搜档网
当前位置:搜档网 › 第三章:三角恒等变形(教师版汇总)

第三章:三角恒等变形(教师版汇总)

第三章:三角恒等变形(教师版汇总)
第三章:三角恒等变形(教师版汇总)

α

s

高中数学必修四第三章-三角恒等变换知识点总结

第三章 三角恒等变换 一、两角和与差的正弦、余弦和正切公式: ⑴()cos cos cos sin sin αβαβαβ-=+; ⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-; ⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβ αβαβ --= + ? ()()tan tan tan 1tan tan αβαβαβ-=-+ ⑹()tan tan tan 1tan tan αβ αβαβ ++=- ? ()()tan tan tan 1tan tan αβαβαβ+=+- 二、二倍角的正弦、余弦和正切公式: sin 22sin cos ααα =222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±? ⑵2222cos2cos sin 2cos 112sin α αααα=-=-=- ?2 2 1cos 2cos 1cos 2sin 2 2 α α αα+=-=, ?2 cos 21cos 2 αα+= ,2 1cos 2sin 2αα-=. ⑶22tan tan 21tan α αα =-. 三、辅助角公式: () 22sin cos sin α+=++a x b x a b x , 2 2 2 2 cos sin a b a b a b ???= = ++其中由,决定

四、三角变换方法: (1)角的变换:在三角化简,求值,证明中,表达式中往往出现较多的 相异角,可根据角与角之间的和差,倍半,互补,互余的关系,运用角的变换,沟通条件与结论中角的差异,使问题获解,对角的变形如: ①α2是α的二倍;α4是α2的二倍;α是2α的二倍;2α是4 α的二倍; ②2 304560304515o o o o o o =-=-=; ③()ααββ=+-;④ ()4 24 π π π αα+= --; ⑤2()()()()44 ππ ααβαβαα=++-=+--;等等 (2)函数名称变换:三角变形中,常常需要变函数名称为同名函数。如 在三角函数中正余弦是基础,通常化切为弦,变异名为同名。 (3)“1”的代换:在三角函数运算,求值,证明中,有时需要将常数转 化为三角函数值,例如常数“1”的代换变形有: 221sin cos sin90tan45o o αα=+== (4)幂的变换:降幂是三角变换时常用方法,对次数较高的三角函数式, 一般采用降幂处理的方法。降幂并非绝对,有时需要升幂,如对无理式αcos 1+常用升幂化为有理式。 (5)三角函数式的变换通常从:“角、名、形、幂”四方面入手; 基本原则是:见切化弦,异角化同角,倍角化单角,异名化同名, 高次降低次,特殊值与特殊角的三角函数互化等。

三角恒等变换各种题型归纳分析

三角恒等变换 α/4

题型一:公式的简单运用 例1: 题型二:公式的逆向运用 例2: 题型三:升降幂功能与平方功能的应用 例3. 提高题型: 题型一:合一变换 例1 方法:角不同的时候,能合一变换吗? . cos sin ,,cos sin .cos sin cos sin ) (;cos sin cos sin ) (.cos )(;cos )(;sin )(;sin )(.x x x x x 2203 132212212221221121420131240111和求已知化简:化简下列各式: πθ θθθθ θθθαα<<=+--+-++-+-?+-?+).2tan(,21)tan(,,2,53sin ][).22tan(,2tan ,5 4 cos ][.tan ,cos ,sin ,,22,13122cos ][.4tan ,4cos ,4sin ,24,1352sin ][y x y x x B A B A ABC -=-??? ??∈=+==?? ? ??∈-=<<=求已知提高练习求中,在△课本例题求已知同型练习求已知课本例题πππαααππαααααπ απα? ?? ?? ? ? -??? ??---? -? -???72cos 36cos )2(;12 5cos 12 cos )1(.34cos 4sin )3(;2 3tan 23tan 1) 2(;2 cos 2 sin )1(.275sin 21)3(;15tan 115tan 2)2(;5.22cos 5.22sin )1(.12 4 4 2 2 ππ παα παα α α 求值:化简下列各式: 求下列各式的值:. )70sin(5)10sin(3.3. 2cos )31(2sin )31(,.212 cos 312 sin .1的最大值求大值有最大值?并求这个最 取何值时当锐角?++?+=- ++-x x y θθθπ π

第三章:三角恒等变换中角变换的技巧.

