搜档网
当前位置:搜档网 › 图解旋翼航拍飞行器X350Pro-入门篇

图解旋翼航拍飞行器X350Pro-入门篇

图解旋翼航拍飞行器X350Pro-入门篇
图解旋翼航拍飞行器X350Pro-入门篇

图解旋翼航拍飞行器‐X350Pro入门篇

目录

一、 到手飞之安装篇 (2)

1. 飞机正常方位 (2)

2. 脚架安装 (2)

3. 指南针(电子罗盘)安装 (2)

4. 螺旋桨安装 (3)

5. 与旋转方向有关的‐电调接线(首飞者忽略此节) (4)

6. 与旋转方向有关的‐飞控与电调接线(首飞者忽略此节) (4)

二、 到手飞之首飞调试 (5)

1. 遥控对码,以(遥控)左手油为例 (5)

2. 遥控界面说明 (6)

3. 遥控对码常见问题 (6)

4. 水平及方位校准 (7)

5. GPS检测 (7)

三、 遥控基本说明 (9)

1. 什么是左手油(美国手)、右手油(日本手) (9)

2. 遥控器操作面板说明 (9)

3. 控制模式(MIX键)说明 (10)

4. 飞行模式(FMOD键)说明 (11)

5. 控制模式补充知识(首飞者忽略此节) (11)

6. 电机解锁与电机锁定 (12)

四、 到手飞之充电 (12)

350轴距的4旋翼航拍是不少摩友的入门机,X350Pro就是其中代表之一,今天我们就以他为教材,开始我们的系列课程。

一、到手飞之安装篇

1.飞机正常方位

对码、姿态调整、准备起飞时水平放置于正前方

2.脚架安装

必须接好电子罗盘(指南针),否则与遥控无法对码,地面站MP调试时也必须接;

另注意引出线走预留的孔位,两个接收机天线成90度夹角为最佳角度

3.指南针(电子罗盘)安装

4.螺旋桨安装

高手也会出错,因为简单!另一般调试或者放置时建议拆下机翼,以免误伤或者折翼。

安装时注意原厂桨叶会有方向指示,与电机悬臂上标注的保持一致。

正常状态下旋翼旋转方向应该是两个前翼内旋、两个后翼外旋,程对称状态。

而四个电机的编号从右下角开始,顺时针排列为1‐4号机。

常见问题

1.飞机起飞时,稍微加油门,就往单侧倾斜

经常就是不能离地的那对机翼装反了,无论何时机翼的旋转方向都应该是

迎风面向上,且机翼旋转标识、悬臂上的旋转标识和实际旋转方向一致。

2.机翼装对了,旋转错误是咋办

非原装机,或者拆过机后这个问题很常见,有可能是电调线与马达装错,或者电调与飞控装错。

5.与旋转方向有关的‐电调接线(首飞者忽略此节)

3号机实物照,虽然被遮住了焊点,但是从位置还是可以很清楚的判断。

6.与旋转方向有关的‐飞控与电调接线(首飞者忽略此节)

来张实物图

总而言之,旋转对不一定飞的起,旋转不对一定飞不起。

二、到手飞之首飞调试

1.遥控对码,以(遥控)左手油为例

第一守则:开机时:先开控(遥控),再接电(模型电源)

第二守则:关机时:先断电,再关控

平时养成好习惯,可以大大减少你的事故率。试想一下,你的飞机还在天上,你把

控关了,好死不死你还没有设置过绑定ID,重开控也没用,你可以直接为你的爱模

默哀了。

还有GPS返航?这个东东试验时基本有效,有事时基本无效,平时还是宁可信其无

吧。

正常状态下开控,对码过程中显示system initialize,此为模型对码状态,请在10s

内给模型加电,错过全关重来。

模型接电后,模型对码灯慢闪数秒后,熄灭。对码成功。

2.遥控界面说明

3.遥控对码常见问题

●遥控报警,显示下图信息,

将遥控所有键、柄复原位或归零,即可。例如下图便是油门没有归零警告。

●对码灯总是快闪

你误进了姿态调整模式,断电关机重来

●对码灯总是慢闪,熄灭后,没法解锁电机,

可能没接罗盘,就是脚架上那个线插;

可能遥控模式键(mix)没有归零;

4.水平及方位校准

调校和电子罗盘。

遥控对码成功后,对码灯熄灭,将左右摇杆同时推向内侧下角

对码灯(左灯)连续快闪,即进入罗盘校准状态。

校准完后重新接电。

5.GPS检测

GPS状态灯就是右边这个灯

GPS具体装在哪里?开盖便知

常见问题

GPS闪灯代表什么意思

搜到GPS卫星数=5+连闪次数(例如:连闪2次为7颗星;小于6颗星不闪)

●什么功能会用到GPS

一键返航,定点定高等。So,如果GPS灯不闪,你玩一键返航,那是作死的节

奏。

●为什么GPS不闪呢

别急,搜星有时会慢点,给他两分钟。等了,还是不闪?找个空旷地,上可以

见蓝天,四周无高楼。空旷,还是不闪?RP值低?不要自弃。5分钟没闪很正

常,要找齐6颗星有时还真不是一会的事。等不及就手动飞行吧。

三、遥控基本说明

1.什么是左手油(美国手)、右手油(日本手)

以模式二为例,解释下摇杆与飞行姿态的对应,因为一般遥控说明都是以固定翼标

准动作为例,运用到4旋翼时有些地方容易引起混淆。

油门,固定翼引擎推力向前,加油加速前飞;旋翼则引擎推力向下,加油上升;

方向,原地水平转向

升降,指固定翼的升降舵,对于旋翼则控制前倾(前进),后倾(后退);

副翼,控制旋翼左倾(左飞),右倾(右飞)

