搜档网
当前位置:搜档网 › 巧用数学方法处理物理极值问题

巧用数学方法处理物理极值问题

巧用数学方法处理物理极值问题
巧用数学方法处理物理极值问题

巧用数学方法处理物理极值问题

江苏省江阴市第一中学 傅永祝(中教二级,83984520)

内容提要: 本文旨在通过一些关于极值问题的典型例题,如求追赶问题中怎样的情况下相距最近?小球从斜面下来怎样可以使时间最短?拉着物体在水平面上匀速运动怎样施力可以使所加力最小?在电路中,怎样可以使电阻消耗的功率最大?在电场中,哪一点的电场强度最大?通过这些例题,展示一些数学方法在处理物理物理问题上的优越性,使学生认识到,扎实的数学功底对于学好物理这门课程有很大的意义。

关键词:极值问题 二次函数配方法 三角函数法 基本不等式法 极值问题在物理课程中是常见的一类问题,对于此类问题,如果能结合一些

数学上的判定方法,处理此类问题往往能达到事半功倍的效果。 (一)二次函数配方法

把二次函数y=ax 2

+bx+c 配方得a

b a

c a b x a y 44)2(2

2-++=,若a>0,则当

a b x 2-=时,y 有极小值:a

b a

c y 442

min -=;若a<0时,则当当a b x 2-=时,y 有

极大值:a

b a

c y 442

max

-=。如果一个物理问题能建立y=ax 2+bx+c 的数学模型,就

可以用上述方法求出其极值。

例1. 一辆汽车从静止开始以1m/s 2的加速度前进,车后相距s 0=25m 处,与

车运动方向相同的某人同时开始以6m/s 的速度匀速追车,能否追上?若追不上,求人、车间的最小距离是多少?

解析 当经过时间t 后,汽车前进的位移为212

1

at x =

而人前进的位移为t x υ=2

此时人、车相距的距离为210x x s x -+=?

代入相关数据可得7)6(2

1

2562122+-=+-=

?t t t x 上述表达式中,x ?是t 的二次函数,从该函数式一下子就可以看出,x

?不可能等于0,即人不可能追上汽车,还可以看出,当t=6s 时,人、车具有最短距离x ?min =7m 。

(二)三角函数法

三角函数里有很多关系式,如:θθθcos sin 22sin ?=、1cos sin 22=+θθ、

βαβαβαsin sin cos cos )cos(+=-等. 有时,处理物理极值问题时,这一类关系

式是很需要的。

例2. 给房屋设计屋顶时,把屋顶设计成斜面,把雨水沿着屋顶滑下的运动理想化为小球沿光滑斜面滑下的情形,为了要使雨水能尽快地滑下并从屋檐落下,则斜面的倾角应设计成多大的角度?按这种设计,雨水从屋顶到屋檐的时间为多少? 解析 如图,设从屋顶A 到屋檐B 的水平距离为L ,

且斜面AB 的倾角为θ。

当雨水(理想化为图中的小球)从斜面滑下时,其加速度为a=gsin θ,从A 到B 的距离为L/cos θ,设从A 到B 所用的时间为t ,则

2sin 2

1

cos t g L ?=θθ 得θ

θθ2sin 4cos sin 2g L

g L

t =

=

当2θ=90o,sin2θ有最大值:(sin2θ)max =1。 所以,当θ=45o时,t 有最小值:t min =g

L 2

例3. 重量为G 的木块与水平地面间的动摩擦因数为μ,一人欲用最小的作

用力使木块做匀速运动,则此最小作用力的大小和方向应如何?

解析 木块在运动中受摩擦力作用,要减小摩擦力,应使

作用力F 斜向上,设当F 斜向上与水平方向的夹角为α时,F 的值最小,木块受力分析如图所示,由平衡条件知: Fcos α-μN=0 Fsin α+N-G=0 解以上二式得 α

μαμsin cos +=

G

F

令 μ?=tan ,则2

1sin μ

μ

?+=

, 2

11cos μ

?+=

)cos(1)sin sin cos (cos 1sin cos 22?αμα?α?μαμα-+=++=+

可见,当α=μ?arctan =时,F 有最小值。即2

min 1μ

μ+=G

F

(三)基本不等式法

若a>0、b>0,则有基本不等式ab b a ≥???

??+2

2,且当a=b 时取等号,如果变

量a 与b 的积是个定值,则其和有极小值:ab b a 2)(min =+(定值);如果变量

a 与

b 的和是个定值,则其积有极大值:2

max

2)(??

?

??+=b a ab (定值)

。 例4. 在图示的电路中,电池的电动势E=5V ,内电阻r=10Ω,固定电阻R=90Ω,R 0是可变电阻,在R 0由零逐渐增加到400Ω的过程中,可变电阻R 0上消耗的热功率达最大时R 0为多大?最大值是多少? 解析:令R+r=R ’ 电路中的电流强度为0

'R R E

I +=

可变电阻R 0上消耗的热功率为'

2''00

2202

002R R R R E R R

R E

R I P ++=???? ?

?+== 由于2

002''R R R R =?(定值),故00

2'R R R +具有最小值,即

'

4'2'2200

22

R E R R R R E P =+?≤

当R ’=R 0,即R 0=100Ω时取等号。

就是说,当R 0=100Ω时,可变电阻R 0上消耗的热功率最大。

最大热功率为W W P 16

1

40025max ==

例5. 已知带等量同种电荷的两个点电荷A 、B 所带电量均为Q ,相距2a ,

则在它们连线的中垂线上,哪一点的电场强度最大?最大值为多少?

解析 设在点电荷A 、B 的连线的中垂线上有一点P ,且AP 与中垂线夹角为θ,则

221)sin (θ

a kQ

E E =

= ① 又有θcos 21?=E E ②

由①②可得2

2cos sin 2a

kQ E θ

θ??= ③ 将③式左右都平方,并整理成

θθθ222222cos )sin 21

()sin 21()2(4??=a

kQ E

由于1cos sin 21

sin 21222=++θθθ(定值)

则θθθ222cos )sin 2

1

)(sin 21(?存在极大值。即

223

2

22222)2(2743cos sin 21sin 21)2(4a kQ a kQ E =??

?

??

