搜档网
当前位置:搜档网 › 实验在物理学发展中的作用

实验在物理学发展中的作用

实验在物理学发展中的作用
实验在物理学发展中的作用

物理学史作业

2012届

实验在物理学发展中的作用

学生姓名赵孟冬

学号 08103137

院系数理信息学院

专业物理学

指导教师余国祥

完成日期2012年12月19日

实验在物理学发展中的作用

摘要

物理学是一门以实验为本科学。物理实验不仅是物理学理论的基础,更是物理学发展的基本动力。伽利略的实验研究特别是他把实验和数学方法结合来研究物理规律使物理学开始走上了真正的科学道路。实验在物理学的发展中有巨大的推动作用,在物理学中,每个概念的建立,每个规律的发现,无不有坚实的实验基础,而且在物理学史上,许多关键的问题的解决,最终都要诉诸实验。本文介绍了近代物理学的发展中四个著名的实验以及其在物理学发展中的作用。

关键词物理学;物理实验;发展;作用

目录

摘要 (2)

引言 (4)

1. 发现新事物.探索新规律 (4)

1.1. X射线的发现 (4)

1.1.1. X射线的发现的过程 (4)

1.1.2. 产生的影响 (5)

2. 验证物理理论 (5)

2.2. 光电效应的研究 (5)

2.2.1. 光电效应的发现 (6)

2.2.2. 勒纳德的新发现 (6)

2.2.3. 密立根的光电效应实验 (6)

2.2.4. 研究光电效应的意义 (7)

3. 测定物理常量 (7)

3.3. 基本电荷的测定 (7)

3.3.1. 汤森德电解法 (7)

3.3.2. 汤姆逊的膨胀云室法 (8)

3.3.3. 威尔逊的平板电极法 (8)

3.3.4. 密立根的水珠平衡法 (8)

3.3.5. 密立根油滴平衡法 (8)

3.3.6. e的精确值 (9)

4. 推广应用新技术 (9)

4.4. 核磁共振 (9)

4.4.1. 从核磁矩的研究谈起 (9)

4.4.2. 珀塞尔小组的共振吸收实验 (9)

4.4.3. 布洛赫的核感应实验 (10)

4.4.4. 实际中的应用 (11)

参考文献 (12)

引言

物理学是以实验为本的科学,在物理学的发展中起来重要作用。在物理学的工作者中有90%从事实验工作。而从伦琴获得诺贝尔奖以来的一百年,176位获奖的物理学家中有67%的人因实验而获奖。张文裕说“科学实验是科学理论的源泉,是自然科学的根本,也是工程技术的基础。”他还说“基础哑巴你就、应用研究、开发研究和生产这四个方面紧密贯穿在一起,必然有一条红线,这局势科学实验”

总之物理实验的作用基本上就是发现事实,验证理论,测定常数,推广应用四个方面。下面本文就从这四个方面进行浅谈。

1.发现新事物·探索新规律

在经典物理学的发展中,许多伟大物理学家们的实验为经典力学理论的提出与规律的发现提供了大量的实验事实。例如,在力学方面的伽俐略的斜面实验、胡克的弹性实验、玻意耳的空气压缩实验等都是如此。电学方面的库仑定律、欧姆定律、法拉第电磁感应定律等的建立,光学方面的有关光的干涉、衍射、偏振等现象的定律也都是先在实验中发现,再通过总结而得出的。在19世纪末和20世纪初,当人们普遍认为物理学已发展到了顶峰,只是进一步把常数测得在准些的时候,人们发现了X射线、电子、光电效应,核磁共振等,这些用经典物理学无法解释的实验现象,经典物理遇到了空前的困惑,在伟大的物理学家们的努力下,近代物理学和现代物理学因此而诞生了,物理学得到了重大发展。这一事实充分说明了物理实验,只有物理实验才是物理学的基础。

1.1.X射线的发现

1901年,首届诺贝尔物理理学奖授予德国物理学家伦琴(Wilhelm

Konrad RiSntgen,1845—1923),(图1-1)以表彰他在1895年发现

了X射线。

1.1.1.X射线的发现的过程

1895年11月8日,正当伦琴继续在实验室里从事阴极射线的实

验工作,一个偶然事件吸引了他的注意。当时,房间一片漆黑,放电

管用黑纸包严,并充分抽成真空。他突然发现在不超过lm远的小桌

上有一块亚铂氰化钡做成的荧光屏发出闪光。并且他发现,产生的荧

图1-1

光与涂面是否朝着放电管完全无关,甚至当制品放在仪器装置两米外

时,还可以看到这种荧光[1]。这个现象还有一个令人惊异的特点,就是这种能穿透黑纸版德尔成分,很多种物体对他来说都是透明的。比如伦琴发现一千多页的一本厚书对它几乎没有阻碍,二三厘米厚德松木板只有轻微的吸收。水,二氧化碳和各种别的液体也是透明的,只有在铜金银铅和铂板在一定厚度时才有较强的吸收。

。伦琴意识到这可能是某种特殊的射线,它具有特别强的穿

透力,从来没有观察到过。为了证实这一事实,伦琴用了六个星

期,做了很多的实验,对此进行了深入的研究。他把密封在木盒

中的砝码放在这一射线的照射下拍照,得到了模糊的砝码照片;

他把指南针拿来拍照,得到金属边框的深迹;他把金属片拿来拍

照,拍出了金属片内部不均匀的情况[2]。

。1895年12月22日,他邀请夫人来到实验室,用他夫人的

手拍下了第一张人手X射线照片(图1—2)。

图1-2

1895年年底,他以通信方式将这一发现公之于众。题为《一种新射线(初步通信)》。伦琴在通信中把这一新射线成为X射线[3]

1.1.

2.产生的影响

由于X射线有强大的穿透力,能够透过人体显示骨骼和薄金属中的缺陷,在医疗上和金属检测上有重大的应用价值,在伦琴宣布这一发现的极短时间内,全世界的医院都把X 射线诊断作为常规手段,成为透视人体、检查伤病的有力工具。后来又发展到用于金属探伤,对工业技术也有一定的促进作用。

X射线的发现对自然科学的发展更有极为重要的意义,它像一根导火线,引起了一连串的反应。由于科学家探索X射线的本质,发现了X射线的衍射现象,并由此打开了研究晶体结构的大门;根据晶体衍射的数据,可以精确地求出阿伏加德罗常量。在研究X射线的性质时,还发现X射线具有标识谱线,其波长有特定值,和X射线管阳极元素的原子内层电子的状态有关,由此可以确定原子序数,并了解原子内层电子的分布情况。此外,X 射线的性质也为波粒二象性提供了重要证据。[4]

2.验证物理理论

物理学的主体是理论。而理论是否正确,必须经过物理实践的检验。即使最权威的理论也必须通过实验的检验才能得到公认,实践是检验真理的唯一标准。例如,麦克斯韦的电磁场理论,只是当电磁波被赫兹的实验证实后才成为举世公认的电磁理论的基础;又如,直到密立根在1916年用严密的光电效应实验证实后,爱因斯坦的光量子论,才被人们接受;同样,赫兹的电磁波证实了麦克斯韦的电磁场理论。就是理论的适用范围,也是由实验在检验理论的过程中来确定。

理论和实验是物理学的两大部分。没有物理实验,物理理论就没有了基础的;没有了物理理论,物理实验也就失去了方向。两者相辅相成,缺一不可。

2.2.光电效应的研究

1905年爱因斯坦(图2-1)在题为《关于光的产生和转化的一个试

探性观点》的论文里,认为,指出只要把光的能量看成是不连续分布

的,就可以解释黑体辐射的规律,以及光电效应,电离现象等一些些

事实。并且提出了爱因斯坦光电效应方程: p hv eV -=

在光电方程里,遏止电压U 应与频率v 成正比,在爱因斯坦发表这篇论文时,当时并没有充分的实验依据。在20世纪初,要精确测量在不同频率的光(包括紫外光)照射下产生的光电流,并不是一件容易的事。而且由于经典理论的传统观念的束缚,因此爱因斯坦的理论并没有得到人们的普遍承认,甚至一些著名的物理学家也持否定态度。

知道1914年密立根作出了关键性的实验,才改变了这一情况的。

2.2.1. 光电效应的发现

1887年,H·赫兹(Heinrich Hertz ,1857—1894)(图2-2)

在进行电磁波实验时,注意到电极之间的放电,会受光辐射的影响。

赫兹的发现以论文《紫外线对放电的影响》发表于1887年随即引起

了广泛的反响

2.2.2. 勒纳德的新发现

勒纳德用不同材料做阴极,用不同的光源照射,发现

都对遏制电压有影响,唯独改变光的强度对遏制电压没有

影响,电子逸出金属表面的最大速度与光强无关,这就是

勒纳德根据实验结果做出的重要结论。[5]

2.2.