1 三角恒等变换中角变换的技巧 一、利用条件中的角表示目标中的角 例1 设a B为锐角,且满足cos a=, tan (a— 3= —,求cos B的值. 二、利用目标中的角表示条件中的角 例2 设a为第四象限的角,若=,贝U tan 2 a=___________________ . 三、注意发现互余角、互补角,利用诱导公式转化角 例3 已知sin=, 0

五、分子、分母同乘以2n sin a求COS acos 2 a cos 4 a ?os 8a??C0S 2n—1 a 的值 例 5 求值:sin 10 sin 30 sin 50 sin 70 ° 4聚焦三角函数最值的求解策略 一、化为y = Asin( 3x+(j)+ B的形式求解 例1求函数f(x =的最值. 例2 求函数y = sin2x + 2sin xcos x + 3cos2x的最小值,并写出y取最小值时x的集合. 二、利用正、余弦函数的有界性求解 例3求函数y =的值域. 例4求函数y =的值域. 三、转化为一元二次函数在某确定区间上求最值 例5 设关于x的函数y= cos 2x —2acos x—2a的最小值为f(a,写出f(a的表达式. 例 6 试求函数y = sin x + cos x + 2sin xcos x + 2 的最值. 四、利用函数的单调性求解 例7求函数y =的最值. 例8 在Rt A ABC内有一内接正方形,它的一条边在斜边BC上,设AB = a, / ABC = 0,△ ABC的面积为P,正方形面积为Q.求的最小值. 易错问题纠错 一、求角时选择三角函数类型不当而致错例1 已知sin话,sin护,a和B都是锐角,求a+ B的值.

三角恒等变换~最全的总结·学生版

三角恒等变换---完整版 三角函数------三角恒等变换公式: 考点分析:(1)基本识别公式,能结合诱导公式中两个常用的小结论快速进行逻辑判断。“互补两角正弦相等,余弦互为相反数。互余两角的正余弦相等。”(2)二倍角公式的灵活应用,特别是降幂、和升幂公式的应用。(3)结合同角三角函数,化为二次函数求最值 (4)角的整体代换 (5)弦切互化 (6)知一求二 (7)辅助角公式逆向应用

(1)熟悉公式特征:能结合诱导公式中两个常用的小结论“互补两角正弦相等,余弦互为相反数。互余两角的正余弦相等。”快速进行逻辑判断。注意构造两角和差因子 1、(二倍角公式)(2007文)下列各式中,值为 3 2 的是( ) A .2sin15cos15 B .2 2 cos 15sin 15- C .2 2sin 151- D .22 sin 15cos 15+ 2、(二倍角公式+平方差公式)(2008六校联考)(sin 75sin15)(cos15cos 75)-+的值是 A.1 B. 1 2 C. 22 D. 32 3、(两角和差公式+诱导公式)(2009四校联考) 84cos 54sin 6cos 36sin -等于 A .-1 2 B .12 C .- 32 D . 32 4.(两角和差公式)下列各式中值为的是(). A . s in45°cos15°+cos45°sin15° B . sin45°cos15°﹣cos45°sin15° C . cos75°cos30°+sin75°sin30° D . 5、(拆角+两角和差公式)(一中2014届高三10月段考数学(理)试题)化简三角式=- 5 cos 5sin 355cos 2() A . 2 3 B .1 C .2 D .3 6、(补全公式)(2013六校联考回归课本题)cos20°·cos40°·cos60°·cos80°=( ) A . 14 B .18 C .116 D .1 32 常见变式:计算sin 10°sin 30°sin 50°sin 70°的=__. 7、(构造两角和差因子+两式平方后相加)若sin α-sin β=32,cos α-cos β=12,则cos(α-β)的值为()A.1 2 B. 32C.3 4 D .1 8.(诱导公式)【2015高一期末】sin163°sin223°+sin253°sin313°等于 B A .- 12 B. 12 C 33 9、(构造两角和差因子+两边平方)【2015高考,理12】=+ 75sin 15sin .. 10、(逆向套用公式)tan 23°+tan 37°+3tan 23°tan 37°的值是________.

第三章 三角恒等变换(教案)

三角恒等变换 知识点精讲: 1、两角和与差的正弦、余弦和正切公式: ⑴()cos cos cos sin sin αβαβαβ-=+; ⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-; ⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβ αβαβ --= +(()()tan tan tan 1tan tan αβαβαβ-=-+); ⑹()tan tan tan 1tan tan αβ αβαβ ++= -(()()tan tan tan 1tan tan αβαβαβ+=+-). 2、二倍角的正弦、余弦和正切公式: ⑴sin22sin cos ααα=. ⑵ 2222cos2cos sin 2cos 112sin ααααα =-=-=-( 2cos 21 cos 2 αα+= , 21cos 2sin 2 α α-= ). ⑶22tan tan 21tan α αα = -. 3、()sin cos ααα?A +B = +,其中tan ?B = A . 经典例题: 例 1.已知cos α-sin α=352,且π<α<32π,求sin2α+2sin 2 α 1-tan α的值.