2.遥控器操作面板说明

操作面板功能均可以自定义,本文均以F7默认设置为准。

3.控制模式(MIX键)说明

●定点定高

●一键返航

注意事项,GPS连闪2次以上,即卫星7颗以上,Mix键拨到2位置,然后油门回中。

4.飞行模式(FMOD键)说明

如下图

5.控制模式补充知识(首飞者忽略此节)

所谓航向锁定模式即通常所说的无头模式的之一,无头模式又分为2种:

A.航向锁定

即无论机头在什么位置,飞机都以出发点的航线为标准,上下推动右摇杆(遥控模式为 mode 2),做平行于出发点航向的直线运动;左右推动右摇杆(遥控模式为 mode 2),做垂直于出发点航向的直线运动。X350Pro的航向锁定即是这种模式。摇杆只有上下和左右有效,有夹角无效。

B.返回点锁定

即无论机头在什么位置,飞机都以出发点为圆心,上下推动右摇杆(遥控模式为 mode 2),做远离或者接近圆心直线运动;左右推动右摇杆(遥控模式为 mode 2),做围绕出发点的圆周运动。X350Pro无返回点锁定模式,精灵2有。

6.电机解锁与电机锁定

四、到手飞之充电

平衡充电器有两个口,一个给3S(主机)电池用,一个给2S(遥控)电池用。

注意:不要同时给两个电池充电。

这么重要的一句话竟然隐藏在这么不显眼的地方,坑爹啊。

说了这么多,该飞一会了。Good luck!

基于STM32的四旋翼飞行器设计

摘要 四轴飞行器是一种结构紧凑、飞行方式独特的垂直起降式飞行器,与普通飞行器相比,具有结构简单、故障率低和单位体积能够产生更大升力等优点,所以在军事和民用多个领域都有广阔的应用前景,非常适合在狭小空间内执行任务。 本设计采用stm32f103zet6作为主控芯片,3轴加速度传感器mpu6050作为惯性测量单元,通过2.4G无线模块和遥控板进行通信,最终使用PID控制算法以PWM方式控制电子调速器驱动电机实现了四轴飞行器的设计。 关键词:四轴飞行器,stm32;mpu6050,2.4G无线模块.PID.PWM

Abstract Quadrocopter has broad application prospect in the area of military and civilian because of its advantages of simple structure. Small size, low failure rate, taking off and landing ertically . etc. it is suitable for having task in narrow space. This design uses STM32f103zet6 as the master chip, and triaxial accelerometer mpu6050 inertial measurement unit, via 2.4G wireless module and remote control panel for communication. Finally using pid control algorithm with pwm drives the electronic speed controller to change moto to realize the design of quadrocopter. Key word : quadrocopter,stm32,mpu6050,2.4G wireless module ;pid; pwm

四旋翼飞行器论文(原理图 程序)..

四旋翼自主飞行器(B题) 摘要 系统以R5F100LE作为四旋翼自主飞行器控制的核心,由电源模块、电机调速控制模块、传感器检测模块、飞行器控制模块等构成。飞行控制模块包括角度传感器、陀螺仪,传感器检测模块包括红外障碍传感器、超声波测距模块、TLS1401-LF模块,瑞萨MCU综合飞行器模块和传感器检测模块的信息,通过控制4个直流无刷电机转速来实现飞行器的欠驱动系统飞行。在动力学模型的基础上,将小型四旋翼飞行器实时控制算法分为两个PID控制回路,即位置控制回路和姿态控制回路。测试结果表明系统可通过各个模块的配合实现对电机的精确控制,具有平均速度快、定位误差小、运行较为稳定等特点。

目录 1 系统方案论证与控制方案的选择............................................................................................. - 2 - 1.1 地面黑线检测传感器............................................................................................................. - 2 - 1.2 电机的选择与论证................................................................................................................. - 2 - 1.3 电机驱动方案的选择与论证................................................................................................. - 3 - 2 四旋翼自主飞行器控制算法设计............................................................................................. - 3 - 2.1 四旋翼飞行器动力学模型..................................................................................................... - 3 - 2.2 PID控制算法结构分析.......................................................................................................... - 3 - 3 硬件电路设计与实现................................................................................................................. - 5 - 3.1飞行控制电路设计.................................................................................................................. - 5 - 3.2 电源模块................................................................................................................................. - 6 - 3.3 电机驱动模块......................................................................................................................... - 6 - 3.4 传感器检测模块..................................................................................................................... - 7 - 4 系统的程序设计......................................................................................................................... - 8 - 5 测试与结果分析......................................................................................................................... - 9 - 5.1 测试设备................................................................................................................................. - 9 - 5.2 测试结果................................................................................................................................. - 9 - 6 总结........................................................................................................................................... - 10 - 附录A 部分程序清单.................................................................................................................. - 11 -

2015年全国大学生电子设计大赛四旋翼飞行器论文

2015年全国大学生电子设计竞赛多旋翼自主飞行器(C题) 2015年8月15日

摘要 本文对四旋翼碟形飞行器进行了初步的研究和设计。首先,对飞行器各旋翼的电机选择做了论证,分析了实际升力效率与PWM的关系并选择了此样机的最优工作频率,并重点对飞行器进行了硬件和软件的设计。 本飞行器采用瑞萨R5F100LEA单片机为主控制器,通过四元数算法处理传感器MPU6000采集机身平衡信息并进行闭环的PID控制来保持机身的平衡。整个控制系统包括电源模块、传感器检测模块、电机调速模块、飞行控制模块及微处理器模块等。角度传感器和角速率传感模块为整个系统提供飞行器当前姿态和角速率信号,构成飞行器的增稳系统。本系统经过飞行测试,可以达到设计要求。关键字:R5F100LEA单片机、传感器、PWM、PID控制。