3. 密立根的光电效应实验

密立根从1910年开始光电效应实验,他设计和制作了一套极其精致的实验装置(图2-3)。在一个真空管内,安装了精密的实验装置。因为是在真空中工作,密立根称之为“真

空机械车间”。 使用这种装置可以使密立根在排除了

氧化物薄膜的电极表面上同时测量真空中的光电效

应和接触电势差。

实验样品是三种碱金属Li 、Na 、K ,都做成圆柱

形,分别固定在小轮W 上,用电磁铁从k 控制小轮的

转动。剃刀K 可沿管轴方向前后移动也由真空管外的

电磁铁带动旋转,使剃刀在圆柱电极表面不断切削,刮掉电极表面上极薄的一层氧化了的表皮。然后将光

电极对准电极的位置测量接触电势差;再转一个角

度,对准窗口以接受单色紫外光的照射,同时测量其

光电流。密立根总共选择了六种不同频率的单色光进

行了实验。

1916年密立根发表了两张实验曲线图。

图2-2

图3-2

2.2.4.研究光电效应的意义

密立根的实验结果,为爱因斯坦的光量子理论提供了第一个直接而求安眠的实验证据,后来又有许多的物理学家为光量子理论进行了实验验证。光量子理论成功了解释了光电效应,而光电效应的事实也有力的支持了光量子理论。

而光量子理论以及光电效应实验不仅证明了量子现象在一般物理过程中都有表现以及解释了“光的波粒二象性”而且光电效应在科学技术中也得到了广泛的应用,譬如制造了光电管等光电器件。

3.测定物理常量

在物理学中,大量的实验是围绕常量的测量和研究进行的,特别是基本常数的测量和研究,在物理学发展史上占有更重要的地位。例如,万有引力常数G,从牛顿发现万有引力定律以来一直是人们试图准确测量的对象。

基本物理常数之间的协凋是检验物理理论的重要途径,而每次协调都是在大量实验、在取得了众多新的研究成果的基础上做出的。

3.3.基本电荷的测定

J.J.汤姆生通过阴极射线的荷质比实验肯定了电子的存在,为近代物理学的发展奠定了实验基础。然而,仅仅从比荷质比的数据还不足以确定电子的性质,因为由此无法直接获得出电子电荷比的数据还不足以确定电子的性质。

3.3.1.汤森德电解法

J.J.汤姆生有一位研究生,名叫汤森德(J.S.E.Townsend),他创造了电解法。他让氧气从水中发泡产生云雾,雾滴带有电荷,测量云雾下降的速度,借速度与雾滴半径的关系求出雾滴的平均重量,再根据水分的总重量求出雾滴的个数。另一方面,他收集这些氧气所带电量,用静电计进行测量,所得电量被雾滴个数除,即得每颗雾滴的电荷。由

=2.8×10-19esu,从带负电的氧得此求得电子的电荷e。1897年当森德宣布了他的结果是e

+

=3.1×10-10esu这个结果虽然粗略,单却是第一次直接测定带电粒子的电量。

e

-

3.3.2. 汤姆逊的膨胀云室法

大约与此同时,J .J .汤姆逊的另一名研究而生C.T.R.威尔逊正在进行云雾形成的研究。这项工作后来导致彭云室的发明。大致步骤如下:

在一密闭容器A 中混有水蒸气和空气,其温度气压可以直接测出,从而求出其饱和度。用X 射线作为电离剂,使里面的空气电离。一辅助圆筒C 中的活塞P 可是密室的气压和温度在突然膨胀的过程中迅速下降,得到过饱和蒸汽,并立即以粒子为核心形成云雾。雾滴总数沿用汤森德方法,电量用静电计得出,然后算出单个离子的电量。

这个方法比汤森德略有改善,得到的结果大约是6.5×10-19esu 。

3.3.3. 威尔逊的平板电极法

1903年,J .J .汤姆生的另一名研究生H .A .威尔逊又将J .J .汤姆生的方法做了改进。改进的主要地方是在密闭容器中加了两块水平极板,通上电压,使极板中产生电场,观察云层顶端在重力作用下得下降速度V1以及在重力和电力共同作用下得下降速度v 2

()21

1122123234νννρηπ-???? ??==E g g q ne q 其中,η为空气的粘滞系数,E 为电场强度,ρ水蒸气的密度

威尔逊测得的电子电荷e 值在2.0×10-10esu 至4.4×10-10esu 之间,平均为3.1×10-10esu 。[6]

3.3.

4. 密立根的水珠平衡法

密立根是芝加哥大学教授(图3-1),1906年开始,和他得学生

济曼一起使用镭作为电离剂重复H.A 威尔逊的实验,并在1908年2

月宣读于美国物理学会了。

这一结果得到卢瑟福的肯定,并指出,这一实验还可以改进,

减小水滴蒸发,因为水滴蒸发会使得离子数偏大,从而造成e 偏小。

于是密立根改进了自己的实验,设法让法让带电云雾的顶层稳定在

某一高度,以便连续进行观察。这件事很容易办到,只要改变电场

力的方向使其和重力方向相反,并适当加大电压就可以了。

1909年夏,密立根将电压加到10000V ,当他合上电闸时,奇迹出现了。云层哪里稳定得住,在电场的作用下,带电雾粒以不同速度散开,他得到这一启发,想到对单个液滴进行测量,于是他发明了水珠平衡法。1909年,密立根利用水珠平衡法测得电子电荷结果为e=4.65×10-10esu

3.3.5. 密立根油滴平衡法

1909年12月至1910年5月,密立根用油做了

近两百颗液滴粒电子电荷实验。他宣称,在所有情况

下液滴从空气中不活的电荷都是最小电荷的整数倍。

1910年以后密立根在平衡油滴法的基础上,进

图3-1

一步改进实验方法他让油滴在电场力和重力的共同作用下,上上下下的运动,从上下运动的速度求油滴所带电量(图3-2)。如果用X射线或镭照射油滴,使油滴所带电量发生改变,就会看到油滴的速度突然发生变化,从而求出电荷量的改变的差值。密立根进一步研究了斯托克斯定律的有效性对实验结果做了修正,于1913年宣布从油滴测得电子电荷为[7]:e=(4.774±0.0009)×10-10esu

3.3.6.e的精确值

1973年开始采用的国际标准值

e=1.6021892×10-19C

=4.803242×10-10esu

4.推广应用新技术

无论是蒸汽机技术还是电工技术,都离不开实验。很多的发明创造,比如制冷机,电灯,电报等,无不是经过了大量的实验才逐步完善的。在计入20世纪后,物理实验对新技术的推广作用增加名下。从电子管都晶体管,从无线电到雷达都是大量实验的结果。事实证明,现代的许多新技术的推广与应用都是物理实验的贡献。比如:核磁共振。

4.4.核磁共振

所谓核磁共振,是指具有磁矩的原子核在恒定磁场中由电磁波引起的共振跃迁现象。

4.4.1.从核磁矩的研究谈起

核磁共振的发现,跟核磁矩的研究紧密相关。

1911年,卢瑟福根据a粒子散射实验提出核原子模型后,直到原子光谱的超精细结构发现以后,1924年泡利才正式提出,原子光谱的超精细结构是核自旋与外电子轨道运动相互作用的结果;原子核应具有自旋角动量和磁矩。

1926年斯特恩提出了分子束方法测定核磁矩。

1933年他和弗利胥(O.Frisch)、爱斯特曼(I.Estermann)等人用分子束实验装置测量氢分子中质子和氘核的磁矩。所得结果表明质子磁矩比理论预言的大2.5倍而氘核磁矩则在0.5到1个核磁子之间。氘核是由质子和中子组成的,由此即可推测中子也有磁矩。

1938年美国物理学家拉比把射频共振的方法应用于分子束技术,创立了分子束磁共振方法。

分子束共振法能够精确的测定原子核的磁矩,并首次实现了磁共振的思想,核磁共振的起始从某种意义上来说是从分子束共振法开始的。。

4.4.2.珀塞尔小组的共振吸收实验

945年夏,珀塞尔、托雷(H.C.Torrey)和庞德(R.V.Pound)等组成一个小组,亲自修复并改装了哈佛大学十年前研究宇宙射线的工作中证明μ介子存在所留下的一台

磁铁,,用来做核磁共振的研究。

从能量关系考虑在静磁场Η0中核磁矩的能量处于量子化能级,即

00Ηγm ΗμΕ -=?-=

核磁矩与角动量之比。在热平衡状态下,粒子按玻耳兹曼定律分布,低能级的粒子数目多于高能级的。若在共振条件的射频电磁场作用下,处于低能级的粒子吸收射频场能量而跃迁到高能级;处于高能级的粒子又可把能量交给晶格而回到低能级来。如果样品的弛豫时间不太长,足以建立新的平衡,保持低能级粒子数多于高能级的,便可观察到持续的核磁共振信号。珀塞尔把这样的实验称为“核磁共振吸收”。[8]

由于核磁共振信号是微弱的,在室温和几千高斯的磁场作用下,热平衡时两能级的粒子数之差与总粒子数之比,只达到10—6的量级。为了提高观测的灵敏度,珀塞尔等人采用了桥式电路(图4-1)。

射频信号由发生器送到两

个谐振回路的输入端,其中一个

谐振回路的线圈

0L 环绕着样品置于静磁场0H 中,另一谐振回

路则在磁场之外,它们分别为桥

路的两臂。当发生共振时,样品

吸收射频场能量使该谐振回路

的阻抗变化,桥路便失去平衡,

从而有相应的信号送到接收系统。根据不平衡的幅值(或相位),便可得到吸收(或发射)