???????++≤θθθ 所以2

934a kQ

E ≤

当θθ22cos sin 2

1

=,即2arctan =θ时取等号。 就是说,当2arctan =θ(差不多是55o)时,P 点的电场强度最大:

2

max 934a kQ

E =

从以上各例当中可以看出,扎实的数学功底在处理物理问题当中显得很重要,这要求同学们在平时的练习中需要经常地有意识地训练自己、提升自己运用数学知识的能力。

参考资料:无

高中物理答题技巧归纳大全

高中物理答题技巧归纳大全 一,考场中心态的保持 心态“安静”:心静自然“凉”,脑子自然清醒,精力自然集中,思路自然清晰。心静如水,超然物外,成为时间的主人、学习的主人。情绪稳定,效率提高。心不静,则心乱如麻,心神不定,心不在焉,如坐针毡,眼在此而心在彼,貌似用功,实则骗人。 二,高中物理选择题的答题技巧 选择题一般考查学生对基本知识和基本规律的理解及应用这些知识进行一些定性推理和定量计算。解答选择题时,要注意以下几个问题: 每一选项都要认真研究,选出最佳答案,当某一选项不敢确定时,宁可少选也不错选。 注意题干要求,让你选择的是“不正确的”、“可能的”还是“一定的”。 相信第一判断:凡已做出判断的题目,要做改动时,请十二分小心,只有当你检查时发现第一次判断肯定错了,另一个百分之百是正确答案时,才能做出改动,而当你拿不定主意时千万不要改。特别是对中等程度及偏下的同学这一点尤为重要。 做选择题的常用方法: 筛选(排除)法:根据题目中的信息和自身掌握的知识,从易到难,逐步排除不合理选项,最后逼近正确答案。

特值(特例)法:让某些物理量取特殊值,通过简单的分析、计算进行判断。它仅适用于以特殊值代入各选项后能将其余错误选项均排除的选择题。 极限分析法:将某些物理量取极限,从而得出结论的方法。 直接推断法:运用所学的物理概念和规律,抓住各因素之间的联系,进行分析、推理、判断,甚至要用到数学工具进行计算,得出结果,确定选项。 观察、凭感觉选择:面对选择题,当你感到确实无从下手时,可以通过观察选项的异同、长短、语言的肯定程度、表达式的差别、相应或相近的物理规律和物理体验等,大胆的做出猜测,当顺利的完成试卷后,可回头再分析该题,也许此时又有思路了。 物理实验题的做题技巧 实验题一般采用填空题或作图题的形式出现。作为填空题,数值、单位、方向或正负号都应填全面;作为作图题:对函数图像应注明纵、横轴表示的物理量、单位、标度及坐标原点。对电学实物图,则电表量程、正负极性,电流表内、外接法,变阻器接法,滑动触头位置都应考虑周全。对光路图不能漏箭头,要正确使用虚、实线,各种仪器、仪表的读数一定要注意有效数字和单位;实物连接图一定要先画出电路图(仪器位置要对应);各种作图及连线要先用铅笔(有利于修改),最后用黑色签字笔涂黑。 常规实验题:主要考查课本实验,几年来考查比较多的是试验器材、原理、步骤、读数、注意问题、数据处理和误差分析,解答常

2017年高三物理总复习(专题攻略)之数学方法在物理学中的应用及高考题型答题技巧 数学方法在物理

数学方法在物理学中的应用(一) 物理学中的数学方法是物理思维和数学思维高度融合的产物,借助数学方法可使一些复杂的物理问题显示出明显的规律性,能达到打通关卡、快速简捷地解决问题的目的。高考物理试题的解答离不开数学知识和方法的应用,借助物理知识渗透考查数学能力是高考命题的永恒主题。可以说任何物理试题的求解过程实质上都是一个将物理问题转化为数学问题,然后经过求解再次还原为物理结论的过程。复习中应加强基本的运算能力的培养,同时要注意三角函数的运用,对于图象的运用要重视从图象中获取信息能力的培养与训练。在解决带电粒子运动的问题时,要注意几何知识、参数方程等数学方法的应用。在解决力学问题时,要注意极值法、微元法、数列法、分类讨论法等数学方法的应用。 一、极值法 数学中求极值的方法很多,物理极值问题中常用的极值法有:三角函数极值法、二次函数极值法、一元二次方程的判别式法等。 1.利用三角函数求极值 y =acos θ+bsin θ = ( + ) 令sin φ=,cos φ= 则有:y = (sin φcos θ+cos φsin θ)= sin (φ+θ) 所以当φ+θ=π2 时,y 有最大值,且y max =。 【典例1】在倾角θ=30°的斜面上,放置一个重量为200 N 的物体,物体与斜面间的动摩擦因数为μ=3 3,要使物体沿斜面匀速向上移动,所加的力至少要多大?方向如何?

解得:F =α μαθμθsin cos cos (sin ++mg 因为θ已知,故分子为定值,分母是变量为α的三角函数 y=cos + = ( cos + sin ) = (sin cos + cos sin ) = sin(+ ) 其中 sin = ,cos =,即 tan = 。 当+ = 90 时,即 = 90 - 时,y 取最大值 。 F 最小值为 ,由于 = ,即 tan = ,所以 = 60。 带入数据得 F min = 100 N,此时 = 30 。 【答案】 100 N 与斜面夹角为30 【名师点睛】 根据对物体的受力情况分析,然后根据物理规律写出相关物理量的方程,解出所求量的表达式,进而结合三角函数的公式求极值,这是利用三角函数求极值的常用方法,这也是数学中方程思想和函数思想在物理解题中的重要应用。 2.利用二次函数求极值 二次函数:y =ax 2+bx +c =a (x 2 +b a x +b 24a 2)+c -b 24a =a (x +b 2a )2+4ac -b 24a (其中a 、b 、c 为实常数),

数理方程版课后习题答案

第一章曲线论 §1 向量函数 1. 证明本节命题3、命题5中未加证明的结论。 略 2. 求证常向量的微商等于零向量。 证:设,为常向量,因为 所以。证毕3. 证明 证: 证毕4. 利用向量函数的泰勒公式证明:如果向量在某一区间内所有的点其微商为零,则此向量在该区间上是常向量。

证:设,为定义在区间上的向量函数,因为在区间上可导当且仅当数量函数,和在区间上可导。所以,,根据数量函数的Lagrange中值定理,有 其中,,介于与之间。从而 上式为向量函数的0阶Taylor公式,其中。如果在区间上处处有,则在区间上处处有 ,从而,于是。证毕 5. 证明具有固定方向的充要条件是。 证:必要性:设具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,于是。 充分性:如果,可设,令,其中为某个数量函数,为单位向量,因为,于是