目录 1系统方案 (1) 1.1电机的论证与选择 (1) 1.2红外对管检测传感器的论证与选择 (1) 1.3电机驱动方案的论证与选择 (2) 2系统控制理论分析 (2) 2.1控制方式 (2) 2.2 PID模糊控制算法 (2) 3控制系统硬件与软件设计 (4) 3.1系统硬件电路设计 (4) 3.1.1系统总体框图 (4) 3.1.2 飞行控制电路原理图 (4) 3.1.3电机驱动模块子系统 (5) 3.1.4电源 (5) 3.1.5简易电子示高模块电路原理图 (6) 3.2系统软件设计 (6) 3.2.1程序功能描述与设计思路 (6) 3.2.2程序流程图 (6) 4测试条件与测试结果 (7) 4.1 测试条件与仪器 (7) 4.2 测试结果及分析 (7) 4.2.1测试结果(数据) (7) 4.2.2测试分析与结论 (8) 附录1:电路图原理 (9) 附录2:源程序 (10)

四旋翼飞行器结构和原理

四旋翼飞行器结构和原理 1.结构形式 旋翼对称分布在机体的前后、左右四个方向,四个旋翼处于同一高度平面,且四个旋翼的结构和半径都相同,四个电机对称的安装在飞行器的支架端,支架中间空间安放飞行控制计算机和外部设备。结构形式如图1.1所示。 .工作原理 四旋翼飞行器通过调节四个电机转速来改变旋翼转速,实现升力的变化,从而控制飞行器的姿态和位置。四旋翼飞行器是一种六自由度的垂直升降机,但只有四个输入力,同时却有六个状态输出,所以它又是一种欠驱动系统。

四旋翼飞行器的电机1和电机3逆时针旋转的同时,电机2和电机4顺时针旋转,因此当飞行器平衡飞行时,陀螺效应和空气动力扭矩效应均被抵消。

在上图中,电机1和电机3作逆时针旋转,电机2和电机4作顺时针旋转,规定沿x轴正方向运动称为向前运动,箭头在旋翼的运动平面上方表示此电机转速提高,在下方表示此电机转速下降。 (1)垂直运动:同时增加四个电机的输出功率,旋翼转速增加使得总的拉力增大,当总拉力足以克服整机的重量时,四旋翼飞行器便离地垂直上升;反之,同时减小四个电机的输出功率,四旋翼飞行器则垂直下降,直至平衡落地,实现了沿z轴的垂直运动。当外界扰动量为零时,在旋翼产生的升力等于飞行器的自重时,飞行器便保持悬停状态。 (2)俯仰运动:在图(b)中,电机1的转速上升,电机3 的转速下降(改变量大小应相等),电机2、电机4 的转速保持不变。由于旋翼1 的升力上升,旋翼3 的升力下降,产生的不平衡力矩使机身绕y 轴旋转,同理,当电机1 的转速下降,电机3的转速上升,机身便绕y轴向另一个方向旋转,实现飞行器的俯仰运动。 (3)滚转运动:与图b 的原理相同,在图c 中,改变电机2和电机4的转速,保持电机1和电机3的转速不变,则可使机身绕x 轴旋转(正向和反向),实现飞行器的滚转运动。 (4)偏航运动:旋翼转动过程中由于空气阻力作用会形成与转动方向相反的反扭矩,为了克服反扭矩影响,可使四个旋翼中的两个正转,两个反转,且对角线上的各个旋翼转动方向相同。反扭矩的大小与旋翼转速有关,当四个电机转速相同时,四个旋翼产生的反扭矩相互平衡,四旋翼飞行器不发生转动;当四个电机转速不完全相同时,不平衡的反扭矩会引起四旋翼飞行器转动。在图d中,当电机1和电机3 的转速上升,电机2 和电机4 的转速下降时,旋翼1和旋翼3对机身的反扭矩大于旋翼2和旋翼4对机身的反扭矩,机身便在

四旋翼直升机的动力学原理

冯如杯论文 《四旋翼飞行器的设计与控制》 院(系)名称机械工程及自动化学院 作者姓名薛骋豪 学号35071422 指导教师梁建宏 2008年3月22日

四旋翼飞行器的设计与控制 薛骋豪 摘要 四旋翼直升机,其主旋翼分成前后与左右两组,旋转时方向相反,因此与一般直升机最主要的不同点为四旋翼直升机不需要用尾旋翼来平衡机体。因为四旋翼直升机为不稳定系统,因此需利用旋转专用的感测器:陀螺仪来感知机身的平衡程度并将讯号传送至微控制器,再通过微控制器内部程序的运算产生控制信号来控制机体上四个旋翼的转速,以维持整个机身的平衡促使四旋翼直升机能顺利飞行。 关键词:四旋翼、VTOL(垂直起降)、矩阵控制、 Abstract Quadrotor, its main rotor divides into with two about groups from beginning to end, in opposite direction while rotating, so Quadrotor and does not need to fasten the wing and having the balance organism for four with the end with the main difference of general helicopter. Whether four fasten wing helicopter stable system, need to utilize and rotate the special-purpose detecting device. The gyroscope comes to perceive balancing the degree and conveying the signal to the little controller of the fuselage, and then produce the control signal to control four rotational speed of fastenning the wings on the organism through the operation of the procedure within the little controller, impel four to fly smoothly while Quadrotor for the balance of maintaining the whole fuselage. Key words: Quadrotor、VTOL(Vertical Take-Off and Landing)、matrix control

四旋翼飞行器智能控制(A题)