信号。

珀塞尔在谐振腔内填充了850立方厘米的石蜡作为样品,置于共振产生的磁场在7100高斯和频率29.8兆赫兹上。共振频率经过放大和检波系统,在微安计上显示出来。这是珀塞尔等人的首次成功实验。

1945年12月24日,珀塞尔等人将在凝聚态中观察到的贺词共振现象写在了《固体中核磁共振吸收的一封心中》投给了《物理评论》的编辑部。被观测得物质是置于强度

4.4.3. 布洛赫的核感应实验

就在珀塞尔等人发表题为《固体中核磁矩的共振吸收》的论文一个月之后,布洛赫也在《物理评论》杂志上发表了《核感应》的论文,报道了斯坦福小组观测到的水中的核磁共振信号。两个小组对核磁共振现象的发现完全是独立的,方法也有所不同。

布洛赫1934年到斯坦福大学任教后,对斯特恩1933年的实验结果发生了兴趣,想为中子磁矩的存在寻找直接证明。1936年布洛赫指出,这样的证明可以通过观测慢中子在铁中的散射来达到。1939年,阿尔瓦雷斯和布洛赫用伯克利加州大学的回旋加速器直接求得

图4-1

了中子的磁矩,但测量的精度不过约为百分之一,主要原因是受限于磁场测量的精度。为了检验氘核磁矩跟中子与质子磁矩叠加的偏差,把测量中子磁矩的精确度提高到千分之几就显得非常的必要了。而找到一种精确测量磁场的方法却不是那么的容易。

二战期间布洛赫打算通过射频接收的一般方法来检测核磁矩的重新取向,进而可解决磁场定标问题。于是他进行了大量的理论计算工作。他确信在1cm3的水中,质子在几千高斯的磁场中共振时,将会在围绕的线圈上感应出超过接收机噪声的射频电压,信噪比不小于3。战争结束后,他找到了汉森这个以从事调管工作文明的人,并回到斯坦福大学开展了这个研究。

1945年秋,柏卡德(M.Packard)的研究生要求参加这项研究,柏卡德协助汉森管发射和接收,布洛赫管直流磁场。为了完成这项研究他们借到了一台示教用的磁铁并进行了改装。(图4-2)

在这个装置的磁铁两极之间,有两个轴线相互垂直的线圈其中一个是发射线圈,与射频源相连,另一个是接收线圈,与接收系统相连,两线圈的轴线均与主磁场垂直。布洛赫认为,核磁共振的基本事实在于核磁矩取向的改变。当核磁矩在射频场作用下转向时,宏观磁化矢量随之改变。按照电磁感应定律,

这时在接收线圈上便产生一感应电动势。

“核感应”这个术语就是由此而来。考虑到

射频场比探测的信号强得多,所以发射线圈

和接收线圈之间的耦合必须相当微弱,因此

把它们安排成互相垂直的位置。在共振条件

下,射频场使核磁矩转向,并弱耦合到接收

线圈作为载波。发射线圈的端部还安装两块

半圆形导电片,以调节漏感的幅值和相位,

从而可检测到吸收信号或发射信号。[9]

布洛赫首先决定拿水用作样品。为了缩短弛豫时间他在样品中加了可溶于水的铁硝酸盐。

经过几个月的准备,试验开始了。他们把事前处理过的水样品放入装置内,然后接通所有的开关。当射频机构已经工作时,布洛赫去调节磁铁的的电流到预期值,汉森和柏卡德在几码远处盯着示波器,但他们在噪声起伏上面没看到任何信号。因此,汉森想去调整一下放大器,并要布洛赫关掉电源。正当布洛赫打开开关时,他们仍然注视这示波器。正在那个时候,听到布洛赫对汉森说:“嘿,你看到吗?刚才是有些东西扫过荧光屏”。[10]汉森认为,这就是他们要找的共振信号。

布洛赫等人在第一次观察到核感应信号的成功实验中,射频频率为7.76MHz,相应的磁场强度为1 826高斯。

4.4.4.实际中的应用

随着更多的物理学家进入核磁共振这块领域后,这个发现很快的被推向了实际应用并

渗透到了化学医学等其他领域。

比如,在物理上的应用:可以用来精确测定核磁矩。它可以提高两个数量级。也可以用来精确测定测长,也被用来进行物质结构分析。

在化学上的应用:从核磁共振谱仪获得的核磁共振谱可用于鉴定有机化合物结构,根据化学位移可以鉴定有机基团,还可用于化学动力学方面的研究,如分子内旋转、化学交换等。

在医学上:通过识别水分子中氢原子信号的分布推测水分子在人体内的分布,进而探测人体内部结构的技术。核磁共振成像技术还可以与X射线断层成像技术(CT)结合为临床诊断和生理学、医学研究提供重要数据。

参考文献

[1] M.H.沙摩斯,物理史上的重要实验[M].北京:科学出版社,1985.243

[2] 郭奕玲,沈慧君.诺贝尔物理学奖一百年[M].上海:上海科学普及出版社,2002.37

[3] 郭奕玲,沈慧君.诺贝尔物理学奖一百年[M].上海:上海科学普及出版社,2002.38

[4] 郭奕玲,沈慧君.诺贝尔物理学奖一百年[M].上海:上海科学普及出版社,2002.38

[5] 郭奕玲,大学物理中的著名实验[M].北京:科学出版社,1985.144

[6] 郭奕玲,沙振舜,等.著名物理实验及其在物理学发展中的作用[M].山东:山东教育

出版社,1985,106~109

[7] 郭奕玲,沈慧君.诺贝尔物理学奖一百年[M].上海:上海科学普及出版社,2002.99

[8] 郭奕玲,林木欣.近代物理发展中的著名实验[M].湖南:湖南教育出版社,350

[9] 郭奕玲,林木欣.近代物理发展中的著名实验[M].湖南:湖南教育出版社,353

致谢

在此感谢余国祥老师在本学期的教育,尤其是物理学史上的。通过这学期的讲课,让我们开拓的视野,让我们对物理的历史有更深的体会,由那些物理工作者身上学到科学精神,同时余老师还为我们复习了大学物理知识点,使我们回顾起以往的知识。

实验在物理教学中的作用

实验在物理教学中的作用 商镇中学孙永红 物理是一门以观察和实验为基础的自然科学。物理实验既是物理教学内容的一个重要的组成部分,又是物理研究的一种重要方法,同时也是激发学生学习兴趣、培养学生能力的前提。所有的物理知识都是在实验的基础上建立起来的,因此,在初中阶段对学生进行实验的养成教育,既贯彻了当前素质教育的要求,又有利于提高课堂效率。 一、充分利用物理趣味实验,创设问题情境,激发学生求知欲 兴趣是最好的老师。利用惊奇实验导入新课,能唤起学生的注意,引起学生思考,从而产生强烈的求知欲望。例如:“大气压”是比较抽象的概念,新课引入先演示窄口瓶“吞”鸡蛋的实验,这奇迹般的现象立即吸引了学生们的注意力,接着问学生这是什么原因?大气压将为你解开这个谜,在学生兴趣被激发的情况下转入新课教学。当学生明白大气压的概念后,为了加深印象,我将一只玻璃杯灌满水,用一张塑料卡片盖在杯口上,再按住卡片把水杯倒过来。当把手移开后,会产生什么现象?松手后学生惊讶不已。纷纷议论,这大气压到底有多大?为了满足学生的好奇心和求知欲,我将抽去空气的马德堡半球拿出来,叫学生推选两个力气最大的男生来拉,结果用尽力气也拉不开,再换四个不服气的同学,还是没有拉开,当我把进气阀门打开后,一个人就很轻松的把两半球拉开了。学生既惊奇又信服,对“大气压不但确实存在而且还很大”的结论深信不疑。 二、学生多动手实验的机会,培养学生的实验操作能力

实验是学生将来从事科学实践的起点。因此,在物理实验课的教学中,必须重视培养学生的实验技能和操作能力,指导学生弄懂实验原理,学会正确使用实验器材,掌握计数、读数和处理实验结果的技巧,通过分析、推理得出正确结论。使学生养成良好的实验习惯比如在电学实验中,教师要反复强调电流表、电压表的连接特点及“+”、“-”接线柱的接法,让学生学会用欧姆定律正确估算量程,避免量程过大使测量值的误差大,又避免量程过小而烧坏仪表。学生掌握了基本实验技能,就能独立动手操作,打好实验的基础,有了这种基础,学生就能自主的探究其他电学实验。此外,小实验、小制作也能使学生思维活跃,学习欲望高涨,如课本中“纸盒烧开水”、“自制电磁铁”等小实验、小制作,有很强的趣味性和知识性,十分贴近学生的生活,教师要鼓励学生做好这些课外小实验、小制作,并有意识地在教学中加以讲评。使班级中不同认知水平的学生的求知欲都能得到满足。同时,教师可以根据教材的要求,引导学生把对教学内容的学习和对小实验、小制作的学习结合起来,从而使教学内容的学习和小实验、小制作的学习达到某种程度的互补。这样,加深了学生对所学内容的理解和记忆,更重要的是能培养学生的动手操作能力。 三、设计不同的实验方案,培养学生的创新能力 物理教学要教会学生知识,不仅要求学生学会,还要学生会学。创新是一种高层次的知识迁移。在实验教学中,我注重给学生提供更多的思维机会和广阔的思维空间,激发学生求异创新的愿望。利用尽可能多的方法来设计实验方案,并对各方案进行评价,选择最佳方案,