例2.设x ∈[0,π3],求函数y =cos(2x -π3)+2sin(x -π 6)的最值. 例3.已知tan 2 θ=2tan 2 α+1,求证:cos2θ+sin 2 α=0. 例4.已知向量a =(cos 3x 2,sin 3x 2),b =(cos x 2,-sin x 2),c =( 3-1),其中x ∈R . (1)当a ⊥b 时,求x 值的集合; (2)求|a -c |的最大值. 例5.设函数f (x )=22cos(2x +π 4)+sin 2 x

三角恒等变换知识点和例题

三角恒等变换基本解题方法 1、两角和与差的正弦、余弦、正切公式及倍角公式: ()sin sin cos cos sin sin 22sin cos 令αβαβαβαβααα=±=±???→= ()()2222222cos cos cos sin sin cos 2cos sin 2cos 112sin tan tan 1+cos2tan cos 1tan tan 2 1cos2sin 2 2tan tan 21tan 令 = = αβαβαβαβααα αα αβααβααβααααα =±=???→=-↓=-=-±±=?-↓=-m m 如(1)下列各式中,值为12 的是 A 、1515sin cos o o B 、221212cos sin ππ - C 、22251225tan .tan .-o o D (2)命题P :0tan(A B )+=,命题Q :0tan A tan B +=,则P 是Q 的 A 、充要条件 B 、充分不必要条件 C 、必要不充分条件 D 、既不充分也不必要条件 (3)已知35 sin()cos cos()sin αβααβα---=,那么2cos β的值为____ (4 )11080sin sin -o o 的值是______ (5)已知0tan110a =,求0tan 50的值(用a ,乙求得的结果是212a a -,对甲、乙求得的结果的正确性你的判断是______ 2. 三角函数的化简、计算、证明的恒等变形的基本思路是:一角二名三结构。即首先观察角与 角之间的关系,注意角的一些常用变式,角的变换是三角函数变换的核心!第二看函数名称之间的关系,通常“切化弦”;第三观察代数式的结构特点。基本的技巧有: (1)巧变角(已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换. 如()()ααββαββ=+-=-+,2()()ααβαβ=++-,2()()αβαβα=+--, 22αβαβ++=?,()() 222αββααβ+=---等),

三角恒等变换---最全的总结_-学生版

精品文档 三角恒等变换---完整版 三角函数 —— 三角恒等变换公式: 升幂公式 - 2 1+cos = 2 cos — 2 1-cos =2 si n 2 2 1 ± sin =( sin — 2 2 cos — ) 2 2 2 1=sin + cos sin =2 sin cos 2 2 降幂公式 .2 1 cos 2 cos 2 1 cos 2 sin 2 2 + cos =1 sin 2 2 1 . sin cos = —sin 2 2 考点分析:(1)基本识别公式,能结合诱导公式中两个常用的小结论快速进行逻辑判断。 “互补两角正弦相 等,余弦互为相反数。互余两角的正余弦相等。 ”(2) 二倍角公式的灵活应用,特别是降幕、和升幕公式的 两角和与差的三角函数关系 sin( 1 )=sin cos cos sin cos( )=cos cos sin sin ■丄 . 、 tan tan tan( )’ 1 tan tan 倍角公式 sin2 =2sin cos 2 2 cos2 =cos -sin =2cos 2 -1=1-2sin 2 tan 2 2ta n 1 tan 2 sin — 2 i1 cos 1 cos \ 2 ,c °s 2 : 2 tan — 2 1 cos _ 1 cos sin \ 1 cos sin 1 cos :cos Gi HJ"I" UffTI! ! I I ! I ■— —?■ 应用。(3)结合同角三角函数,化为二次函数求最值 一求二 (7)辅助角公式逆向应用 (4)角的整体代换 (5)弦切互化 (6 )知 半角公式 平方关系 2 2 sin + cos =1, 商数关糸 sin -------- =ta n