2016年吉林省大学生电子设计竞赛 参赛注意事项 (1)2016年8月31日8:00竞赛正式开始。 (2)参赛队认真填写《登记表》内容,填写好的《登记表》交赛场巡视员暂时保存。 (3)参赛者必须是有正式学籍的全日制在校本、专科学生,应出示能够证明参赛者学生身份的有效证件(如学生证)随时备查。 (4)每队严格限制3人,开赛后不得中途更换队员。 (5)参赛队必须在学校指定的竞赛场地内进行独立设计和制作,不得以任何方式与他人交流,包括教师在内的非参赛队员必须迴避,对违纪参赛队取消评审资格。 (6)2016年9月3日20:00竞赛结束,上交设计报告、制作实物及《登记表》,由专人封存。 四旋翼飞行器智能控制(A) 一、任务 设计并制作一个四旋翼飞行器控制系统,能够按照相应设定要求,实现四旋翼飞行器的自主飞行(为安全起见,要在飞行器底部系上一安全绳)。 二、要求 1.基本要求 (1)自主定点悬停 在地面上设置一个标志点,飞行器在20cm高度上自主定点悬停时间不低于20秒;悬停期间,飞行器中心点横向偏离标志点位移不超过10cm(即要求飞行器上的垂直激光器光点落在以地面标志点为圆心,半径为10cm的圆内),示意图如图1所示。 图1 自主定点悬停示意图

(2)自主定点、定高悬停 如图2所示,第一步从地面标志点飞到离地高20cm 处,稳定悬停10s ;第二步从20cm 处自主提升到离地高60cm 处,稳定悬停10s ;第三步从离地60cm 处自主下降到离地高40cm 处,稳定悬停10s 。悬停期间,飞行器横向偏离地面标志点位移不超过10cm 。高度偏差在5cm 以内。 图2 自主定点、定高悬停示意图 (3)跟踪飞行 如图3所示,由地面A 点起飞,跟随地面标志(标志可移动)或者自主飞至距离A 点2m 处的任意地面B 点降落,降落点(飞行器中心点)距离B 点偏差小于15cm ,完成时间小于30s 。 15cm 图3 跟踪飞行示意图 2.发挥部分 (1)在飞行器的某个单臂上悬挂重物(重物质量不小于飞行器整体质量的10%),悬挂点位置在飞行器中心到最外端的1/2以外的任意位置。完成基本要求(1)的内容; (2)在飞行器的某个单臂上悬挂重物(重物质量不小于飞行器整体质量的10%),悬挂点位置在飞行器中心到最外端的1/2以外的任意位置。完成基本要求(2)的内容;

四旋翼飞行器建模与仿真Matlab

四轴飞行器的建模与仿真 摘要 四旋翼飞行器是一种能够垂直起降的多旋翼飞行器,它非常适合近地侦察、监视的任务,具有广泛的军事和民事应用前景。本文根据对四旋翼飞行器的机架结构和动力学特性做详尽的分析和研究,在此基础上建立四旋翼飞行器的动力学模型。四旋翼飞行器有各种的运行状态,比如:爬升、下降、悬停、滚转运动、俯仰运动、偏航运动等。本文采用动力学模型来描述四旋翼飞行器的飞行姿态。在上述研究和分析的基础上,进行飞行器的建模。动力学建模是通过对飞行器的飞行原理和各种运动状态下的受力关系以及参考牛顿-欧拉模型建立的仿真模型,模型建立后在Matlab/simulink软件中进行仿真。 关键字:四旋翼飞行器,动力学模型,Matlab/simulink Modeling and Simulating for a quad-rotor aircraft ABSTRACT The quad-rotor is a VTOL multi-rotor aircraft. It is very fit for the kind of reconnaissance mission and monitoring task of near-Earth, so it can be used in a wide range of military and civilian applications. In the dissertation, the detailed analysis and research on the rack structure and dynamic characteristics of the laboratory four-rotor aircraft is showed in the dissertation. The dynamic model of the four-rotor aircraft areestablished. It also studies on the force in the four-rotor aircraft flight principles and course of the campaign to make the research and analysis. The four-rotor aircraft has many operating status, such as climbing, downing, hovering and rolling movement, pitching movement and yawing movement. The dynamic model is used to describe the four-rotor aircraft in flight in the dissertation. On the basis of the above analysis, modeling of the aircraft can be made. Dynamics modeling is to build models under the principles of flight of the aircraft and a variety of state of motion, and Newton - Euler model with reference

四旋翼飞行器实验报告

实验报告 课程名称:《机械原理课内实验》 学生姓名:徐学腾 学生学号:1416010122 所在学院:海洋信息工程学院 专业:机械设计制造及其自动化 报导教师:宫文峰 2016年6 月26 日

实验一四旋翼飞行器实验 一、实验目的 1.通过对四旋翼无人机结构的分析,了解四旋翼无人机的基本结构、工作的原理和传动控制系统; 2. 练习采用手机控制终端来控制无人机飞行,并了解无人机飞行大赛的相关内容,及程序开发变为智能飞行无人机。 二、实验设备和工具 1. Parrot公司AR.Drone 2.0四旋翼飞行器一架; 2. 苹果手机一部; 3. 蓝牙数据传输设备一套。 4. 自备铅笔、橡皮、草稿纸。 三、实验内容 1、了解四旋翼无人机的基本结构; 2、了解四旋翼无人机的传动控制路线; 3、掌握四旋翼无人机的飞行控制的基本操作; 4、了解四旋翼无人机翻转动作的机理; 5、能根据指令控制无人机完成特定操作。 四、实验步骤 1、学生自行用IPHONE手机下载并安装AR.FreeFlight四旋翼飞行器控制软件。 2、检查飞行器结构是否完好无损; 3、安装电沲并装好安全罩; 4、连接WIFI,打开手机AR.FreeFlight软件,进入控制界面; 5、软件启动,设备连通,即可飞行。 6、启动和停止由TAKE OFF 控制。 五、注意事项 1.飞行器在同一时间只能由一部手机终端进行控制; 2. 飞行之前,要检查螺旋浆处是否有障碍物干涉; 3. 飞行之后禁止用手去接飞行器,以免螺旋浆损伤手部; 4. 电量不足时,不可强制启动飞行; 5. 翻转特技飞行时,要注意飞行器距地面高度大于4米以上; 6. 飞行器不得触水; 7. 飞行器最大续航时间10分钟。