10个物理演示实验的基础原理及现象

1.5 竞速轨道(1) 实验目的 探究物体运动时速度、时间与路程之间的关系。 实验装置 实验原理 如果两个物体运动的位移相等,但其中一个物体是匀速直线运动,而另一个物体运动过程中有加速也有减速,它们的路程与速度不同,它们运动的时间不同。 操作与现象 同时释放两个实心钢球通过同样高度、同样斜率的斜面滚到A、B两条轨道上,其中A 轨道是平直的,B轨道先是平直的,然后凹陷下去,再平直一段距离,接着有爬升上来与A 轨道同一高度,观察两个球到达轨道末端的时间,B轨道钢球先到达轨道末端。 注意事项 两球要同时从起点处下落;实验完毕及时将小球收到网袋里。 思考题 1、如果凹陷的部分没有平直的一段距离,两球会同时到达终点吗? 2、钢球的轻重对实验结果有影响吗? 1.6 竞速轨道(2) 实验目的 探究物体运动快慢的几个因素。 实验装置 见仪器照片1.1

实验原理 两个球如果在斜率相同但空隙不一样的轨道上运动,每个球受到向下运动的合外力大小不同。虽然两球初始速度相同,当末速度不同。 操作与现象 把两个篮球放在两条斜率相等的轨道上,其中A轨道较宽,B轨道较窄。两个球同时滚下,B轨道的球最先到达终点。 注意事项 放置球时,不要用力过猛。 思考题 为什么轨道较窄的球会最先到达终点?两个球滚下来快慢的决定因素是什么? 1.10 超级碰撞球 实验目的 1.进一步理解动量守恒原理以及能量守恒原理。 2.观察物体弹性碰撞与非弹性碰撞时力的作用以及能量的转换。 实验装置 实验原理 当质点系所受外力矢量和为零时,质点系的总动量不随时间变化,这个结论称之为动量守恒定律。两个高弹性球质量不等,发生弹性对心相向碰撞时,根据动量能量守恒定律,质量较小球返回速率将较大球静止时大的多。大球和小球的初动能都变成了小球返回的动

大学物理实验(最终)

大学物理实验 一、万用表的使用 1、使用万用表欧姆档测电阻时,两只手握住笔的金属部分在与电阻两端接触进行测量时,对结果有无影响?为什么? 有影响,会使测量值偏小 因为人体本身有电阻,两只手握住笔的金属部分在与电阻两端接触相当于并联 2、用万用表测电阻时,通过电阻的电流是由什么电源供给的?万用表的红表笔和黑表笔哪一个电位高? 电源内部电路提供(万用表的内部电池供给的) 黑笔 3、用万用表欧姆档判别晶体二极管的管脚极性时,若两测量得到阻值都很小或都很大,说明了什么? 两测量得到阻值都很小,说明二极管已被击穿损坏 两测量得到阻值都很大,说明二极管内部断路 4、能否用万用表检查一回路中电阻值?为什么? 不能,因为通电电路中测量电阻值会造成万用表的损坏。

【数据处理】(要求写出计算过程) 1.1R = Ω 2.2R = Ω 3.U = V 21 1 ()(1)k U i i U U k σ==-=-∑ V = =2 ?仪最小分度值 V 22U U U σ=+?仪= V U U U U =±=( ± )V 100%U U U E U = ?= % 二、用模拟法测绘静电场 1、出现下列情况时,所画的等势线和电力线有无变化?(电源电压提高1倍;导电媒质的导电率不变,但厚度不均匀;电极边缘与导电媒质接触不良;导电媒质导电率不均匀) 有,电势线距离变小,电力线彼此密集 无任何变化 无法测出电压,画不出等势线、电力线 等势线、电力线会变形失真 2、将电极之间电压正负接反,所作的等势线和电力线是否有变化? 等势线和电力线形状基本不变,电力线方向相反

3、此实验中,若以纯净水代替自来水,会有怎样的结果? 实验无法做,因为纯净水不导电 4、本实验除了用电压表法外还可以用检流计法(电桥法)来测量电势。试设计测量电路。两种方法各有何优缺点? 电压表法优点:简单 缺点:误差大 电桥法优点:测量精度高 缺点:复杂 5、能否根据实验测出的等势线计算场中某点的电场强度?为什么? 不能,因为等势线是定性的线条,相邻等势线的间隔表示的电势差相等,等势线间隔小的地方电场线强,电场强度大只能说明,无法定量表达 三、迈克尔逊干涉仪 1、为什么有些地方条纹粗,有些地方条纹细?能指出什么地方条纹最粗吗? 相邻条纹间距与两平面镜到分光板近距离之差d成反比,与各条纹对应干涉光束和中心轴夹角成反比。d越小、条纹间距越大,条纹分布越疏,条纹越粗。当d一定时,θ越小,条纹间距越大,即离圆心近处条纹最粗 2、光屏上显现等倾花纹后,改变镜面M1的位置,干涉花纹的中心位置发生位移,分析产生此种现象的原因。 光镜面M1的位置被改变,M1与M2的垂直状态发生改变,M1与M2之间有一定的夹角,从而让干涉花纹的中心位置发生移动。

实验在物理学发展中的作用

物理学史作业 2012届 实验在物理学发展中的作用 学生姓名赵孟冬 学号 08103137 院系数理信息学院 专业物理学 指导教师余国祥 完成日期2012年12月19日 实验在物理学发展中的作用 摘要 物理学是一门以实验为本科学。物理实验不仅是物理学理论的基础,更是物理学发展的基本动力。伽利略的实验研究特别是他把实验和数学方法结合来研究物理规律使物理学开始走上了真正的科学道路。实验在物理学的发展中有巨大的推动作用,在物理学中,每个概念的建立,每个规律的发现,无不有坚实的实验基础,而且在物理学史上,许多关键的问题的解决,最终都要诉诸实验。本文介绍了近代物理学的发展中四个着名的实验以及其在物理学发展中的作用。 关键词物理学;物理实验;发展;作用 目录 摘要 (2) 引言 (4) 1. 发现新事物.探索新规律 (4) . X射线的发现 (4) X射线的发现的过程 (4) 产生的影响 (5) 2. 验证物理理论 (5)

. 光电效应的研究 (5) 光电效应的发现 (6) 勒纳德的新发现 (6) 密立根的光电效应实验 (6) 研究光电效应的意义 (7) 3. 测定物理常量 (7) . 基本电荷的测定 (7) 汤森德电解法 (7) 汤姆逊的膨胀云室法 (8) 威尔逊的平板电极法 (8) 密立根的水珠平衡法 (8) 密立根油滴平衡法 (8) e的精确值 (9) 4. 推广应用新技术 (9) . 核磁共振 (9) 从核磁矩的研究谈起 (9) 珀塞尔小组的共振吸收实验 (9) 布洛赫的核感应实验 (10) 实际中的应用 (12) 参考文献 (12) 引言 物理学是以实验为本的科学,在物理学的发展中起来重要作用。在物理学的工作者中有90%从事实验工作。而从伦琴获得诺贝尔奖以来的一百年,176位获奖的物理学家中有67%