三角恒等变换知识点总结

、知识点总结 1、两角和与差的正弦、 ⑴cos cos ⑶sin si n 三角恒等变换专题 余弦和正切公式: cos sin si n :⑵ cos cos cos si n si n cos cos si n :⑷ sin si n cos cos si n ⑸tan tan tan 1 tan tan ⑹ta n tan tan 1 tan tan 2、二倍角的正弦、 余弦和正切公式: ⑴ sin 2 2si n cos 1 sin 2 ⑵ cos2 cos 2 ?2 sin 2cos 2 升幕公式 1 cos 2cos 2 — 2 降幕公式 2 cos cos2 1 (tan (tan 1 cos 2 ,1 sin 2 .2 sin tan tan 2 cos tan tan 2 sin cos tan tan tan tan (si n ) ; ). cos )2 1 2si n 2 2sin 2 — 2 1 cos2 ⑶tan2 1 2ta n tan 2 万能公式 半角公式 2 tan a cos - 2 a tan - 2 1 "一个三角函数,一个角,一次方”的y A sin ( x a 2 2 a tan — 2 2 a tan - 2 4、合一变形 把两个三角函数的和或差化为 形式。 sin 2 si n ,其中tan 5. (1)积化和差公式 1 cos = [sin( 2 1 cos =— [cos( 2 和差化积公式 si n cos (2) si n + )+sin( + )+cos( +sin = 2 sin ------ cos --- 2 2 )] )] cos si n si n 1 sin = [sin( + )-sin( 2 1 sin = - — [cos( + )-cos( 2 )] )] -sin = 2 cos ----- sin --- 2 2

高中数学必修一 三角恒等变形总结(采百家之长版)

一、三角函数公式:

辅助角公式的重要作用:合一变形?把形如x b x a cos sin +的函数转化为 )sin(?+=x A y 的函数,即:两个三角函数的和或差化为“一个三角函数,一个角, 一次方”的 B x A y ++=)sin(??形式

tan tan tan 2212ααα αβ = -=←?? 相除 以上是三角函数公式的关系图 二、三角恒等变换:一角二名三结构,对角、函数名、式子结构===化异为同 三角函数的化简、计算、证明的恒等变形的基本思路是:一角二名三结构。即首先 观察角与角之间的关系,注意角的一些常用变式,角的变换是三角函数变换的核心!第二看函数名称之间的关系,通常“切化弦”;第三观察代数式的结构特点。 常用的数学思想方法技巧如下:

(1)角的变换:在三角化简,求值,证明中,表达式中往往出现较多的相异角,可根据角与角之间的和差,倍半,互补,互余的关系,运用角的变换,沟通条件与结论中角的差异,使问题获解,对角的变形如: (2余弦是基础,通常化切、割为弦,变异名为同名。 (3)常数代换:在三角函数运算,求值,证明中,有时需要将常数转化为三角函数值, (4)幂的变换:降幂是三角变换时常用方法,对次数较高的三角函数式,一般采用降幂处理的方法。降幂并非绝对,有时需要升幂,如对无理式αcos 1+常用升幂化为有理式 (5)公式变形:三角公式是变换的依据,应熟练掌握三角公式的顺用,逆用及变形应用。 三、三角函数式的化简运算通常从:“角、名、形、幂”四方面入手; 基本规则是:切割化弦,异角化同角,复角化单角,异名化同名,高次化低次,

知识讲解-三角恒等变换-基础

三角恒等变换 【考纲要求】 1、会用向量的数量积推导出两角差的余弦公式. 2、能利用两角差的余弦公式导出两角差的正弦、正切公式. 3、能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系. 4、能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆). 【知识网络】 【考点梳理】 考点一、两角和、差的正、余弦公式 ()sin()sin cos cos sin ()S αβαβαβαβ±±=± ()cos()cos cos sin sin ()C αβαβαβαβ±±=m ()tan tan tan()()1tan tan T αβαβ αβαβ ±±±= - 要点诠释: 1.公式的适用条件(定义域) :前两个公式()S αβ±,()C αβ±对任意实数α,β都成立,这表明该公式是R 上的恒等式;公式()T αβ±③中,∈,且R αβk (k Z)2 ±≠ +∈、、π αβαβπ 2.正向用公式()S αβ±,()C αβ±,能把和差角()±αβ的弦函数表示成单角α,β的弦函数;反向用,能把右边结构复杂的展开式化简为和差角()±αβ 的弦函数。公式()T αβ±正向用是用单角的正切值表示和差角 ()±αβ的正切值化简。 考点二、二倍角公式 1. 在两角和的三角函数公式()()(),,S C T αβαβαβαβ+++=中,当时,就可得到二倍角的三角函数公式 222,,S C T ααα: sin 22sin cos ααα= 2()S α;