四旋翼设计报告

四旋翼自主飞行器(A题) 摘要 四旋翼飞行器是无人飞行器中一个热门的研究分支,随着惯性导航技术的发展与惯导传感器精度的提高,四旋翼飞行器在近些年得到了快速的发展。 为了满足四旋翼飞行的设计要求,系统以STM32F103VET6作为四旋翼自主飞行器控制的核心,处理器内核为ARM32位Cortex-M3 CPU,最高72MHz工作频率,工作电压3.3V-5.5V。该四旋翼由电源模块、电机电调调速控制模块、传感器检测模块、飞行器控制模块等构成。飞行姿态检测模块是通过采用MPU-6050模块,整合3轴陀螺仪、3轴加速度计,检测飞行器实时飞行姿态,实现飞行器运动速度和转向的精准控制。传感器检测模块包括红外障碍传感器、超声波测距模块,在动力学模 型的基础上,将四旋翼飞行器实时控制算法分为两个PID 控制回路,即位置控制回 路和姿态控制回路。测试结果表明系统可通过各个模块的配合实现对电机的精确控制,具有平均速度快、定位误差小、运行较为稳定等特点。 关键词:四旋翼飞行器;STM32;飞行姿态控制;串口PID

目录 1 系统方案论证与控制方案的选择...................................................................- 2 - 1.1 地面黑线检测传感器...................................................................... .............- 2 - 1.2 电机的选择与论证...................................................................... .................- 2 - 1.3 电机驱动方案的选择与论证...................................................................... .- 2 - 2 四旋翼自主飞行器控制算法设计...................................................................- 3 -

电子设计大赛国赛_四旋翼自主飞行器A题

2013年全国大学生电子设计竞赛课题:四旋翼自主飞行器(B 题) 【本科组】 2013年9月7日

摘要 为了满足四旋翼飞行器的设计要求,设计了以微控制器为核心的控制系统和算法。首先进行了各单元电路方案的比较论证,确定了硬件设计方案。四旋翼飞行器采用了固连在刚性十字架交叉结构上的4个电机驱动的一种飞行器,以78K0R CPU內核为基础,围绕新的RL78 CPU內核演化而来的RL78/G13作为控制核心,工作频率高达32MHz,工作电压1.6V-5.5V,适合各种类型的消费类电子和工业应用, 满足8/16位微控制器的需求,有助于降低系统功耗,削减总系统的构建成本。采用9926B MOS管芯片的驱动直流电机,该驱动芯片具有内阻小、负载电流大、且控制简单的特性。通过采用MPU-6050整合的3轴陀螺仪、3轴加速器,并含可藉由第二个I2C端口连接其他厂牌之加速器、磁力传感器、或其他传感器的数位运动处理(DMP: Digital Motion Processor)硬件加速引擎,由主要I2C端口以单一数据流的形式,向应用端输出完整的9轴融合演算技术InvenSense的运动处理资料库,可处理运动感测的复杂数据,降低了运动处理运算对操作系统的负荷,实现了四旋翼飞行器运动速度和转向的精准控制。通过HC-SR04超声波测距模块实现了对四旋翼飞行器飞行高度的准确控制。通过激光传感器,实现了四旋翼飞行器沿黑线前进,在规定区域起降,投放铁片等功能,所采用的设计方案先进有效,完全达到了设计要求。 关键词:四旋翼自主飞行器,E18-D50NK光电传感器,寻线,超声波,单片机。

四旋翼自主飞行器(B 题) 【本科组】 1系统方案 本系统主要由电源模块、电机驱动模块、光电循迹模块模块、超声波测高模块、姿态传感器模块组成,下面分别论证这几个模块的选择。 1.1 电源模块的论证与选择 方案一:采用线性元器件LM7805三端稳压器构成稳压电路,为单片机等其他模块供电,输出纹波小,效率低,容易发热。 方案二:采用元器件2596为开关稳压芯片,效率高,输出的纹波大,不容易发热。 方案三:采用线性元器件2940构成稳压电路,为单片机等其他模块供电,输出纹波小,效率高,不容易发热,综合性能高。 综合以上三种方案,选择方案三。 1.2 电机驱动模块的论证与选择 方案一:采用三极管驱动,由于输出电流很大,容易发热, 方案二:采用L298N电机驱动模块,通过电流大,容易发热,使得电机转速变慢,载重量变小。 方案三:采用场效应管9926B芯片组成的电机驱动模块,驱动能力好。能承受的最大电流为7.5A,符合要求。 综合以上三种方案,选择方案三。 1.3 光电循迹模块的论证与选择 方案一:采用CCD摄像头采集图片经过算法处理循迹,前瞻性比较好、循迹效果好,但是处理程序复杂、成本高。 方案二:采用红外对管,有效距离太短,不能满足实际循迹要求。 方案三:采用E18-D50NK光电传感器,这是一种集发射与接收于一体的光电传感器, 检测距离可以根据要求进行调节。探测距离远、受可见光干扰小、前瞻性较好、抗干扰性较好。