物理实验的作用

让学生经历从自然到物理、从生活到物理的认识过程,经历基本的科学探究实践,使学生得到全面发展,成为新课程标准的新要求。 事实证明,实验教学更有利于学生各方面能力的培养。由于我们长期徘徊在“做实验不如讲实验,讲实验不如背实验”的老路中,把演示实验甚至学生实验课作为讲读课来上,根本谈不上什么探索性、开放性的实验课,从根本上有悖于新课标的要求,导致在物理的学习中很多同学产生了“四难”情绪,即难听、难学、难考、难用。如何才能解决这一难题呢?其重要途径就是实验教学,在此我想谈谈实验在教学中所起的作用。 一、物理实验能提高学生的学习兴趣 物理世界是一个充满神奇和兴趣的世界,大量的物理实验能显现多种奇异的物理现象,能折射出五彩斑斓的美丽图景,能激发学生学习物理的兴趣。例如鸡蛋放入水中要下沉,这是学生们常见的现象,可是当教师把鸡蛋放入装有浓盐水的玻璃水槽中时,鸡蛋竟浮在水面上,这时再往水槽中加一些清水,鸡蛋又会下沉,然后再加些细盐并轻轻搅拌,如果浓度适中的话,鸡蛋竟会停留在盐水中间。当学生们看到这些现象,就渴望知道“为什么”,这样引入就会引起浓厚的学习兴趣,从而收到事半功倍的效果。 二、实验教学有助于学生的感知和认识 在学习过程中,普遍认为概念和规律难以理解和掌握。对于这些难于理解的概念和规律,教师应一开始就让学生通过动手实验观察现象、分析推断,这样问题会变得简单明了。如学习滑轮一节,对于绳子自由端移动的距离与物体移动距离的倍数关系,学生很不好理解,教师可发给每个实验小组一把刻度尺、滑轮、钩码、细绳,让他们实际测量,这样会使学生获得清晰的认识,加深印象。 三、物理实验能培养学生的能力 培养学生实验能力是我国近些年来物理教学改革的重点内容之一。因此在实验的过程中要培养学生多方面的能力: 1.培养学生敢对身边的现象提出问题的能力 重视培养学生会提出问题的意识与能力,是促进学生自主学习能力进化的重要手段。例如测量小灯泡的电阻时,首先让学生观察桌子上不同型号的小灯泡,让学生提出自己想要知道的问题:(1)灯泡为什么能发光?(2)灯泡是用什么材料制成的?(3)灯泡有电阻吗?(4)灯泡的灯丝与定值电阻有什么不同?通过教师与学生的讨论引导学生发现问题,最终指向课堂所要探究的问题:测量小灯泡的电阻。 2.培养学生勇于猜想和假设的能力 教师在备课的过程中,要特别注意物理情境的设计,搭好台阶以帮助学生进行合理的猜想。如在《凸透镜的成像规律》的教学中,教师首先用实验创设情境:将点燃的蜡烛放在凸透镜前,使烛焰的像清晰地成在墙壁上,然后教师再改变蜡烛与凸透镜的距离,使像清晰地成在墙壁上。有了合理有趣的情境创设,加上教师巧妙的引导,学生的猜想也就不再会漫无边际,在课堂上学生的猜想和他说出的猜想依据会不时给教师带来惊喜。3.培养学生的实验设计能力 猜想实验方案的设计就是根据实验探究的目的和现有的实际条件来制定完成实验目的的具体计划。这个对于现在的学生来说是个大问题,很多学生不知道如何进行。所以老师要在教学过程中慢慢地培养学生的这种能力,包括器材的选择、器材的装配、具体的实验步骤和计划、科学探究方法的选取、实物的简化等。

初中物理实验题全部汇总(含答案)

一、力学部分 (一)用天平、量筒测密度 [示例]在一次用天平和量筒测盐水密度的实验中,老师让同学们设计测量方案,其中小星和小王分别设计出下列方案: 方案A:(1)用调节好的天平测量出空烧杯的质量m1; (2)向烧杯中倒入一些牛奶,测出它们的总质量m2,则这些牛奶质量为________________;(3)再将烧杯中的牛奶倒入量筒中,测出牛奶的体积V1; (4)计算出牛奶的密度ρ. 方案B:(1)用调节好的天平测出空烧杯的总质量m1; (2)将牛奶倒入量筒中,记录量筒中牛奶的体积V; (3)将量筒内的牛奶倒入烧杯测出它们的总质量m2; (4)计算出牛奶的密度ρ=________.(用m1、m2、V表示) 通过分析交流上述两种方案后,你认为在方案A中,牛奶的________(选填“质量”或“体积”)测量误差较大,导致牛奶密度的测量值比真实值偏________(选填“大”或“小”). 在方案B中,牛奶的________(选填“质量”或“体积”)测量误差较大,牛奶密度的测量值与真实值相比________(选填“大”或“相等”或“小”). (二)测滑动磨擦力 [示例]小明在探究滑动摩擦力的大小与哪些因素有关的实验中,实验过程如图所示 (1)在实验中,用弹簧测力计拉着木块时,应沿水平方向拉动,且使它在固定的水平面上________运动.根据________条件可知,此时木块所受的滑动摩擦力与弹簧拉力的大小_______.这种测摩擦力的方法是________(填“直接”或“间接”)测量法. (2)比较(a)、(b)两图说明滑动摩擦力的大小与____________有关;比较____________两图说明滑动摩擦力的大小与接触面的粗糙程度有关. (3)在上述实验中,对于摩擦力大小的测量你认为是否准确?请你作出评价. (三)探究浮力大小 [示例]小明用如图所示装置研究“浮力大小跟物体排开液体体积关系”实验时,将一个挂在弹簧测力计下的金属圆柱体缓慢地浸入水中(水足够深),在接触容器底之前,分别记下圆柱体下面所处的深度h、弹簧测力计相应的示数F,实验数据如下表:

大学物理实验答案.doc

实验7 分光计的调整与使用 ★1、本实验所用分光计测量角度的精度是多少?仪器为什么设两个游标?如何测量望远镜转过的角度? 本实验所用分光计测量角度的精度是:1'。为了消除因刻度盘和游标盘不共轴所引起的偏心误差,所以仪器设两个游标。望远镜从位置Ⅰ到位置Ⅱ所转过的角度为2 )_()('1'212?????+-= ,注:如越过刻度零点,则必须按式)(120360??--来计算望远镜的转角。 ★2、假设望远镜光轴已垂直于仪器转轴,而平面镜反射面和仪器转轴成一角度β,则反射的小十字像和平面镜转过1800后反射的小十字像的位置应是怎样的?此时应如何调节?试画出光路图。 反射的小十字像和平面镜转过180o 后反射的小十字像的位置是一上一下,此时应该载物台下螺钉,直到两镜面反射的十字像等高,才表明载物台已调好。光路图如下: ★3、对分光计的调节要求是什么?如何判断调节达到要求?怎样才能调节好? 调节要求:①望远镜、平行光管的光轴均垂直于仪器中心转轴;②望远镜对平行光聚焦(即望远调焦于无穷远);③平行光管出射平行光;④待测光学元件光学面与中心转轴平行。 判断调节达到要求的标志是:①望远镜对平行光聚焦的判定标志;②望远镜光轴与分光计中心转轴垂直的判定标志;③平行光管出射平行光的判定标志;④平行光管光轴与望远镜光轴共线并与分光计中心轴垂直的判定标志。 调节方法:①先进行目测粗调;②进行精细调节:分别用自准直法和各半调节法进行调节。 4、在分光计调节使用过程中,要注意什么事项? ①当轻轻推动分光计的可转动部件时,当无法转动时,切记不能强制使其转动,应分析原因后再进行调节。旋转各旋钮时动作应轻缓。②严禁用手触摸棱镜、平面镜和望远镜、平行光管上各透镜的光学表面,严防棱镜和平面镜磕碰或跌落。③转动望远镜时,要握住支臂转动望远镜,切忌握住目镜和目镜调节手轮转动望远镜。④望远镜调节好后不能再动其仰角螺钉。 5、测棱镜顶角还可以使用自准法,当入射光的平行度较差时,用哪种方法测顶角误差较小? ?2 1=A 的成立条件是入射光是平行的,当入射光的平行度较差时,此公式已不再适用,应用自准直法测三棱镜的顶角,用公式?-=1800 A 来计算,误差较小。

初中物理必做20个实验

初中物理必做20个实验

一、用刻度尺测量长度、用表测量时间 1)如下图甲所示,体温计的示数是_________℃.如下图乙所示,测得一枚纽扣的直径是_________cm. (2)天平在称量时,待测物体应放在天平的_________盘;天平平衡时,所加砝码与游码的位置如下图丙所示,则物体的质量为_________g. (3)如下图所示,在研究杠杆平衡条件时,为了使杠杆在水平位置平衡,应将两端的平衡螺母向_________(选填“左”或“右”)调节. 二、用弹簧测力计测量力 如图(甲)所示,用弹簧测力计测量水平桌面上的钩码所受的重力.弹簧测力计从图示位置开始向上缓慢提升,其示数F 与上升的高度h之间的关系如图(乙)所示.试解答下列问题. (1)钩码所受的重力为 N. (2)当h="4cm" 时,弹簧测力计的示数是 N,桌面对钩码的支持力是 N.(3)从开始提升到h=16cm,弹簧测力计对钩码所做的功是多少?