ααα22sin cos 2cos -=2()C α; 22tan tan 21tan α αα = -2()T α。 要点诠释: 1.在公式22,S C αα中,角α没有限制,但公式2T α中,只有当)(2 24 Z k k k ∈+≠+ ≠ππ αππ α和时才成立; 2. 余弦的二倍角公式有三种:ααα2 2 sin cos 2cos -==1cos 22 -α=α2 sin 21-;解题对应根据不同函数名的需要,函数不同的形式,公式的双向应用分别起缩角升幂和扩角降幂的作用。 3. 二倍角公式不仅限于2α和α的二倍的形式,其它如4α是2α的二倍, 24α α是的二倍,332 α α是 的二倍等等,要熟悉这多种形式的两个角相对二倍关系,才能熟练地应用二倍角公式,这是灵活运用这些公 式的关键。 考点三、二倍角公式的推论 降幂公式:ααα2sin 21 cos sin = ; 22cos 1sin 2 αα-=; 22cos 1cos 2 αα+=. 万能公式:α α α2 tan 1tan 22sin +=; α α α2 2tan 1tan 12cos +-=. 半角公式:2cos 12 sin α α -± =; 2cos 12 cos α α +± =; α α α cos 1cos 12 tan +-± =. 其中根号的符号由2 α 所在的象限决定. 要点诠释: (1)半角公式中正负号的选取由 2 α 所在的象限确定; (2)半角都是相对于某个角来说的,如2 3α 可以看作是3α的半角,2α可以看作是4α的半角等等。 (3)正切半角公式成立的条件是α≠2k π+π(k ∈Z)

简单的三角恒等变换(基础)

第20讲:简单的三角恒等变换 【学习目标】 1.能用二倍角公式推导出半角的正弦、余弦、正切公式; 2.掌握公式应用的常规思路和基本技巧; 3.了解积化和差、和差化积公式的推导过程,能初步运用公式进行互化; 4.通过运用公式进行简单的恒等变换,进一步提高运用联系的观点、化归的思想方法处理问题的自觉性,体会换元思想的作用,发展推理能力和运算能力; 5.通过公式的推导,了解它们的内在联系和知识发展过程,体会特殊与一般的关系,培养利用联系的观点处理问题的能力. 【要点梳理】 要点一:升(降)幂缩(扩)角公式 升幂公式:21cos 22cos αα+=, 21cos 22sin αα-= 降幂公式:21cos 2cos 2αα+=,21cos 2sin 2 α α-= 要点诠释: 利用二倍角公式的等价变形:2 1cos 2sin 2α α-=,2 1cos 2cos 2 α α+=进行“升、降幂”变 换,即由左边的“一次式”化成右边的“二次式”为“升幂”变换,逆用上述公式即为“降幂”变换. 要点二:辅助角公式 1.形如sin cos a x b x +的三角函数式的变形: sin cos a x b x + x x ??? 令cos ??= = sin cos a x b x + )sin cos cos sin x x ??+ )x ?+ (其中?角所在象限由,a b 的符号确定,?角的值由tan b a ?= 确定, 或由sin ?= 和cos ?= 2.辅助角公式在解题中的应用 通 过 应 用 公 式 sin cos a x b x + = )x ?+(或 sin cos a x b x + =)α?-),将形如sin cos a x b x +(,a b 不同时为零)收缩为一

新编人教A版高中数学必修4第三章三角恒等变换导学案

第三章 三角恒等变换 1.三角恒等变换中角的变换的技巧 三角函数是以角为自变量的函数,因此三角恒等变换离不开角之间的变换.观察条件及目标式中角度间联系,立足消除角之间存在的差异,或改变角的表达形式以便更好地沟通条件与结论使之统一,或有利于公式的运用,化角是三角恒等变换的一种常用技巧. 一、利用条件中的角表示目标中的角 例1.已知cos ? ????π6+α=33,求cos ? ??? ?5π6-α的值. 分析.将π6+α看作一个整体,观察π6+α与5π 6 -α的关系. 解.∵? ????π6+α+? ?? ? ?5π6-α=π, ∴ 5π6-α=π-? ?? ??π6 +α. ∴cos ? ????5π6-α=cos ???? ? ?π-? ????π6+α =-cos ? ????π6+α=-33,即cos ? ?? ??5π 6-α =-33. 二、利用目标中的角表示条件中的角 例 2.设 α 为第四象限角,若sin 3α sin α =13 5 ,则tan 2α= _______________________________. 分析.要求tan 2α的值,注意到sin 3α=sin(2α+α)=sin 2αcos α+cos 2αsin α,代入到sin 3αsin α=13 5中,首先求出cos 2α的值后,再由同角三角函数之间的关系求出tan 2α. 解析.由sin 3αsin α=sin (2α+α)sin α=sin 2αcos α+cos 2αsin α sin α =2cos 2 α+cos 2α=135 . ∵2cos 2 α+cos 2α=1+2cos 2α=135.∴cos 2α=45. ∵α为第四象限角,∴2k π+3π 2<α<2k π+2π(k ∈Z ), ∴4k π+3π<2α<4k π+4π(k ∈Z ),