四旋翼飞行器的结构形式和工作原理

四旋翼飞行器的结构形式和工作原理 1.结构形式 直升机在巧妙使用总距控制和周期变距控制之前,四旋翼结构被认为是一种最简单和最直观的稳定控制形式。但由于这种形式必须同时协调控制四个旋翼的状态参数,这对驾驶员认为操纵来说是一件非常困难的事,所以该方案始终没有真正在大型直升机设计中被采用。这里四旋翼飞行器重新考虑采用这种结构形式,主要是因为总距控制和周期变距控制虽然设计精巧,控制灵活,但其复杂的机械结构却使它无法再小型四旋翼飞行器设计中应用。另外,四旋翼飞行器的旋翼效率相对很低,从单个旋翼上增加拉力的空间是非常有限的,所以采用多旋翼结构形式无疑是一种提高四旋翼飞行器负载能力的最有效手段之一。至于四旋翼结构存在控制量较多的问题,则有望通过设计自动飞行控制系统来解决。四旋翼飞行器采用四个旋翼作为飞行的直接动力源,旋翼对称分布在机体的前后、左右四个方向,四个旋翼处于同一高度平面,且四个旋翼的结构和半径都相同,旋翼1和旋翼3逆时针旋转,旋翼2和旋翼4顺时针旋转,四个电机对称的安装在飞行器的支架端,支架中间空间安放飞行控制计算机和外部设备。四旋翼飞行器的结构形式如图1.1所示。

图1.1四旋翼飞行器的结构形式 2.工作原理 典型的传统直升机配备有一个主转子和一个尾桨。他们是通过控制舵机来改变螺旋桨的桨距角,从而控制直升机的姿态和位置。四旋翼飞行器与此不同,是通过调节四个电机转速来改变旋翼转速,实现升力的变化,从而控制飞行器的姿态和位置。由于飞行器是通过改变旋翼转速实现升力变化,这样会导致其动力部稳定,所以需要一种能够长期保稳定的控制方法。四旋翼飞行器是一种六自由度的垂直升降机,因此非常适合静态和准静态条件下飞行。但是四旋翼飞行器只有四个输入力,同时却有六个状态输出,所以它又是一种欠驱动系统。

无人机实训报告

关于无人机模拟操控技能实训的报告 目录 一、前言 1.实训背景与意义 (2) 2.无人机的发展现状 (2) 3、本次实训的任务安排与技术要求 (4) 二、实训的基本情况 (5) 三、实训总结 (8)

一.前言 本次实训主要是通过实体操控四旋翼无人机的不同姿态运动来提升自己对无人机的运动机制、动力原理以及飞行实操的了解。主要要求是使用提供的四旋翼无人机实现无人机在导航模式下实现原地360°旋转、矩形飞行以及固定翼的模拟航线飞行等,需要控制飞机高度方向,指导老师现场考核评分并记录好实训操控时的图像或音频,以完成实训总结报告。 1.实训背景与意义 无人机,是一种不需要有人驾驶,可以通过远程操控来实现某些特定功能的飞行器,具有可持续续航、飞行高度高、可携带外接设备等一系列优点,目前无人机在多个领域取得应用,并且经过行业的不断完善,已经形成初步的产业链。无人机以其自身的突出的优点、高性价比等巨大优势吸引人们的关注,并且在不断地研究中取得了一定的突破,从无人机整个行业的前景来看,无疑是值得肯定的,并且现有技术不断革新的情况下无人机在未来的发展将会越来越好,无人机作为现代的新星宠儿,对它的研究应用无论是对自身发展还是国家技术改革创新都具有很大作用,在无人机势如春笋的发展背景下,通过实训去了解无人机,熟练的操控无人机将对未来就业以及自身发展具有重大意义。 2.无人机的发展现状 20世纪90年代以来,随着信息化技术、轻量化/小型化任务载荷技术、卫星通信技术、复合材料结构技术、高效空气动力技术、新型能源与高效动力技术、起降技术的迅猛发展,无人机性能不断提升、功能不断扩展,各种类型和功能的无人机不断涌现,应用领域也越来越广泛。无人机按规模可分为微型无人机、小型无人机、中型无人机、大型无人机;按飞行高度可分为低空无人机、中空无人机、高空无人机、临近空间无人机;按飞行速度可分为低速无人机、高速无人机;按机动性可分为低机动无人机、高机动无人机;按能源与动力类型可分为螺旋桨式无人机、喷气式无人机、电动无人机、太阳能无人机、燃料电池无人机;按活动半径可分为近程无人机、短程无人机、中程无人机、远程无人机;按起降方式可分为滑跑起降无人机、火箭助推/伞降回收无人机、空投无人机、炮射无人机、潜射无人机等;按功能用途可分为靶标无人机、诱饵无人机、侦察无人机、炮兵校射无人机、电子对抗无人机、电子侦听无人机、心理战无人机、通信中继无人机、测绘无人机、攻击无人机、察打一体无人机、预警无人机…… 人机系统主要包括飞机机体、飞控系统、数据链系统、发射回收系统、电源系统等。飞控系统又称为飞行管理与控制系统,相当于无人机系统的“心脏”部分,对无人机的稳定性、数据传输的可靠性、精确度、实时性等都有重要影响,对其飞行性能起决定性的作用;数据链系统可以保证对遥控指令的准确传输,以及无人机接收、发送信息的实时性和可靠性,以保证信息反馈的及时有效性和顺利、准确的完成任务。发射回收系统保证无人机顺利升空以达到安全的高度和速度飞行,并在执行完任务后从天空安全回落到地面。 无人机主要分为多旋翼无人机、固定翼无人机以及组合式无人机三大类。 多旋翼无人机又有四旋翼、六旋翼、八旋翼甚至十旋翼等,最常见的是四旋翼无人机,以下是常见的多旋翼无人机。