三、用天平测量物体的质量 在用托盘天平测量物体的质量时,下列情况会造成测量结果偏小的是() A.调节横梁平衡时,指针偏向分度盘左边就停止调节螺母 B.调节天平平衡时,忘了把游码放在左端的零刻度线处 C.使用磨损的砝码 D.读数时,实验者头部偏向游 码右边,会造成视线与游码左 侧的标尺不垂直 四、用常见温度计测量温度 3.下面关于常用温度计的使用中,错误的是 () A .温度计不能用来测量超过它的最高刻度的温度; B .温度计的玻璃泡要跟被测物体充分接触; C .测量液体温度时,温度计玻璃泡要完全浸没在液体中; D .读数时,要把温度计从液体中拿出来再读数。 五、用电流表测量电流 11.关于电流方向的下列说法中正确的是( )。 A. 电源对用电器供电时,电流都是由电源的正极通过用电器流向负极

(完整版)大学物理实验报告答案大全

大学物理实验报告答案大全(实验数据及思考题答案全包括) 伏安法测电阻 实验目的(1) 利用伏安法测电阻。 (2) 验证欧姆定律。 (3) 学会间接测量量不确定度的计算;进一步掌握有效数字的概念。 实验方法原理根据欧姆定律, I R = U ,如测得U 和I 则可计算出R。值得注意的是,本实验待测电阻有两只, 一个阻值相对较大,一个较小,因此测量时必须采用安培表内接和外接两个方式,以减小测量误差。 实验装置待测电阻两只,0~5mA 电流表1 只,0-5V 电压表1 只,0~50mA 电流表1 只,0~10V 电压表一 只,滑线变阻器1 只,DF1730SB3A 稳压源1 台。 实验步骤本实验为简单设计性实验,实验线路、数据记录表格和具体实验步骤应由学生自行设计。必要时,可提示学 生参照第2 章中的第2.4 一节的有关内容。分压电路是必须要使用的,并作具体提示。 (1) 根据相应的电路图对电阻进行测量,记录U 值和I 值。对每一个电阻测量3 次。 (2) 计算各次测量结果。如多次测量值相差不大,可取其平均值作为测量结果。 (3) 如果同一电阻多次测量结果相差很大,应分析原因并重新测量。 数据处理 测量次数1 2 3 U1 /V 5.4 6.9 8.5 I1 /mA 2.00 2.60 3.20 R1 / Ω 2700 2654 2656

测量次数1 2 3 U2 /V 2.08 2.22 2.50 I2 /mA 38.0 42.0 47.0 R2 / Ω 54.7 52.9 53.2 (1) 由. % max ΔU =U ×1 5 ,得到U 0.15V , 1 Δ = U 0 075V Δ 2 = . ; (2) 由. % max ΔI = I ×1 5 ,得到I 0.075mA, 1 Δ = I 0 75mA Δ 2 = . ; (3) 再由2 2 3 3 ( ) ( ) I I V u R U R Δ Δ = + ,求得9 10 Ω 1Ω 2 1 1 = × = R R u , u ; (4) 结果表示= (2.92 ± 0.09)×10 Ω, = (44 ±1)Ω 2 3 1 R R 光栅衍射 实验目的 (1) 了解分光计的原理和构造。 (2) 学会分光计的调节和使用方法。 (3) 观测汞灯在可见光范围内几条光谱线的波长

思想实验在物理学中的地位和作用

思想实验在物理学中的地位和作用 一、引言: 物理学从本质上看是一门实验科学。物理实验在物理学的发展和物理学教育中占有重要地位。可以说,离开了物理实验,就无法了解物理学。正因为如此,在物理学的研究和教学中,对于物理实验历来十分重视,无论从实验的设计、仪器的制作和调试,还是到实验过程的控制、实验结果的分析等各个环节,都强调一丝不苟。想比之下,对于与此有关联的思想实验却介绍不多。因此,对物理学中的思想试验进行纵向的历史考察,横向的比较研究,是十分必要的。有助于物理学的研究和教学。 二、思想实验的一般考察 伽利略是位近代物理学的先驱者。他对物理学作出了多方面的贡献。其中,他发现的落体定律和惯性定律,为近代物理学提供了两快坚固的基石。伽利略的成功,得益于他率先采用了科学的物理实验,更得益于他独创的物理实验与思想实验相结合的科学方法。伽利略的出色工作,表明了他既是一位物理学的大师,也是一位进行思想实验的先驱。 众所周知,在相当长的一段时间内,人们对于力和运动等物理现象、物理规律的认识,一直受到亚里士多德学说的束缚。亚里士多德认为:物体运动速度的大小和有无,是由它是否受力以及力的大小直接决定的;地面上轻重不同的物体下落速度不同;重物下落较快,轻物下落较慢,对此也曾有人反对过他的错误说法,但都因为没有确切的实验和理论的认证,所以没有被人重视。第一个成功的打破亚里士多德的错误权威的正是伽理略。伽利略巧妙地运用思想实验否定了这一统全欧洲近两千年的错误理论。 物体下落的速度和物重成正比。伽利略在他的著作《关于两种新科学的谈话和数学证明》中写道:“我十分怀疑亚里士多德曾用实验验证过。当两个石头,一个的重量是另一个的10倍,从同一高度,如100库比特,下落时,其速度的差别会达到这样的程度,以致前者着地时,后者还不超过10库比特。”加利略紧紧抓住这一疑点,设计了思想实验来进行分析和论证。他指出:如果亚里士多德的论断成立的话,即重物比轻物体下落得快,那么,当重物体和轻物体绑在一起下落时,由于快的受慢的阻碍而减慢。慢的受快的驱使而加快,其结果绑在一起的物体下落速度一定介于原来两个物体的速度之间,即小于原来重物体下落的速度。但是,两个物体绑在一起就成了一个复合体,它比原来的重的物体还要重,按亚里士多德的论断复合体下落的速度要大于原来重物体下落的速度,这就和上面的结论相矛盾了。由此可知,重物体下落不会比轻物体下落的快,二者下落的速度应该是相等的。正是这一思想实验,坚定了伽利略落体实验的信心和决心。 在否定了亚里士多德的落体定律之后,伽利略进一步对自由落体运动进行了定量研究。他根据对自由落体运动的定性观察结果:速度越来越快的基础上,假设自由落体运动是一种匀加速运动,在1590—1592年期间进行了大量的落体实验。但在当时的测试条件下,不可能立即用实验来证实这一假设,伽利略便用思想实验与真实实验相结合的方法解决这个难题。他借助于数学,求出了从静止开始的匀加速运动的距离s与时间t的关系,即:s/t2=常量.这时不包括任何速率,只要直接测定s和t就行了。 但是,物体的自由下落还是太快了,在当时无法精确测定。伽利略想用不太快的运动来测量,即用斜面代替落体实验,经过多次的反复实验测定,得到如下结果: (1)当斜面倾角固定时,球滚过的距离s与所用时间t的平方之比为一常数,即:s/t2=c. (2)改变斜面的倾角,s/t2的值随之改变,但小球通过的距离与时间平方成正比关系不变,变化的仅是比例常数。 伽利略用思想实验把这个结果推向极端——当倾角为90o时。即物体作自由落体时,这个论断也成立。他由此得出结论,自由下落运动是匀加速运动。

(完整版)初中物理实验总结

一.伏安法测电阻 1、定义:用电压表和电流表分别测出电路中某一导体两端的电压和通过的电流就可以根据欧姆定律算出这个导体的电阻,这种用电压表电流表测电阻的方法叫伏安法。 2、原理:I=U/R 3、电路图: (右图) 4、步骤:①根据电路图连接实物。 连接实物时,必须注意 开关应断开 ② 检查电路无误后,闭合开关S ,三次改变滑动变阻器的阻值,分别读出电流表、电压表的示数,填入表格。 ③算出三次Rx 的值,求出平均值。 ④整理器材。 5、讨论:⑴本实验中,滑动变阻器的作用:改变被测电阻两端的电压(分压),同时又保护电路(限流)。 ⑶如图是两电阻的伏安曲线,则R 1>R 2 (4)若UI 线是曲线:说明组织随温度的变化而变化 二.伏安法测灯泡的额定功率: ①原理:P=UI 2电路图 ③选择和连接实物时须注意: 电源:其电压高于灯泡的额定电压 滑动变阻器:接入电路时要变阻,且调到最大值。根据能否调到灯泡的额定电压选择滑动变阻器。 电压表:并联在灯泡的两端“+”接线柱流入,“-”接线柱流出。 根据额定电压选择电压表量程。 电流表:串联在电路里““+”接线柱流入,“-”接线柱流出。 根据I 额=P 额/U 额 或I 额=U 额/R 选择量程。 滑动变阻器 变阻(“一上一下”) 阻值最大(“滑片远离接线柱”) 串联在电路中 电流表 “+”接线柱流入,“-”接线柱流出 量程选择:算最大电流 I=U/Rx 并联在电路中 电压表 “+”接线柱流入,“-”接线柱流出 量程选择:看电源电压 R 1 R 2 I U V A Rx R ′

三.电热 1、实验:目的:研究电流通过导体产生的热量跟那些因素有关? 原理:根据煤油在玻璃管里上升的高度来判断电流通过电阻丝通电产生电热的多少。 实验采用煤油的目的:煤油比热容小,在相同条 件下吸热温度升高的快:是绝缘体 2、焦耳定律:电流通过导体产生的热量跟电流的平方成正比,跟导体的电阻成正比,跟通电时间成正比。 3、计算公式:Q=I2Rt (适用于所有电路)对于纯电阻电路可推导出:Q =UIt= U2t/R=W=Pt ①串联电路中常用公式:Q= I2Rt 。Q1:Q2:Q3:…Qn=R1:R2:R3:…:Rn 并联电路中常用公式:Q= U2t/R Q1:Q2= R2:R1 ②无论用电器串联或并联。计算在一定时间所产生的总热量常用公式Q= Q1+Q2+…Qn ③分析电灯、电炉等电热器问题时往往使用:Q= U2t/R=Pt 四.影响电阻大小因素: 1、实验原理:在电压不变的情况下,通过电流的变化来研究导体电阻的变化。(也可以用串联在电路中小灯泡亮度的变化来研究导体电阻的变化) 2、实验方法:控制变量法。所以定论“电阻的大小与哪一个因素的关系”时必须指明“相同条件” 3、结论:导体的电阻是导体本身的一种性质,它的大小决定于导体的材料、长度和横截面积,还与温度有关。 4、结论理解: ⑴导体电阻的大小由导体本身的材料、长度、横截面积决定。与是否接入电路、与外加电压及通过电流大小等外界因素均无关,所以导体的电阻是导体本身的一种性质。 ⑵结论可总结成公式R=ρL/S,其中ρ叫电阻率,与导体的材料有关。 记住:ρ银<ρ铜<ρ铝,ρ锰铜<ρ镍隔。假如架设一条输电线路,一般选铝导线,因为在相同条件下,铝的电阻小,减小了输电线的电能损失;而且铝导线相对来说价格便宜。