因为,故,从而 为常向量,于是,,即具有固定方向。证毕 6. 证明平行于固定平面的充要条件是。 证:必要性:设平行于固定平面,则存在一个常向量,使得,对此式连续求导,依次可得和,从而,,和共面,因此。 充分性:设,即,其中,如果,根据第5题的结论知,具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,任取一个与垂直的单位常向量,于是作以为法向量过原点的平面,则平行于。如果,则与不共线,又由可知,,,和共面,于是, 其中,为数量函数,令,那么,这说明与共线,从而,根据第5题的结论知,具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,作以为法向量,过原点的平面,则平行于。证毕 §2曲线的概念

1. 求圆柱螺线在点的切线与法平面的方程。 解:,点对应于参数,于是当时,,,于是切线的方程为: 法平面的方程为 2. 求三次曲线在点处的切线和法平面的方程。 解:,当时,,, 于是切线的方程为: 法平面的方程为 3. 证明圆柱螺线的切线和轴成固定角。 证: 令为切线与轴之间的夹角,因为切线的方向向量为,轴的方向向量为,则

高中物理解题方法---整体法和隔离法

高中物理解题方法---整体法和隔离法 选择研究对象是解决物理问题的首要环节.在很多物理问题中,研究对象的选择方案是多样的,研究对象的选取方法不同会影响求解的繁简程度。合理选择研究对象会使问题简化,反之,会使问题复杂化,甚至使问题无法解决。隔离法与整体法都是物理解题的基本方法。 隔离法就是将研究对象从其周围的环境中隔离出来单独进行研究,这个研究对象可以是一个物体,也可以是物体的一个部分,广义的隔离法还包括将一个物理过程从其全过程中隔离出来。 整体法是将几个物体看作一个整体,或将看上去具有明显不同性质和特点的几个物理过程作为一个整体过程来处理。隔离法和整体法看上去相互对立,但两者在本质上是统一的,因为将几个物体看作一个整体之后,还是要将它们与周围的环境隔离开来的。 这两种方法广泛地应用在受力分析、动量定理、动量守恒、动能定理、机械能守恒等问题中。 对于连结体问题,通常用隔离法,但有时也可采用整体法。如果能够运用整体法,我们应该优先采用整体法,这样涉及的研究对象少,未知量少,方程少,求解简便;不计物体间相互作用的内力,或物体系内的物体的运动状态相同,一般首先考虑整体法。对于大多数动力学问题,单纯采用整体法并不一定能解决,通常采用整体法与隔离法相结合的方法。 一、静力学中的整体与隔离 通常在分析外力对系统的作用时,用整体法;在分析系统内各物体(各部分)间相互作用时,用隔离法.解题中应遵循“先整体、后隔离”的原则。 【例1】 在粗糙水平面上有一个三角形木块a ,在它的两个粗糙斜面上分别放有质量为m1和m2的两个木块b 和c ,如图所示,已知m1>m2,三木块均处于静止,则粗糙地面对于三角形木块( ) A .有摩擦力作用,摩擦力的方向水平向右 B .有摩擦力作用,摩擦力的方向水平向左 C .有摩擦力作用,但摩擦力的方向不能确定 D .没有摩擦力的作用 【解析】由于三物体均静止,故可将三物体视为一个物体,它静止于水平面上,必无摩擦力作用,故选D . 【点评】本题若以三角形木块a 为研究对象,分析b 和c 对它的弹力和摩擦力,再求其合力来求解,则把问题复杂化了.此题可扩展为b 、c 两个物体均匀速下滑,想一想,应选什么? 【例2】有一个直角支架 AOB ,AO 水平放置,表面粗糙,OB 竖直向下,表面光滑,AO 上套有小环P ,OB 上套有小环 Q ,两环 质量均为m ,两环间由一根质量可忽略、不可伸展的细绳相连, 并在某一位置平衡,如图。现将P 环向左移一小段距离,两环再 A O B P Q

物理中常用的数学特殊方法

专题2 物理中常用的数学特殊方法 考点1. 利用数学方法求极值 1.利用三角函数求极值 (1)二倍角公式法:如果所求物理量的表达式可以化成y=A sin θcos θ,则根据二倍角公式,有y=A 2 sin 2θ,当θ=45°时,y 有最大值,y max =A 2 。 (2)辅助角公式法:如果所求物理量的表达式为y=a sin θ+b cos θ,通过辅助角公式转化为y=√a 2+b 2sin (θ+φ),当 θ+φ=90°时,y 有最大值y max =√a 2+b 2。 2.利用二次函数求极值 二次函数y=ax 2 +bx+c (a 、b 、c 为常数,且a ≠0),当 x=-b 2a 时,y 有极值 y m =4ac -b 2 4a (a>0时,y m 为极小值;a<0时,y m 为极大值)。 3.利用均值不等式求极值 对于两个大于零的变量a 、b ,若其和a+b 为一定值,则当a=b 时,其积ab 有极大值;若其积ab 为一定值,则当a=b 时,其和 a+b 有极小值。 1.(2019年衡水二调)(多选)如图甲所示,位于同一水平面上的两根平行导电导轨,放置在斜向左上方、与水平面成60°角足够大的匀强磁场中,现给出这一装置的侧视图,一根通有恒定电流的金属棒正在导轨上向右做匀速运动,在匀强磁场沿顺时针缓慢转过30°的过程中,金属棒始终保持匀速运动,则磁感应强度B 的大小变化可能是( )。 A .始终变大 B .始终变小 C .先变大后变小 D .先变小后变大 2.一个国际研究小组借助于智利的甚大望远镜,观测到了一组双星系统,它们绕两者连线上的某点O 做匀速圆周运动,如图所示。此双星系统中体积较小的成员能“吸食”另一颗体积较大的星体表面的物质,达到质量转移的目的,假设在演变的过程中两者球心之间的距离保持不变,则在最初演变的过程中( )。 A .它们做圆周运动的万有引力保持不变 B .它们做圆周运动的角速度不断变大 C .体积较大的星体做圆周运动的轨迹半径变大,线速度也变大 D .体积较大的星体做圆周运动的轨迹半径变大,线速度变小 3.(2019年湖北省宜昌市高三模拟)(多选)如图所示,斜面底端上方高h 处有一小球以水平初速度v 0抛出, 恰好垂直打在斜面上,斜面的倾角为30°,重力加速度为g ,下列说法正确的是( )。 A .小球打到斜面上的时间为 √3v 0 g B .要让小球始终垂直打到斜面上,应满足h 和v 0成正比 C .要让小球始终垂直打到斜面上,应满足h 和v 0的平方成正比 D .若高度h 一定,现小球以不同的初速度v 0平抛,落到斜面上的速度最小值为√(√21-3)gh 考点2.函数图象及应用 图象问题是高考命题的高频考点,年年皆有。不管怎么考,我们只要深刻理解图象中的基本要素便可应对,具体为图 象中的“点”“线”“斜率”“截距”“面积”等。 图象 函数形式 特例及物理意义 y=c 匀速直线运动的v-t 图象。“面积”表示位移 y=kx ①匀速直线运动的x-t 图象。斜率表示速度 ②初速度v 0=0的匀加速直线运动的v-t 图象。斜率表示加速度,“面积”表示位移