四旋翼飞行器 设计报告

大学生电子设计竞赛 设计报告 摘要:本设计实现基于STM32开发板的十字形四旋翼飞行器,四旋翼由主控制板、陀螺仪、电机模块、超声波测距、电源和投弹打靶模块等六部分组成。其中,控制核心STM32负责飞行器姿态数据接收和飞行姿态控制;陀螺仪采用MPU6050模块,该模块经过卡尔曼滤波处理采集的数据,输出数据,用PID控制算法对数据进行处理,同时,解算出相应电机需要的的PWM增减量,及时调整电机转速,调整飞行姿态,使飞行器的飞行的更加稳定。电机模块通过电调控制无刷直流电机,超声波传感器进行测距,起飞后悬停在一定高度,打靶后降落。 关键词:四旋翼;PID控制;陀螺仪,姿态角,电机控制

2

目录 1系统方案 (1) 1.1控制系统选择方案 (1) 1.2飞行姿态控制方案论证 (1) 1.3角度测量模块的方案论证 (2) 1.4高度测量模块方案论证.............................................. 错误!未定义书签。2理论分析与计算 (2) 2.1控制模块 .................................................................... 错误!未定义书签。 2.2机翼电机 .................................................................... 错误!未定义书签。 2.3飞行姿态控制单元 (3) 3电路与程序设计 (4) 3.1系统总体设计思路 (4) 3.2主要元器件清单......................................................... 错误!未定义书签。 3.3系统框图 .................................................................... 错误!未定义书签。 3.3.1系统硬件框图 ..................................................... 错误!未定义书签。 3.3.2系统软件框图 ..................................................... 错误!未定义书签。4测试方案与测试结果.. (5) 5结论 (6) 3

四旋翼飞行器基本原理

四旋翼飞行器无刷直流电机调速系统的设计 孟磊,蒋宏,罗俊,钟疏桐 武汉理工大学自动化学院、武汉理工大学信息工程学院 摘要,关键字:略 近年来,无人机的研究和应用广泛受到各个方面的重视。四旋翼飞行器作为无人机的一种,能够垂直起落、空中悬停、可适用于各种飞行速度与飞行剖面,具有灵活度高、安全性好的特点,适用于警务监控、新闻摄影、火场指挥、交通管理、地质灾害调查、管线巡航等领域实现空中时时移动监控。 四旋翼飞行器的动力来源是无刷直流电机,因此针对该型无刷直流电机的调速系统对飞行器的性能起着决定性的作用。为了提高四旋翼飞行器的性能,本文设计制作了飞行试验平台,完成了直流无刷电机无感调速系统的硬件、软件设计。通过实验证明该系统的设计是可行的。 四旋翼飞行器平台结构 四旋翼平台呈十字形交叉,有四个独立电机驱动螺旋桨组成。当飞行器工作时,平台中心对角的螺旋桨转向相同,相邻的螺旋桨转向相反同时增加减少四个螺旋桨的速度,飞行器就垂直上下运动;相反的改变中心对角的螺旋桨速度,可以产生滚动、俯仰等运动。结构图如下: 四旋翼飞行器的控制系统分为两个部分:飞行控制系统和无刷直流电机调速系统。飞行控制系统通过IMU惯性测量单位(由陀螺传感器和加速度传感器组成)检测飞行姿态,通过无线通讯模块与地面遥控器通信。4个无刷直流电机调速系统通过I2C总线与飞行控制器通信,通过改变4个无刷直流电机的转速来改变飞行姿态,系统采用12V电池供电。控制系统结构图如下:

无刷直流电机调速系统 无刷直流电动机既具有运行效率高、调速性能好,同时又具有交流电动机结构简单、运行可靠、维护方便的优点,是电机主要发展方向之一,现已成功运用与军事、航空、计算机数控机床、机器人、电动自行车等多个领域。在该四旋翼飞行器上使用了新西达2217外转子式无刷直流电机,其结构为12绕组7对磁极,典型KV值为1400. 通常无刷直流电机的控制方式分为有位置传感器控制方式和无位置传感器控制方式。有位置传感器控制方式通过再定子上安装电磁式、光电式或者磁敏式位置传感器来检测转子的位置,为驱动电路提供转向信息。无位置传感器的控制方式有很多,包括磁链计算法‘反电动势法、状态观测器法、电感法等。在各种无位置传感器控制方法中,反电动势法是目前技术最为成熟的、应用最为广泛的一种位置检测方法。本系统采用的饭店董事过零检测法是反电动势法中的一种,通过检测各相绕组反电动势的过零点来判断转子的位置。根据无刷直流电机的特性,电机的最佳转向时刻是想反电动势过零点延迟30电角度的时刻,而该延迟的电角度对应的时间可以有两次过零点时间间隔计算得到。 无刷直流电机调速系统硬件设计 该无刷直流电机调速系统有三相全桥驱动电路、反电势过零电路、电流电压检测电路组成电机驱动器。使用一片ATmega8单片机作为控制器,该单片机内部集成了8kB的flash,最多具有23个可编程的I/O口,输出时为推挽结构输出,驱动能力较强。片上集成了AD 转换器、模拟比较器、通用定时器、可编程计数器等资源。 三相全桥驱动电路利用功率型MOS管作为开关器件,选用P型MOS管FD6637与N型MOS管FD6635搭配使用,设计容量为允许通过的最大电流为30A。FD6637的开关利用三极管9013进行驱动、FD6635的开关直接用单片机的I/O口进行驱动。电路如图3所示。通过R17、R19、R25来减少下管FDD6635的栅极充电电流峰值,防止震荡并保护MOS管;R16、R23、R24作为下拉电阻,保证下关的正常导通与关断;R2、R5、R8作为上管栅极上拉电阻,阻值选择470Ω,既保证了MOS管的开关速率不降低,同时也防止三极管Ic电流过大。A+、B+、C+提供驱动桥的上桥臂的栅极导通信号,分别通过ATmega8的三个硬件PWM通道驱动,通过改变PWM信号的占空比来实现电机调速;A-、B-、C-提供下桥臂栅极驱动信号,由单片机的I/O口控制,只有导通和关闭两种状态。