必修四三角函数和三角恒等变换知识点及题型分类的总结

三角函数知识点总结 1、任意角: 正角: ;负角: ;零角: ; 2、角α的顶点与 重合,角的始边与 重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为 第二象限角的集合为 第三象限角的集合为 第四象限角的集合为 终边在x 轴上的角的集合为 终边在y 轴上的角的集合为 终边在坐标轴上的角的集合为 3、与角α终边相同的角的集合为 4、已知α是第几象限角,确定()*n n α ∈N 所在象限的方法:先把各象限均分n 等份, 再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象 限对应的标号即为n α 终边所落在的区域. 5、 叫做1弧度. 6、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是 . 7、弧度制与角度制的换算公式: 8、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l= .S= 9、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距 离是() 220r r x y =+>,则sin y r α= ,cos x r α=,()tan 0y x x α=≠. 10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正. 11、三角函数线:. 12、同角三角函数的基本关系:(1) ; (2) ;(3) 13、三角函数的诱导公式: ()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-.

三角恒等变换知识点总结详解

第三章 三角恒等变换 一、知识点总结 1、两角和与差的正弦、余弦和正切公式: ⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβ αβαβ --= +? (()()tan tan tan 1tan tan αβαβαβ-=-+) ; ⑹()tan tan tan 1tan tan αβ αβαβ ++= -? (()()tan tan tan 1tan tan αβαβαβ+=+-) . 2、二倍角的正弦、余弦和正切公式: ⑴sin22sin cos ααα=.2 2 2 )cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±? ⑵2 222cos2cos sin 2cos 112sin ααααα=-=-=- ?升幂公式2 sin 2cos 1,2cos 2cos 12 2 α αα α=-=+ ?降幂公式2cos 21cos 2αα+= ,2 1cos 2sin 2 αα-=. ⑶2 2tan tan 21tan α αα = -. 3、 ? (后两个不用判断符号,更加好用) 4、合一变形?把两个三角函数的和或差化为“一个三角函数,一个角,一次方”的 B x A y ++=)sin(??形式。()sin cos ααα?A +B = +,其中tan ?B = A . 5.(1)积化和差公式 sin α·cos β=21[sin(α+β)+sin(α-β)]cos α·sin β=21 [sin(α+β)-sin(α-β)] cos α·cos β=21[cos(α+β)+cos(α-β)]sin α·sin β= -2 1 [cos(α+β)-cos(α-β)] (2)和差化积公式 sin α+sin β= 2 cos 2 sin 2β αβ α-+sin α-sin β=2 sin 2 cos 2β αβ α-+ αααα ααα半角公式cos 1cos 12tan 2cos 12sin ;2cos 12cos : +-±=-± =+±=2 tan 12tan 1 cos ;2tan 12tan 2 sin : 2 2 2α α αααα万能公式+-=+=

三角恒等变换各种题型归纳分析

三角恒等变换基础知识及题型分类汇总 /4的两倍,3α是 “二倍角”的

题型一:公式的简单运用 例1: 题型二:公式的逆向运用 例2: 题型三:升降幂功能与平方功能的应用 例3. 提高题型: 题型一:合一变换(利用辅助角公式结合正余弦的和角差角公式进行变形) 例1 方法:角不同的时候,能合一变换吗? .cos sin ,,cos sin .cos sin cos sin )(;cos sin cos sin )(.cos )(;cos )(; sin )(;sin )(.x x x x x 2203132212212221221121420131240111和求已知化简:化简下列各式: πθ θθθθθθθα α<<=+--+-++-+-?+-?+).2tan(,21)tan(,,2,53sin ][).22tan(,2tan ,54cos ][.tan ,cos ,sin ,,22,13122cos ][.4tan ,4cos ,4sin ,2 4,1352sin ][y x y x x B A B A ABC -=-??? ??∈=+==??? ??∈-=<<=求已知提高练习求中,在△课本例题求已知同型练习求已知课本例题πππαααππαααααπαπα????? ??-??? ??---?-?-???72cos 36cos )2(;125cos 12cos )1(.34cos 4sin )3(;23tan 23tan 1)2(;2cos 2sin )1(.275sin 21)3(;15tan 115tan 2)2(;5.22cos 5.22sin )1(.124422πππααπαααα求值:化简下列各式:求下列各式的值:.)70sin(5)10sin(3.3.2cos )31(2sin )31(,.212 cos 312sin .1的最大值求大值有最大值?并求这个最取何值时当锐角?++?+=-++-x x y θθθππ