高中物理-常考题型与解题方法全汇总

高中物理-常考题型与解题方法全汇总 题型1 直线运动问题 题型概述:直线运动问题是高考的热点,可以单独考查,也可以与其他知识综合考查。单独考查若出现在选择题中,则重在考查基本概念,且常与图像结合;在计算题中常出现在第一个小题,难度为中等,常见形式为单体多过程问题和追及相遇问题。 思维模板:解图像类问题关键在于将图像与物理过程对应起来,通过图像的坐标轴、关键点、斜率、面积等信息,对运动过程进行分析,从而解决问题;对单体多过程问题和追及相遇问题应按顺序逐步分析,再根据前后过程之间、两个物体之间的联系列出相应的方程,从而分析求解,前后过程的联系主要是速度关系,两个物体间的联系主要是位移关系. 题型2 物体的动态平衡问题 题型概述:物体的动态平衡问题是指物体始终处于平衡状态,但受力不断发生变化的问题。物体的动态平衡问题一般是三个力作用下的平衡问题,但有时也可将分析三力平衡的方法推广到四个力作用下的动态平衡问题. 思维模板:常用的思维方法有两种. (1)解析法:解决此类问题可以根据平衡条件列出方程,由所列方程分析受力变化;(2)图解法:根据平衡条件画出力的合成或分解图,根据图像分析力的变化。 题型3 运动的合成与分解问题 题型概述:运动的合成与分解问题常见的模型有两类,一是绳(杆)末端速度分解的问题,二是小船过河的问题,两类问题的关键都在于速度的合成与分解。 思维模板: (1)在绳(杆)末端速度分解问题中,要注意物体的实际速度一定是合速度,分解时两个分速度的方向应取绳(杆)的方向和垂直绳(杆)的方向;如果有两个物体通过绳(杆)相连,则两个物体沿绳(杆)方向速度相等。 (2)小船过河时,同时参与两个运动,一是小船相对于水的运动,二是小船随着水一起运动,分析时可以用平行四边形定则,也可以用正交分解法,有些问题可以用解析法分析,有些问题则需要用图解法分析。 题型4 抛体运动问题 题型概述:抛体运动包括平抛运动和斜抛运动,不管是平抛运动还是斜抛运动,研究方法都

高年级初中中学物理中常用的数学方法

初中物理中常用的数学方法简介 江苏省南通市第三中学:江宁 数学计算是指人们根据利用已有的知识,对一定的现象、规律进行数学计算,发现各个量之间的数学关系,从深一层次去认识新的事物的方法。 数学计算是研究性学习中必备的手段,是初中物理研究性学习中进一步认识事物中最可靠的工具。通过数学计算,学生可以从定性认识事物发展到定量认识事物,使感性认识上升到理性认识,从而更准确地认识事物各个量之间的内在规律。 以下所列是初中物理中常用的一些数学方法: 1、代入法 “代入法”是指在研究物理问题中,已知因变量与自变量之间关系公式,将物理量直接代入公式进行计算的方法。学会利用公式直接进行计算是学生解决问题的基本能力之一,它可以促进学生掌握物理量之间的来龙去脉,熟悉物理量在日常生活中的应用。 例:质量为的水,温度从 60℃降至40℃,会放出______J 的热量。若将这部分热量全部被初温为10℃、质量为的酒精吸收,则酒精的温度将上升______℃。[酒精的比热容为×103 J /(kg ·℃),水的比热容为 ×103 J /(kg ·℃)] 解:物体升、降温时吸、放的热量计算公式为:Q=c ·m ·Δt 应用“代入法”进行解题时,可以根据公式用自变量求因变量,也可以根据公式用因变量求自变量,但要注意在计算过程中,物理单位必统一。 2、比例法 “比例法”是指用两个已知的物理量的比值来表示第三个物理量的方法。比值法可以充分体现出在两个物理量同时变化的条件下影响物理过程的真正因素。 例:现有两杯质量不同的液体酒精和水,若两者的质量之比为2∶3,求两种液体的体积比?(ρ酒 精 = ×103kg/m 3,ρ水= ×103kg/m 3) 解:6 58.0132=?=?==酒水水酒水 水酒酒 水酒ρρρρm m m m V V 另外,初中物理中的许多物理量是通过比值来介绍的,如:速度、密度、热值、电阻等等。是中学生在初中物理学习中学到的第一个数学方法。 3、近似法 “近似法”是指在数学计算过程中,当个别量的微小变化并不影响整体结果时,为了计算与分析的方便,将个别量进行一定程度的近似代换或取舍的方法。利用近似法可以降低复杂的数学计算,帮助学生用最根本的数据去认识事物的内在规律,从而抓住各种物理现象中最本质的特征。 例:一位同学从一楼跑到三楼用了10s 时间,他的功率大概是多少? 解:根据生活经验,一位中学生的质量约为50kg ,一层楼的高度约为3m ,g 取10N/kg 。 事实上,只要在误差允许范围内,任何一种测量和计算都是对所求物理量的实际情况的一个近似。运用近似法可以帮助学生理解物理研究中绝对性与相对性的真正含义。 4、方程法 “方程法”是指在求解某个物理量时,根据因变量与自变量之间的因果对应关系,列出方程,通过求解方程从而求出物理量的方法。方程法可以减少学生的数学过程思维,解决问题简捷明了,方便于学生发现因变量与自变量的因果关系。 W s m kg N kg t Gh t W P 300106/1050=??===

