B 中都有唯一确定的数 y 和它对应,那么就称 f :A →B 为从集合 A 到集合 B 的一个函数,记作 y = f (x) , x A .其中, x 叫自变量, x 的取值范 围 A 叫作定义域,与 x 的值对应的 y 值叫函数值,函数值的集合 { f ( x) | x A} 叫值域 . 2. 设 a 、b 是两个实数,且 a

相关主题