物理演示实验的作用

物理演示实验的作用 物理演示实验可以提高学生学习的积极性,增强学生的团队意识除此之外演示实验还能使学生在理论和实践的结 合中更好的掌握物理知识、物理规律,提高学生的操作能力,观察能力,科学素养。 1、引入课题,激发学生的求知欲望 初中学生由于自身的心理特点对新鲜事物比较好奇,学习主要是靠兴趣支撑,如果学生没有兴趣就会感到课堂枯燥无味,也不会有好的学习效果。演示实验能使课堂具有趣味性,试想如果在学习“流体压强与流速的关系”时,老师拿一个乒乓球和一个漏斗,往下吹,没有把乒乓球吹的掉下去,反而吸在那里,这与学生的认知有冲突,就会大大提高课堂的趣味性,学生的学习兴趣也会激发出来,教师再利用硬币跳动实验、喷雾器等一系列实验贯穿整个课堂,能够营造出良好的课堂氛围,这节课无疑是一节高效课,这节课中演示实验就很好的发挥了它的作用。 2、提供必要的感性素材,帮助学生理解物理知识、物理规律 对于物理概念、物理规律等一些理论的东西,是我们教学的难点,学生不好理解,更不容易记忆,但是若能合理结合演示实验,提供必要的感性素材就能做到很好的理解。凸透镜成像规律是我们初中物理中的重点内容,要求学生必须掌

握,如果不通过演示,仅仅通过语言描述,即便学生靠自己反复背诵记住了,也不会记得牢固。相反,通过实验演示操作 和动画模拟,学生的印象一定非常深,同时对什么是虚像也 有深刻的理解。 3、进行观察和思维训练,巩固和应用物理知识 演示实验在教师的掌控中,教师可以根据教学安排选择 实验的内容和操作过程,培养学生观察能力,思维能力。实际教学中,课程内容的教学需要教师在课前精心备课。比如:在讲解电路内容的时候,学生对大部分的实验器材不了解,操作能力也不高,需要教师先进行实验演示和讲解,最后将实验操作作为检测或者复习内容让学生来完成,既可以巩固课堂效果也能及时了解学生对知识掌握的真实情况。 4、培养学生的科学方法、科学态度和情感,提高多种能力 演示实验是学生在教师的引导和启发下参与实验的设计,观察实验过程和现象,对实验的结果分析的实验过程,在此过程中完全可以体现物理探究的完整过程。比如,在实验设计时,教师可以在提出问题后引导学生对问题进行猜想,对结果进行预测,逐步设计出实验方案,启迪学生的思维。在进行实验时,可以对学生进行操作规范的演示,对结果的分析、应用都可以启发学生思维,开启学生的智慧进而提高学生的各种能力,提高学生的科学素养。

(完整版)大学物理实验理论考试题及答案汇总

一、 选择题(每题4分,打“ * ”者为必做,再另选做4题,并标出选做记号“ * ”,多做不给分,共40分) 1* 某间接测量量的测量公式为4 3 23y x N -=,直接测量量x 和y 的标准误差为x ?和y ?,则间接测 量量N 的标准误差为?B N ?=; 4322 (2)3339N x x y x x x ??-==?=??, 3334(3)2248y N y y y y x ??==-?=-??- ()()[]21 23 2 289y x N y x ?+?=? 2* 。 用螺旋测微计测量长度时,测量值=末读数—初读数(零读数),初读数是为了消除 ( A ) (A )系统误差 (B )偶然误差 (C )过失误差 (D )其他误差 3* 在计算铜块的密度ρ和不确定度ρ?时,计算器上分别显示为“8.35256”和“ 0.06532” 则结果表示为:( C ) (A) ρ=(8.35256 ± 0.0653) (gcm – 3 ), (B) ρ=(8.352 ± 0.065) (gcm – 3 ), (C) ρ=(8.35 ± 0.07) (gcm – 3 ), (D) ρ=(8.35256 ± 0.06532) (gcm – 3 ) (E) ρ=(2 0.083510? ± 0.07) (gcm – 3 ), (F) ρ=(8.35 ± 0.06) (gcm – 3 ), 4* 以下哪一点不符合随机误差统计规律分布特点 ( C ) (A ) 单峰性 (B ) 对称性 (C ) 无界性有界性 (D ) 抵偿性 5* 某螺旋测微计的示值误差为mm 004.0±,选出下列测量结果中正确的答案:( B ) A . 用它进行多次测量,其偶然误差为mm 004.0; B . 用它作单次测量,可用mm 004.0±估算其误差; B =?==? C. 用它测量时的相对误差为mm 004.0±。 100%E X δ = ?相对误差:无单位;=x X δ-绝对误差:有单位。

初中物理实验知识点归纳

初中物理实验知识点归纳 实验步骤、操作、结论 力学 1. 天平测质量 【实验目的】用托盘天平测质量。 【实验器材】天平(托盘天平)。 【实验步骤】 1.把天平放在水平桌面上,取下两端的橡皮垫圈。 2.游码移到标尺最左端零刻度处(游码归零,游码的最左端与零刻度线对齐)。 3.调节两端的平衡螺母(若左盘较高,平衡螺母向左拧;右盘同理),直至指针指在刻度盘中央,天平水平平衡。 4.左物右码,直至天平重新水平平衡。(加减砝码或移动游码) 5.读数时,被测物体质量=砝码质量+游码示数(m物=m砝+m游) 【实验记录】此物体质量如图:62 g 2. 弹簧测力计测力 【实验目的】用弹簧测力计测力 【实验器材】细线、弹簧测力计、钩码、木块 【实验步骤】 测量前: 1.完成弹簧测力计的调零。(沿测量方向水平调零) 2.记录该弹簧测力计的测量范围是 0~5 N,最小分度值是 0.2 N。 测量时:拉力方向沿着弹簧伸长方向。 【实验结论】如图所示,弹簧测力计的示数F=1.8 N。 3. 验证阿基米德原理

【实验目的】 定量探究浸在液体中的物体受到的浮力大小与物体排开液体的重力之间的关系。 【实验器材】弹簧测力计、金属块、量筒、水 【实验步骤】 1.把金属块挂在弹簧测力计下端,记下测力计的示数F1。 2.在量筒中倒入适量的水,记下液面示数V1。 3.把金属块浸没在水中,记下测力计的示数F2 和此时液面的示数V2。 4.根据测力计的两次示数差计算出物体所受的浮力(F浮=F1-F2)。 5.计算出物体排开液体的体积(V2-V1),再通过G水=ρ(V2-V1)g 计算出物体排开液体的重力。 6.比较浸在液体中的物体受到浮力大小与物体排开液体重力之间的关系。(物体所受浮力等于物体排开液体所受重力) 【实验结论】液体受到的浮力大小等于物体排开液体所受重力的大小 4. 测定物质的密度 (1)测定固体的密度 【实验目的】测固体密度 【实验器材】天平、量筒、水、烧杯、细线、石块等。 【实验原理】ρ=m/v 【实验步骤】 1.用天平测量出石块的质量为 48.0 g。 2.在量筒中倒入适量的水,测得水的体积为20 ml。 3.将石块浸没在量筒内的水中,测得石块的体积为cm3 。