三角恒等变换 知识点总结

三角恒等变换 知识点总结 1、两角和与差的正弦、余弦和正切公式: ⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβαβαβ --=+ ? (()()tan tan tan 1tan tan αβαβαβ-=-+); ⑹()tan tan tan 1tan tan αβαβαβ ++=- ? (()()tan tan tan 1tan tan αβαβαβ+=+-). 2、二倍角的正弦、余弦和正切公式: ⑴ sin 22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±? ⑵2222cos2cos sin 2cos 112sin ααααα=-=-=- ?升幂公式2 sin 2cos 1,2cos 2cos 122α ααα=-=+ ?降幂公式2cos 21cos 2αα+=,21cos 2sin 2 αα-=. 3、 22tan tan 21tan ααα= -. 4、 ?(后两个不用判断符号,更加好用) 5、合一变形?把两个三角函数的和或差化为“一个三角函数,一个角,一次方”的 B x A y ++=)sin(??形式。()sin cos ααα?A +B =+,其中tan ?B =A . 6、三角变换是运算化简的过程中运用较多的变换,提高三角变换能力,要学会创设条件,灵活运用三角公式,掌握运算,化简的方法和技能.常用的数学思想方法技巧如下: (1)角的变换:在三角化简,求值,证明中,表达式中往往出现较多的相异角,可根据角 与角之间的和差,倍半,互补,互余的关系,运用角的变换,沟通条件与结论中角的 αα半角公式2t an 2cos :==2tan 12tan 1 cos ;2tan 12tan 2 sin :2 22αααααα万能公式+-=+=

三角函数和三角恒等变换知识点及题型分类总结

三角函数知识点总结 1、任意角。 2、角α的顶点与 重合,角的始边与 重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为 第二象限角的集合为 第三象限角的集合为 第四象限角的集合为 3、与角α终边相同的角的集合为 4、 叫做1弧度. 5、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是 . 6、弧度制与角度制的换算公式 7、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则L= . S= 8、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是 () 220r r x y =+>,则sin y r α= ,cos x r α=,()tan 0y x x α=≠. 9、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限 余弦为正. 10、三角函数线:sin α=MP ,cos α=OM ,tan α=AT . 11、同角三角函数的基本关系:(1) ;(2) 。 12、三角函数的诱导公式: ()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-. ()5sin cos 2π αα??-= ???,cos sin 2παα?? -= ???.()6sin cos 2παα??+= ???,cos sin 2παα??+=- ???. 口诀:奇变偶不变,符号看象限. 重要公式 ⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβαβαβ--=+(()()tan tan tan 1tan tan αβαβαβ-=-+); ⑹()tan tan tan 1tan tan αβ αβαβ ++= -(()()tan tan tan 1tan tan αβαβαβ+=+-).

三角函数恒等变换_题型总结(学生用书)

三角函数恒等变换题型、方法总结 1.两角和与差的三角函数 βαβαβαsin cos cos sin )sin(±=±; βαβαβαsin sin cos cos )cos( =±; tan tan tan()1tan tan αβαβαβ ±±= 。 2.二倍角公式 αααcos sin 22sin =; ααααα2222sin 211cos 2sin cos 2cos -=-=-=; 22tan tan 21tan ααα =-。 3.三角函数式的化简 常用方法:①直接应用公式进行降次、消项;②切割化弦,异名化同名,异角化同角;③ 三角公式的逆用等。 (2)化简要求:①能求出值的应求出值;②使三角函数种数尽量少;③使项数尽量少;④尽量使分母不含三角函数;⑤尽量使被开方数不含三角函数。 (1)降幂公式 ααα2sin 21cos sin =;22cos 1sin 2αα-=;2 2cos 1cos 2αα+=。 (2)辅助角公式 ()sin cos sin a x b x x ?+=+, sin cos ??==其中 4.三角函数的求值类型有三类 (1)给角求值:一般所给出的角都是非特殊角,要观察所给角与特殊角间的关系,利用三角变换消去非特殊角,转化为求特殊角的三角函数值问题; (2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如2(),()()ααββααβαβ=+-=++-等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论; (3)给值求角:实质上转化为“给值求值”问题,由所得的所求角的函数值结合所求角的范围及函数的单调性求得角。 5.三角等式的证明 (1)三角恒等式的证题思路是根据等式两端的特征,通过三角恒等变换,应用化繁为简、左右同一等方法,使等式两端化“异”为“同”; (2)三角条件等式的证题思路是通过观察,发现已知条件和待证等式间的关系,采用代入法、消参法或分析法进行证明。