高中物理八大解题方法之七:逆向思维法

高中物理解题方法之逆向思维法 江苏省特级教师 戴儒京 内容提要:本文通过几道物理题的解法分析,阐述逆向思维解题方法的几种应用:一、在解题程序上逆向思维;二、在因果关系上逆向思维;三、在迁移规律上逆向思维。 所谓“逆向思维”,简单说来就是“倒过来想一想”。这种方法用于解物理题,特别是某些难题,很有好处。下面通过高考物理试卷中的几道题的解法分析,谈谈逆向思维解题法的应用的几种情况。 一、 在解题程序上逆向思维 解题程序,一般是从已知到未知,一步步求解,通常称为正向思维。但有些题目反过来思考,从未知到已知逐步推理,反而方便些。 例1.如图1所示, 图1 一理想变压器的原副线圈分别由双线圈ab 和cd (匝数都为n 1)、ef 和gh (匝数都为n 2)组成。用I 1和U 1表示输入电流和电压,用I 2和U 2表示输出电流和电压。在下列四种接法中,符合关系1 2212121,n n I I n n U U ==的有: (A ) b 与c 相连,以a 、d 为输入端;f 与g 相连,以e 、h 为输入端。 (B ) b 与c 相连,以a 、d 为输入端;e 与g 相连、f 与h 相连作为输入端。 (C ) a 与c 相连,b 与d 相连作为输入端;f 与g 相连,以e 、h 为输出端。 (D ) a 与c 相连,b 与d 相连作为输入端;e 与g 相连、f 与h 相连作为输出端。 析与解:一般的选择题,是从题干所给的已知条件去求解,解出结果与选项比较,哪个正确选哪个。但本题我们不能根据两个公式去求解法,而只能逐一选项讨论哪种解法能得出题干给出的公式。 对(A ),初级ab 和cd 两线圈串联,总匝数为2 n 1,次级ef 和gh 两线圈亦串联,总

(完整版)高中物理解题技巧

物理快速解题技巧 技巧一、巧用合成法解题 【典例1】 一倾角为θ的斜面放一木块,木块上固定一支架,支架末端用丝线悬挂一小球,木块在斜面上下滑时,小球与木块相对静止共同运动,如图2-2-1所 示,当细线(1)与斜面方向垂直;(2)沿水平方向,求上述两种情况下木 块下滑的加速度. 解析:由题意可知小球与木块相对静止共同沿斜面运动,即小球与木块 有相同的加速度,方向必沿斜面方向.可以通过求小球的加速度来达到求解 木块加速度的目的. (1)以小球为研究对象,当细线与斜面方向垂直时,小球受重力mg 和细线的拉力T ,由题意可知,这两个力的合力必沿斜面向下,如图2-2-2 所示.由几何关系可知F 合=mgsin θ 根据牛顿第二定律有mgsin θ=ma 1 所以a 1=gsin (2)当细线沿水平方向时,小球受重力mg 和细线的拉力T ,由题意可知,这两个力的合力也必沿斜面向下,如图2-2-3所示.由几何关系可知F 合=mg /sin θ 根据牛顿第二定律有mg /sin θ=ma 2 所以a 2=g /sin θ. 【方法链接】 在本题中利用合成法的好处是相当于把三个力放在一个直角三角形中,则利用三角函数可直接把三个力联系在一起,从而很方便地进行力的定量计算或利用角边关系(大角对大边,直角三角形斜边最长,其代表的力最大)直接进行力的定性分析.在三力平衡中,尤其是有直角存在时,用力的合成法求解尤为简单;物体在两力作用下做匀变速直线运动,尤其合成后有直角存在时,用力的合成更为简单. 技巧二、巧用超、失重解题 【典例2】 如图2-2-4所示,A 为电磁铁,C 为胶木秤盘,A 和C (包括支架)的总质量为M ,B 为铁片,质量为m ,整个装置 用轻绳悬挂于O 点,当电磁铁通电,铁片被吸引上升的过程中,轻 绳上拉力F 的大小满足 A.F=Mg B.Mg <F <(M+m )g C .F=(M+m )g D.F >(M+m )g 解析:以系统为研究对象,系统中只有铁片在电磁铁吸引下向上做加速运动,有向上的 θ 图2-2-1 θ mg T F 合 图2-2-2 θ mg F 合 T 图2-2-3 图2-2-4

数理方程第二版 课后习题答案教学教材

数理方程第二版课后 习题答案

第一章曲线论 §1 向量函数 1. 证明本节命题3、命题5中未加证明的结论。 略 2. 求证常向量的微商等于零向量。 证:设,为常向量,因为 所以。证毕 3. 证明 证: 证毕4. 利用向量函数的泰勒公式证明:如果向量在某一区间内所有的点其微商为零,则此向量在该区间上是常向量。 证:设,为定义在区间上的向量函数,因为

在区间上可导当且仅当数量函数,和在区间上可导。所以,,根据数量函数的Lagrange中值定理,有 其中,,介于与之间。从而 上式为向量函数的0阶Taylor公式,其中。如果在区间上处处有,则在区间上处处有 ,从而,于是。证毕 5. 证明具有固定方向的充要条件是。 证:必要性:设具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,于是。充分性:如果,可设,令,其中为某个数量函数,为单位向量,因为,于是 因为,故,从而 为常向量,于是,,即具有固定方向。证毕

6. 证明平行于固定平面的充要条件是。 证:必要性:设平行于固定平面,则存在一个常向量,使得,对此式连续求导,依次可得和,从而,,和共面,因此。 充分性:设,即,其中,如果,根据第5题的结论知,具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,任取一个与垂直的单位常向量,于是作以为法向量过原点的平面,则平行于。如果,则与 不共线,又由可知,,,和共面,于是,其中,为数量函数,令,那么,这说明与共线,从而,根据第5题的结论知,具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,作以为法向量,过原点的平面,则平行于。证毕 §2曲线的概念 1. 求圆柱螺线在点的切线与法平面的方程。 解:,点对应于参数,于是当时,, ,于是切线的方程为:

高中物理解题方法大全(完整版)