多旋翼飞行器解决方案

多旋翼飞行器解决方案 一、多旋翼飞行器介绍 多旋翼飞行器是由多组动力系统组成的飞行平台,一般常见的有四旋翼、六旋翼、八旋翼……十八旋翼,甚至更多旋翼组成。旋翼对称分布在机体的前后、左右四个方向,四个旋翼处于同一高度平面,且四个旋翼的结构和半径都相同,四个电机对称的安装在飞行器的支架端,支架中间空间安放飞行控制计算机和外部设备。电动多旋翼飞行器由无刷电机驱动螺旋桨组成单组旋翼动力系统,由惯导系统、飞控系统、导航系统、电子调速器组成控制驱动部分。瑞伯达提供专业无人机飞行器解决方案。飞行器作为飞行载体可携带影像器材、通讯器材、采集器材、特殊器材等升空,可达到传统方式达不到的高度(0-500米)。 二、多旋翼飞行器优点 多旋翼飞行器以其独特的结构和简洁的系统构架与传统飞行器相比 有明显的优势。 1、多旋翼飞行器的最大优点是安全 2、需要的起降条件要求很低。 3、以高能电池作为能量与油动飞行器相比噪音更低 4、简单的机械部件组成(仅电机轴承为机械部件)与传统直升机 (有较复杂的机械部件与传动结构)相比维护相当简单。

5、操纵简单,整机全电子增稳,一个人只需要半天左右学习就基 本可以独立驾驶了。 三、多旋翼飞行器缺点: 1、速度差,旋翼飞机比直升飞机稍慢,与固定翼飞机相比差得太远,因此在需要快速运输而又没有特别要求的场合,都使用普通固定翼飞机; 2、灵活性欠佳。虽然旋翼飞机比直升飞机略快一点,安全性也更 高,但其使用灵活性却比直升飞机差太多。它的机动性远逊于直升飞机,而且比固定翼飞机起降场地要求低很多,跟直升飞机比起来却又有些逊色,但是安全性和操纵简单的优势就突出 四、多旋翼飞行器的用途 多旋翼飞行系统可广泛应用于农业中低空撒种、喷洒农药,治安监控、森林灭火、灾情监视、应急通讯、电力应用、海运应用、气象监测、航拍航测,另外对空中勘探、无声侦查、边境巡逻、核辐射探测、航空探矿、交通巡逻等三十多个行业方面的应用也将进一步得到开发。 多旋翼飞行器在多行业的应用 1、公安系统的应用 多旋翼飞行器具有便携、质轻、飞行稳定、噪音低等特点,携带影像设备与侦测设备可以为秘密侦察提供强有力的手段,尤其是人不易接近的区域,可以提供空中第一手影像资料。同样在群体性事件中也可以发挥巨大的作用,除侦察外甚至可以携带小型催泪瓦斯进行空中投

飞机连接实验报告(南昌航空大学)

《专业技能训练》实验 班级: 100631 学号: 10063112 姓名:林万蔚 (同组人:李力朱汉辉周炎)

专业技能训练 1、实验目的: 通过本综合实验的练习,学生应能综合应用所学专业基础知识,对专业上的某一具体工程实际问题进行处理和解决,增强其实践能力、工程应用能力和整体素质。 2、实验内容: (1)方案设计 设计铆接的产品,CATIA软件或CAD绘制零件图:1张三维立体图(同组人可一样),1张能完全表达某个零件结构尺寸和制作要求的视图(按机械制图的规定画图和标注,同组每个人不得相同,可选择不同零件画图)。图均打印,其他内容手写!。 设计铆接的产品(飞机)具有中等复杂程度,具有立体结构。 零件结构设计经指导老师检查同意后方能进行制作。 (2)飞机装配铆接操作实验 本实验要求在飞机装配工艺课程的相关实验之后进行,通过飞机装配工艺课程的授课学习和实验,掌握飞机装配铆接的基本方法和基本工艺,在此基础上,制作一个中等复杂程度的零件产品,并做相应的工艺分析。 3、对自己制作的结构件进行质量分析。 我们这组设计制作的是一个小型汽车,从设计的角度来看的比较完美的,线条、部件都比较好。但是,在这个单有铆接的实验中,很多圆滑的地方可能很难制造出来。 4、飞机铆接的特点及发展。 4.1飞机铆接具有以下特点 铆接的连接强度比较稳定可靠,铆接方法与工艺参数容易掌握和控制,铆接质量检验方法方便,故障比较容易排除,使用工具比较简单、低廉,适用于较复杂的连接。虽然存在着一些缺点,如增大了结构质量,降低了结构强度,容易引起变形等,但到目前为止,铆接仍然是飞机装配中主要的的连接方法。 4.2飞机铆接的发展 现代飞机制造过程中,由于结构设计、工艺维修、检查的需要,机械连接不可缺少,在很长一段时间内仍将是主要的连接方法。在第二代、第三代、甚至第四代战斗机以及民机生产中,都采用了大量的机械连接。铆接结构重量轻、成本低、工艺简便,比螺接更具技术优势,因而用得比较普遍。铆接技术发展相对比较缓慢,但近年来在新型飞机研制过程中,为满足结构设计要求,提高飞机的性能,铆接技术有了新的发展。 4.2.1电磁铆接技术的发展 国外的经验表明,采用电磁铆接(也称应力波)技术是解决上述问题的有效途径。电磁铆接对屈强比高、应变率敏感、强度高、难成形材料的成形具有特殊的功能;能实现理想的干涉配合,延缓构件铆钉孔疲劳裂纹的扩展,显著提高结构

相关主题