物理演示实验在课堂教学中的作用

物理演示实验在课堂教学中的作用 发表时间:2015-12-01T09:13:15.357Z 来源:《中学课程辅导.教学研究》2015年10月上供稿作者:高亮[导读] 演示实验对增强学生感性认识、培养学生能力有着重要作用。 摘要:演示实验对增强学生感性认识、培养学生能力有着重要作用。具体表现在以下几个方面:演示实验可以激发学生学习兴趣,活跃课堂气氛;教师可以通过演示实验导入新课;演示实验可以使抽象的问题形象化,增强抽象问题的直观性;演示实验有利于培养学生的思维能力;演示实验可以化解教学中的难点。在本文中,笔者将对这些作用进行具体论述。关键词:物理教学;演示实验;作用 在新课程理念下,物理实验是教学的“重头戏”。因此,演示实验自然成了物理教学中的重要环节。它能起到让学生观察物理现象,增强学生感性认识的作用,从而培养学生发现问题、解决问题能力。经过这些年的教学实践,笔者对演示实验的作用归纳为以下几点: 一、演示实验可以激发学生学习兴趣,活跃课堂气氛 例如,在教学“光的色散”一节时,笔者改变了以往枯燥无味的说教,而是为学生演示了太阳光经三棱镜色散的实验。学生对这一实验很感兴趣,课堂气氛非常活跃。又如,笔者在教学“磁生电”时,边讲边为学生展示了电磁感应现象的演示实验,起到了很好的教学效果。 二、通过演示实验,教师可以顺利地导入新课 此前,笔者在教学“热机”的内容时,通常都是先讲能量转化,再讲热机原理。学生听起来很费劲,提不起学习兴趣。而现在教学这些内容时,笔者先为学生演示用酒精灯加热试管里的水,直到水沸腾,最后水蒸气把试管口的塞子冲出来这一实验过程。从而引导学生观察,并向学生提出:“塞子为什么会被冲出?”这个问题,进而引出“内能转化为机械能”这一些热机的原理。通过实验进行教学,让学生带着问题去听课,能培养学生分析问题、解决问题的能力。 三、演示实验可以使抽象的问题形象化,增强抽象问题的直观性 在教学“凸透镜成像”的内容时,如果教师只让学生死记硬背凸透镜成像规律,那么,学生听起来会觉得抽象难懂。而通过演示实验,则能让学生清晰、直观地看到何时烛焰成正立虚像,何时成倒立实像。这样,学生对这一问题就会理解得透、掌握得牢。又如,在对“运动电荷的磁场和磁场对运动电荷的作用力”这一内容进行教学时,由于其是既抽象又容易出错的两个问题,因此,笔者使用阴极射线管和蹄形磁铁为学生演示了磁场对运动电荷的作用力。让学生先看现象电荷的磁场,在判断其方向。这样,学生就牢牢地掌握了这两方面的内容。 四、演示实验有利于培养学生的思维能力 演示实验可以帮助学生对物理知识形成感性认识,再在教师的指导下通过分析、推理,进而使学生的感性认识上升为理性认识,有利于学生加深对物理概念和规律的理解。因此,在教学中,教师可以让学生观察演示实验,然后启发学生思考,让学生预见该演示实验将得到的结论。这样可以很好地调动学生的积极性。 五、演示实验可以化解教学中的难点 众所周知,电功率、额定功率、实际功率是初中电学的难点,学生对这些知识理解起来很困难。因此,针对这些知识点,笔者在教学时,为学生演示了用伏安法测小灯泡电功率的实验。通过这个实验,借助测出的电功率和灯泡亮度的关系,学生很容易就得出了“灯泡在额定电压下正常发光,功率为额定功率。当电压变低时,实际功率就小于额定功率;当电压变高时,实际功率大于额定功率”等结论。通过实验,可以使学生很容易地掌握了这一部分内容。 总之,演示实验对于提高课堂教学质量有着深远的影响。因此,教师要重视演示实验的作用。此外,教师在课堂教学中做演示实验时,要切合教学内容、精心设计,使演示实验操作方便,并且富有启发性,这样才能发挥好它的作用。 (作者单位:安徽省全椒县古河高级职业中学 239500)

大学物理实验报告答案大全(实验数据)

U 2 I 2 大学物理实验报告答案大全(实验数据及思考题答案全包括) 伏安法测电阻 实验目的 (1) 利用伏安法测电阻。 (2) 验证欧姆定律。 (3) 学会间接测量量不确定度的计算;进一步掌握有效数字的概念。 实验方法原理 根据欧姆定律, R = U ,如测得 U 和 I 则可计算出 R 。值得注意的是,本实验待测电阻有两只, 一个阻值相对较大,一个较小,因此测量时必须采用安培表内接和外接两个方式,以减小测量误差。 实验装置 待测电阻两只,0~5mA 电流表 1 只,0-5V 电压表 1 只,0~50mA 电流表 1 只,0~10V 电压表一 只,滑线变阻器 1 只,DF1730SB3A 稳压源 1 台。 实验步骤 本实验为简单设计性实验,实验线路、数据记录表格和具体实验步骤应由学生自行设计。必要时,可提示学 生参照第 2 章中的第 2.4 一节的有关内容。分压电路是必须要使用的,并作具体提示。 (1) 根据相应的电路图对电阻进行测量,记录 U 值和 I 值。对每一个电阻测量 3 次。 (2) 计算各次测量结果。如多次测量值相差不大,可取其平均值作为测量结果。 (3) 如果同一电阻多次测量结果相差很大,应分析原因并重新测量。 数据处理 (1) 由 U = U max ? 1.5% ,得到 U 1 = 0.15V , U 2 = 0.075V ; (2) 由 I = I max ? 1.5% ,得到 I 1 = 0.075mA , I 2 = 0.75mA ; (3) 再由 u R = R ( 3V ) + ( 3I ) ,求得 u R 1 = 9 ? 101 &, u R 2 = 1& ; (4) 结果表示 R 1 = (2.92 ± 0.09) ?10 3 &, R 2 = (44 ± 1)& 光栅衍射 实验目的 (1) 了解分光计的原理和构造。 (2) 学会分光计的调节和使用方法。 (3) 观测汞灯在可见光范围内几条光谱线的波长 实验方法原理

物理实验的意义和作用

物理实验的意义和作用 (一)物理实验的作用 1.为发展物理规律提供丰富的感性材料。 2.检验物理理论假说的正确性。 3.开拓物理应用的新领域。 (二)、物理实验在教学中的作用 1.可以使学生获得丰富的感性认识,加深学生对物理概念、原理和定理的理解。 2.可以培养学生的观察实验能力、思维能力,发展学生智力。 3.可以使学生初步了解物理学的思想方法、研究方法,培养学生事实求是的科学态度和遵守纪律、爱护仪器的优良品质。 (三)、中学物理实验方式 1.演示实验 2.边教边实验(课堂实验) 3.分组实验 4.课外实验与制作 演示实验 (一)演示实验——演示实验指课堂上主要有教师操作表演的实验,有时也可以请学生充当助手或在教师指导下让学生上讲台进行操作 1.演示实验作用 (1)获得生动的感性认识,更好的理解、掌握规律。 (2)培养学生观察能力、思维能力,使学生获得有关物理现象或过程生动、深刻的印象。 (3)教师演示对学生实验技能和素养起一定的示范作用。 2.演示实验分类

(1)引入课题演示。 (2)建立概念和规律的演示。 (3)深化与巩固物理概念和规律的演示。 (4)应用物理知识的演示。 (二)演示实验在设计和表演方面的基本要求 1.明确目的,根据教学要求设计演示实验。 2.安全可靠,确保演示成功。 (1)演示成功的首要条件是掌握实验原理。 (2)坚持科学性原则,不得弄虚作假。 (3)为了确保演示成功,课前必须充分准备并进行试做。 3.简易方便。 演示实验要求简易方便,包括仪器结构简单;操作简单;由演示现象导出结论时,解说推理简单。 4.现象清楚、明显、直观。 (1)明显 (i)仪器尺寸要足够大。 (ii)物理过程变化要显著,“可见度”要高。 (iii)要使被观察的主体对比强烈,以利于学生看准目标。 (iv)演示的仪器放在适当高度的方位。 (v)注意让学生观察物理现象的发展过程。 (2)直观

初中物理实验题汇总

初中物理实验题汇总 一、基本实验仪器的应用 1.刻度尺:用图1所示的刻度尺测量物体的长度,这把刻度尺的 分度值是_______,所测物体的长度是_________。 2.温度计:关于温度计,请你填写以下空格。 (1)温度计是根据液体的________________的性质制成的。 (2)图2是体温计和寒暑表的一部分,其中图是体温计,甲、 乙两温度计的示数分别为℃和℃。 (3)下表是几种物质的凝固点和沸点。 ①南极的最低温度为-88.3℃,应选用_____温度计来测量南极气温, 因为______________; ②在标准大气压下,沸水的温度为100℃,应选用_______温度计来测量沸水温度,因为______________。 3.天平:某同学用托盘天平测量物体质量时 (1)他把已经调节好的托盘天平搬到另一实验桌上,则使用前应() A.只要将天平放在水平台上 B.只要调节横梁平衡 C.不需要再调节 D.先将天平放在水平台上,再调节横梁平衡 (2)当他把天平重新调好后,就把药品放在天平的右盘中,用手向左盘中 加减砝码,并移动游码,直到指针指到分度盘的中央,记下盘中砝码的质量 就等于物体的质量。他的操作中的错误 是。 (3)当他改用正确的操作方法后,盘中砝码和游码的位置如图3所示, 则物体的质量是。 4.量筒:用量筒测液体的体积时,筒中的液面是凹形的,测量者的视线应与凹面的__ __相平(填“顶部”、“底部”)。如图4所示,其中同学读数正确,量筒中液体的体积为 cm3。测量形状不规则的固体体积,由图5可知,液体的体积为___ __cm3,固体的体积为_ __cm3。5.弹簧测力计:使用弹簧测力计应注意的是:使用前要观察量程和分度值,指针要___________。使用过程中,指针、弹簧不得与外壳有摩擦.使用过程中,拉力不能超过弹簧测力计的_________。如图6所示,弹簧测力计测量范围是_______,指针所示被测物重是______N。 图4 图5 图6 6.压强计:研究液体压强所用的仪器是_______,它是根据U形管两边液面出现的_________来测定液体内部压强的。 (1)在做“液体内部的压强”实验时,如图7所示,该实验的现象说明。

相关主题