" 高中物理解题方法指导 (完整版) 物理题解常用的两种方法: 分析法的特点是从待求量出发,追寻待求量公式中每一个量的表达式,(当然结合题目所给的已知量追寻),直至求出未知量。这样一种思维方式“目标明确”,是一种很好的方法应当熟练掌握。 综合法,就是“集零为整”的思维方法,它是将各个局部(简单的部分)的关系明确以后,将各局部综合在一起,以得整体的解决。 综合法的特点是从已知量入手,将各已知量联系到的量(据题目所给条件寻找)综合在一起。 实际上“分析法”和“综合法”是密不可分的,分析的目的是综合,综合应以分析为基础,二者相辅相成。 正确解答物理题应遵循一定的步骤 - 第一步:看懂题。所谓看懂题是指该题中所叙述的现象是否明白不可能都不明白,不懂之处是哪哪个关键之处不懂这就要集中思考“难点”,注意挖掘“隐含条件。”要养成这样一个习惯:不懂题,就不要动手解题。 若习题涉及的现象复杂,对象很多,须用的规律较多,关系复杂且隐蔽,这时就应当将习题“化整为零”,将习题化成几个过程,就每一过程进行分析。 第二步:在看懂题的基础上,就每一过程写出该过程应遵循的规律,而后对各个过程组成的方程组求解。 第三步:对习题的答案进行讨论.讨论不仅可以检验答案是否合理,还能使读者获得进一步的认识,扩大知识面。 一、静力学问题解题的思路和方法 1.确定研究对象:并将“对象”隔离出来-。必要时应转换研究对象。这种转换,一种情况是换为另一物体,一种情况是包括原“对象”只是扩大范围,将另一物体包括进来。 2.分析“对象”受到的外力,而且分析“原始力”,不要边分析,边处理力。以受力图表示。 3.根据情况处理力,或用平行四边形法则,或用三角形法则,或用正交分解法则,提高力合成、分解的目的性,减少盲目性。 ^ 4.对于平衡问题,应用平衡条件∑F=0,∑M=0,列方程求解,而后讨论。 5.对于平衡态变化时,各力变化问题,可采用解析法或图解法进行研究。 静力学习题可以分为三类: ①力的合成和分解规律的运用。 ②共点力的平衡及变化。 ③固定转动轴的物体平衡及变化。

高中物理解题方法

高中物理解题方法专题指导 方法专题一:图像法解题 一、方法简介 图像法是根据题意把抽像复杂的物理过程有针对性地表示成物理图像,将物理量间的代数关系转变为几何关系,运用图像直观、形像、简明的特点,来分析解决物理问题,由此达到化难为易、化繁为简的目的. 高中物理学习中涉及大量的图像问题,运用图像解题是一种重要的解题方法.在运用图像解题的过程中,如果能分析有关图像所表达的物理意义,抓住图像的斜率、截距、交点、面积、临界点等几个要点,常常就可以方便、简明、快捷地解题. 二、典型应用 1.把握图像斜率的物理意义 在v-t图像中斜率表示物体运动的加速度,在s-t图像中斜率表示物体运动的速度,在U-I图像中斜率表示电学元件的电阻,不同的物理图像斜率的物理意义不同. 2.抓住截距的隐含条件 图像中图线与纵、横轴的截距是另一个值得关注的地方,常常是题目中的隐含条件.例1、在测电池的电动势和内电阻的实验中, 根据得出的一组数据作出U-I图像,如图所示, 由图像得出电池的电动势E=______ V,内电阻 r=_______ Ω. 3.挖掘交点的潜在含意 一般物理图像的交点都有潜在的物理含意,解题中往往又是一个重要的条件,需要我们多加关注.如:两个物体的位移图像的交点表示两个物体“相遇”. 例2、A、B两汽车站相距60 km,从A站每隔10 min向B站开出一辆汽车,行驶速度为60 km/h.(1)如果在A站第一辆汽车开出时,B站也有一辆汽车以同样大小的速度开往A站,问B站汽车在行驶途中能遇到几辆从A站开出的汽车?(2)如果B站汽车与A站另一辆汽车同时开出,要使B站汽车在途中遇到从A站开出的车数最多,那么B站汽车至少应在A站第一辆车开出多长时间后出发(即应与A站第几辆车同时开出)?最多在途中能遇到几辆车?(3)如果B站汽车与A站汽车不同时开出,那么B站汽车在行驶途中又最多能遇到几辆车?

高中物理解题中涉及的数学知识

高中物理解题中涉及的数学知识 物理和数学是联系最密切的两门学科。运用数学工具解决物理问题的能力,是中学物理教学的最基本的要求。高中物理中用到的数学方法有:方程函数的思维方法,不等式法,极限的思维方法,数形结合法,参数的思维方法,统计及近似的思维方法,矢量分析法,比例法,递推归纳法,等等。现就“力学”与“电磁学”中常用数学知识进行归纳。 Ⅰ.力学部分:静力学、运动学、动力学、万有引力、功和能量与几何、代数知识相结合,从而增大题目难度,更注重求极值的方法。 Ⅱ.电磁学部分:电磁学中的平衡、加速、偏转及能量与圆的知识、三角函数,正余弦定理、相似三角形的对应比、扇形面积、二次函数求极值(配方法或公式法)、均值不等式 、正余弦函数、积化和差、和差积化、半角倍角公式、直线方程(斜率,截距)、对称性、)sin(cos sin 22?θθθ++=+b a b a a b =?tan 、数学归纳法及数学作图等联系在一起。 第一章 解三角形 三角函数 1、正弦定理:在C ?AB 中,a 、b 、c 分别为角A 、B 、C 的对边,则有2sin sin sin a b c R C ===A B (R 为C ?AB 的外接圆的半径) 变形公式: ::sin :sin :sin a b c C =A B ; 2、三角形面积公式:111 sin sin sin 222 C S bc ab C ac ?AB = A == B . 3、余弦定理:在 C ?AB 中,有2 2 2 2cos a b c bc =+-A ,推论:222 cos 2b c a bc +-A = 4、均值定理: 若0a >,0b >,则a b +≥,即2 a b +≥ ()2 0,02a b ab a b +??≤>> ??? ; 2 a b +称为正数a 、b a 、b 的几何平均数. 5、均值定理的应用:设x 、y 都为正数,则有 ⑴若x y s +=(和为定值),则当x y =时,积xy 取得最大值 2 4 s . ⑵若xy p =(积为定值),则当x y =时,和x y +取得最小值 1、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是l r α= . 2、弧度制与角度制的换算公式:2360π= ,1180 π = . 3、若扇形的圆心角为()α α为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=, 2C r l =+,2112 2 S lr r α==. 4、角三角函数的基本关系:()221sin cos 1αα+=;()sin 2tan cos α αα =. 5、函数的诱导公式:

高中物理解题方法大全

高中物理解题方法大全 物理题解常用的两种方法: 分析法的特点是从待求量出发,追寻待求量公式中每一个量的表达式,(当然结合题目所给的已知量追寻),直至求出未知量。这样一种思维方式“目标明确”,是一种很好的方法应当熟练掌握。 综合法,就是“集零为整”的思维方法,它是将各个局部(简单的部分)的关系明确以后,将各局部综合在一起,以得整体的解决。 综合法的特点是从已知量入手,将各已知量联系到的量(据题目所给条件寻找)综合在一起。 实际上“分析法”和“综合法”是密不可分的,分析的目的是综合,综合应以分析为基础,二者相辅相成。 正确解答物理题应遵循一定的步骤 第一步:看懂题。所谓看懂题是指该题中所叙述的现象是否明白?不可能都不明白,不懂之处是哪?哪个关键之处不懂?这就要集中思考“难点”,注意挖掘“隐含条件。”要养成这样一个习惯:不懂题,就不要动手解题。 若习题涉及的现象复杂,对象很多,须用的规律较多,关系复杂且隐蔽,这时就应当将习题“化整为零”,将习题化成几个过程,就每一过程进行分析。 第二步:在看懂题的基础上,就每一过程写出该过程应遵循的规律,而后对各个过程组成的方程组求解。 第三步:对习题的答案进行讨论.讨论不仅可以检验答案是否合理,还能使读者获得进一步的认识,扩大知识面。 一、静力学问题解题的思路和方法 1.确定研究对象:并将“对象”隔离出来-。必要时应转换研究对象。这种转换,一种情况是换为另一物体,一种情况是包括原“对象”只是扩大范围,将另一物体包括进来。 2.分析“对象”受到的外力,而且分析“原始力”,不要边分析,边处理力。以受力图表示。 3.根据情况处理力,或用平行四边形法则,或用三角形法则,或用正交分解法则,提高力合成、分解的目的性,减少盲目性。 4.对于平衡问题,应用平衡条件∑F=0,∑M=0,列方程求解,而后讨论。 5.对于平衡态变化时,各力变化问题,可采用解析法或图解法进行研究。 静力学习题可以分为三类: ①力的合成和分解规律的运用。 ②共点力的平衡及变化。 ③固定转动轴的物体平衡及变化。 认识物体的平衡及平衡条件 对于质点而言,若该质点在力的作用下保持静止或匀速直线运动,即加速度α为零,则称为平衡,欲使质点平衡须有∑F=0。若将各力正交分解则有:∑F X=0,∑F Y=0 。 对于刚体而言,平衡意味着,没有平动加速度即α=0,也没有转动加速度即β=0(静止或匀逮转动),此时应有:∑F=0,∑M=0。

高中物理中的数学知识与方法选读

高中物理中的数学知识与方法(选读) 目录: 前言 概念的描述与定义 矢量与矢量的运算 极限思想的体现 待定系数法的应用 (1)认识运动方程 (2)电学实验数据处理 解方程组 变力做功-数学和物理在解题思路中的差别 图象法解题 (1)识图辨析 (2)数形结合 导数在高中物理中的应用 (1)求速度和加速度 (2)求感应电动势 带电粒子在匀强磁场中做匀速圆周运动时,半径与轨迹的关系

前言 在多年的高中教学经历中,接触到很多学生在物理上学习得很努力、很认真,虽然在时间上大量的投入,但成绩总是差强人意。造成这种现象的原因其中之一是受到数学知识的制约,而很多物理问题都得用到数学工具和方法解决;另外一个原因是数学知识掌握得不错,平时数学成绩也好,但不能灵活运用到物理学习中来,对数学和物理两个学科只是独立地进行思考与学习,不能真正地融汇贯通。 高考《考试说明》中明确提出高中生应具备应用数学处理物理问题的能力,即能够根据具体问题列出物理量之间的数学关系式,根据数学的特点、规律进行推导、求解和合理外推,并根据结果得出物理判断、进行物理解释或作出物理结论。能根据物理问题的实际情况和所给条件,恰当地运用几何图形、函数图象等形式和方法进行分析、表达。能够从所给图象通过分析找出其所表达的物理容,用于分析和解决物理问题。 数学物理方法:对一个物理问题的处理,通常需要三个步骤:(1)利用物理定律将物理问题翻译成数学问题;(2)解该数学问题,其中解数学物理方程占有很大的比重,有多种解法;(3)将所得的数学结果翻译成物理,即讨论所得结果的物理意义。 数学与物理的联系:数学是物理的表述形式之一。其学科特点具有高度的抽象性,它能够概括物理运动的所有空间形式和一切量的关系。数学是创立和发展物理学理论的主要工具。物理原理、定律、定理往往直接从实验概括抽象出来,首先是量的测定,然后再建立起量的联系即数学关系式,其中就包含着大量的数学整理工作,本身就要大量的数学运算,才能科学地整理实验所观测到的量,找出它们之间的联系。 用数学语言来描述具体物理问题的能力培养,即能将具体问题转化为数学问题的能力,以期在数学技能与具体问题之间架起桥梁.在解决实际物理问题的时候,从建立坐标开始,包括确定自变量,找出函数关系以至积分上下限的确定等,都要以物理思想来指导.例如,

数学物理方法

数学物理方法课程教学大纲 一、课程说明 (一)课程名称:数学物理方法 所属专业:物理、应用物理专业 课程性质:数学、物理学 学分:5 (二)课程简介、目标与任务 这门课主要讲授物理中常用的数学方法,主要内容包括线性空间和线性算符、复变函数、积分变换和δ-函数、数学物理方程和特殊函数等,适当介绍近年来的新发展、新应用。本门课程是物理系学生建立物理直观的数学基础,其中很多内容是为后续物理课程如量子力学、电动力学等服务,是其必需的数学基础。 这门课中的一些数学手段将在今后的基础研究和工程应用中发挥重要的作用,往往构成了相应领域的数学基础。一般来讲,因为同样的方程有同样的解,掌握和运用这些数学方法所体现的物理内容将更深入,更本质。 (三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接 本课程以普通物理、高等数学和部分线性代数知识为基础,为后继的基础课程和专业课程研究有关的数学问题作准备,也为今后工作中遇到的数学物理问题求解提供基础。 (四)教材:《数学物理方法》杨孔庆编 参考书:1. 《数学物理方法》柯朗、希尔伯特著 2. 《特殊函数概论》王竹溪、郭敦仁编著 3. 《物理中的数学方法》李政道著 4. 《数学物理方法》梁昆淼编 5. 《数学物理方法》郭敦仁编 6. 《数学物理方法》吴崇试编 二、课程内容与安排 第一部分线性空间及线性算子 第一章R3空间的向量分析 第一节向量的概念 第二节R3空间的向量代数