三角恒等变换知识总结(最新整理)

三角恒等变换知识点总结 2014/10/24 一、基本内容串讲 1. 两角和与差的正弦、余弦和正切公式如下: sin()sin cos cos sin αβαβαβ±=±; cos()cos cos sin sin αβαβαβ±= ; tan tan tan()1tan tan αβαβαβ ±±= 对其变形:tan α+tan β=tan(α+β)(1- tan αtan β),有时应用该公式比较方便。2. 二倍角的正弦、余弦、正切公式如下: sin 2sin cos ααα=. 2222cos 2cos sin 2cos 112sin ααααα=-=-=-. 2 2tan tan 21tan α αα = -.要熟悉余弦“倍角”与“二次”的关系(升角—降次,降角—升次).特别注意公式的三 角表达形式,且要善于变形, 2 2cos 1sin ,22cos 1cos 22α -= αα+=α 这两个形式常用。 3.辅助角公式:sin cos 4x x x π??+=+ ???cos 2sin 6x x x π? ?±=± ? ? ? . ()sin cos a x b x x ρ+=+4.简单的三角恒等变换 (1)变换对象:角、名称和形式,三角变换只变其形,不变其质。(2)变换目标:利用公式简化三角函数式,达到化简、计算或证明的目的。 (3)变换依据:两角和与差的正弦、余弦、正切公式和二倍角的正弦、余弦、正切公式。 (4)变换思路:明确变换目标,选择变换公式,设计变换途径。5.常用知识点: (1)基本恒等式:(注意变形使用,尤其‘1’的灵活应用,22sin sin cos 1, tan cos α αααα +==求函数值时注意角的范围); (2)三角形中的角:,; A B C π++=sinA sin(B ),cosA cos(B C)C =+=-+(3)向量的数量积:,cos ,a b a b a b = A ,;1212a b x x y y =+ A 12120a b x x y y ⊥?+= 1221//0a b x y x y ?-= 二、考点阐述 考点1两角和与差的正弦、余弦、正切公式 1、sin 20cos 40cos 20sin 40+ 的值等于( )

三角恒等变换题型总结

1.两角和与差的三角函数 βαβαβαsin cos cos sin )sin(±=±; βαβαβαsin sin cos cos )cos( =±; tan tan tan()1tan tan αβαβαβ ±±= 。 2.二倍角公式 αααcos sin 22sin =; ααααα2222sin 211cos 2sin cos 2cos -=-=-=; 22tan tan 21tan ααα =-。 3.三角函数式的化简 常用方法:①直接应用公式进行降次、消项;②切割化弦,异名化同名,异角化同角;③ 三角公式的逆用等。 (2)化简要求:①能求出值的应求出值;②使三角函数种数尽量少;③使项数尽量少;④尽量使分母不含三角函数;⑤尽量使被开方数不含三角函数。 (1)降幂公式 ααα2sin 21cos sin =;22cos 1sin 2αα-=;2 2cos 1cos 2αα+=。 (2)辅助角公式 ()sin cos sin a x b x x ?+=+, sin cos ??==其中 4.三角函数的求值类型有三类 (1)给角求值:一般所给出的角都是非特殊角,要观察所给角与特殊角间的关系,利用三角变换消去非特殊角,转化为求特殊角的三角函数值问题; (2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如2(),()()ααββααβαβ=+-=++-等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论; (3)给值求角:实质上转化为“给值求值”问题,由所得的所求角的函数值结合所求角的范围及函数的单调性求得角。 5.三角等式的证明 (1)三角恒等式的证题思路是根据等式两端的特征,通过三角恒等变换,应用化繁为简、左右同一等方法,使等式两端化“异”为“同”; (2)三角条件等式的证题思路是通过观察,发现已知条件和待证等式间的关系,采用代入法、消参法或分析法进行证明。

相关主题