第三节R3空间的向量分析 第四节R3空间的向量分析的一些重要公式 第二章R3空间曲线坐标系中的向量分析 第一节R3空间中的曲线坐标系 第二节曲线坐标系中的度量 第三节曲线坐标系中标量场梯度的表达式 第四节曲线坐标系中向量场散度的表达式 第五节曲线坐标系中向量场旋度的表达式 第六节曲线坐标系中Laplace(拉普拉斯)算符▽2的表达式第三章线性空间 第一节线性空间的定义 第二节线性空间的内积 第三节Hilbert(希尔伯特)空间 第四节线性算符 第五节线性算符的本征值和本征向量 第二部分复变函数 第四章复变函数的概念 第一节映射 第二节复数 第三节复变函数 第五章解析函数 第一节复变函数的导数 第二节复变函数的解析性 第三节复势 第四节解析函数变换 第六章复变函数积分 第一节复变函数的积分 第二节Cauchy(柯西)积分定理 第三节Cauchy(柯西)积分公式 第四节解析函数高阶导数的积分表达式 第七章复变函数的级数展开

高中物理解题方法大全(完整版)

高中物理解题方法指导 (完整版) 物理题解常用的两种方法: 分析法的特点是从待求量出发,追寻待求量公式中每一个量的表达式,(当然结合题目所给的已知量追寻),直至求出未知量。这样一种思维方式“目标明确”,是一种很好的方法应当熟练掌握。 综合法,就是“集零为整”的思维方法,它是将各个局部(简单的部分)的关系明确以后,将各局部综合在一起,以得整体的解决。 综合法的特点是从已知量入手,将各已知量联系到的量(据题目所给条件寻找)综合在一起。 实际上“分析法”和“综合法”是密不可分的,分析的目的是综合,综合应以分析为基础,二者相辅相成。 正确解答物理题应遵循一定的步骤 第一步:看懂题。所谓看懂题是指该题中所叙述的现象是否明白?不可能都不明白,不懂之处是哪?哪个关键之处不懂?这就要集中思考“难点”,注意挖掘“隐含条件。”要养成这样一个习惯:不懂题,就不要动手解题。 若习题涉及的现象复杂,对象很多,须用的规律较多,关系复杂且隐蔽,这时就应当将习题“化整为零”,将习题化成几个过程,就每一过程进行分析。 第二步:在看懂题的基础上,就每一过程写出该过程应遵循的规律,而后对各个过程组成的方程组求解。 第三步:对习题的答案进行讨论.讨论不仅可以检验答案是否合理,还能使读者获得进一步的认识,扩大知识面。 一、静力学问题解题的思路和方法 1.确定研究对象:并将“对象”隔离出来-。必要时应转换研究对象。这种转换,一种情况是换为另一物体,一种情况是包括原“对象”只是扩大X围,将另一物体包括进来。 2.分析“对象”受到的外力,而且分析“原始力”,不要边分析,边处理力。以受力图表示。 3.根据情况处理力,或用平行四边形法则,或用三角形法则,或用正交分解法则,提高力合成、分解的目的性,减少盲目性。 4.对于平衡问题,应用平衡条件∑F=0,∑M=0,列方程求解,而后讨论。 5.对于平衡态变化时,各力变化问题,可采用解析法或图解法进行研究。 静力学习题可以分为三类: ①力的合成和分解规律的运用。 ②共点力的平衡及变化。 ③固定转动轴的物体平衡及变化。 认识物体的平衡及平衡条件

数学物理方法习题解答(完整版)

数学物理方法习题解答 一、复变函数部分习题解答 第一章习题解答 1、证明Re z 在z 平面上处处不可导。 证明:令Re z u iv =+。Re z x =,,0u x v ∴==。 1u x ?=?,0v y ?=?, u v x y ??≠??。 于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。 2、试证()2 f z z = 仅在原点有导数。 证明:令()f z u iv =+。()2 2222,0f z z x y u x y v ==+ ∴ =+=。 2,2u u x y x y ??= =??。v v x y ?? ==0 ??。 所以除原点以外,,u v 不满足C -R 条件。而 ,,u u v v x y x y ???? , ????在原点连续,且满足C -R 条件,所以()f z 在原点可微。 ()00 00 00x x y y u v v u f i i x x y y ====???????? '=+=-= ? ?????????。 或:()()()2 * 00 0lim lim lim 0z z x y z f z x i y z ?→?→?=?=?'==?=?-?=?。 2 2 ***0* 00lim lim lim()0z z z z z z z zz z z z z z z z z =?→?→?→+?+?+??==+??→???。 【当0,i z z re θ≠?=,*2i z e z θ-?=?与趋向有关,则上式中**1z z z z ??==??】

3、设333322 ()z 0 ()z=0 0x y i x y f z x y ?+++≠? =+??? ,证明()z f 在原点满足C -R 条件,但不可微。 证明:令()()(),,f z u x y iv x y =+,则 ()332222 22 ,=0 0x y x y u x y x y x y ?-+≠? =+?+??, 332222 22 (,)=0 0x y x y v x y x y x y ?++≠? =+?+?? 。 3 300(,0)(0,0)(0,0)lim lim 1x x x u x u x u x x →→-===, 3300(0,)(0,0)(0,0)lim lim 1y y x u y u y u y y →→--===-; 3300(,0)(0,0)(0,0)lim lim 1x x x v x v x v x x →→-===, 3300(0,)(0,0)(0,0)lim lim 1y y x v y v y v y y →→-===。 (0,0)(0,0),(0,0)(0,0)x y y x u v u v ∴ = =- ()f z ∴ 在原点上满足C -R 条件。 但33332200()(0)() lim lim ()()z z f z f x y i x y z x y x iy →→--++=++。 令y 沿y kx =趋于0,则 333333434322222 0()1(1)1(1) lim ()()(1)(1)(1)z x y i x y k i k k k k i k k k x y x iy k ik k →-++-++-++++-+==+++++ 依赖于k ,()f z ∴在原点不可导。 4、若复变函数()z f 在区域D 上解析并满足下列条件之一,证明其在区域D 上

相关主题