搜档网
当前位置:搜档网 › 2.2.1结识抛物线y=x2

2.2.1结识抛物线y=x2

2.2.1结识抛物线y=x2
2.2.1结识抛物线y=x2

§2.2.1 结识抛物线y=x 2

学习目标:

1、经历探索二次函数y=x 2的图象的作法和性质的过程,获得利用图象研究函数性质的经验.

2、能利用描点作出y=x 2与y=-x 2的图像,并能比较二者的异同.

3、理解y=x 2与y=-x 2的性质,初步建立二次函数表达式与图象之间的联系. 学习重点:理解掌握二次函数y=x 2与 y=-x 2图象的作法和性质. 学习过程:

一、复习旧知,温故知新

1. 正比例函数的表达式为 ,正比例函数的图象是过 一条 .一次函数的表达式为 ,一般的一次函数的图象是 原点的一条 .反比例函数表达式为 ,反比例函数的图象是两条 .

2.二次函数的一般形式为 (其中 是常数且 ≠0).

3.画函数图象的步骤 、 、 . 二、创设情境,引入新知

那么二次函数的图象是否也为直线或双曲线呢? 这节课,我们来类比研究一次函数和反比例函数图象方法,来研究最简单的二次函数2

x y =和2

x y -=的图象. 三、合作探究,发现新知

1、作二次函数2

x y =的图象,并分析它的特征. (1)列表:

(2)描点:(右图) (3)连线:(右图)用光滑的曲线连接各点 【探索发现,同伴交流】

观察二次函数2x y =的图象,回答下列问题: (1)你能描述图象的形状吗?它像 . (2)图象与x 轴 交点,交点坐标是 .

(3)当x <0时,y 的值随着x 的增大而 ,当x >0时,y 的值随着x 的增大而 .

(4)当x 取 值时,y 的值最小,最小值是 .

(5)图象是轴对称图形吗? ,它的对称轴是什么? .

x …… -3 -2 -1 0 1 2 3 …… 2x y = ……

…… 坐 标 ……

……

2

x y =2

x y -=【小结归纳1】二次函数2x y =的图象是一条 ,它的开口向 ,且关于 轴对称,对称轴与抛物线的交点是抛物线的 ,它是图象的最 点.因为图象有最低点,所以函数有最 值(填“大”或“小”),当x =0时,y 最小= .

2、作二次函数2x y -=的图象,并分析它的特征. (1)列表:

x

…… -3 -2 -1 0 1 2 3 …… 2x y -= ……

…… 坐 标

……

……

(2)描点:(右图) (3)连线:(右图)用光滑的曲线连接各点 【探索发现,同伴交流】

观察二次函数2x y -=的图象,回答问题: (1)你能描述图象的形状吗?它像 . (2)图象与x 轴 交点,交点坐标是 .

(3)当x <0时,y 的值随着x 的增大而 ,当x >0时,y 的值随着x 的增大而 .

(4)当x 取 值时,y 的值最大,最大值是 .

(5)图象是轴对称图形吗? ,它的对称轴是什么? .

【小结归纳2】二次函数2x y -=的图象是一条 ,它的开口向 ,且关于 轴对称,对称轴与抛物线的交点是抛物线的 ,它是图象的最 点.因为图象有最高点,所以函数有最 值(填“大”或“小”),当x =0时,y 最大= .

3、二次函数y=x 2与y=-x 2图象的比较.

不同点:(1)开口方向,2x y =开口 ,y =-2

x 开口 . (2).增减性:函数值随自变量增大的变化趋势不同. (3).2

x y =有最低点,y =-2

x 有最高点。在2x y =中y 有 值,即x=0时,y 最小值=0.在y =-2

x 中y 有 值.即当x =0时,y 最大值=0. 相同点:(1).图象都是 .

(2).图象都与x 轴交于点( ). (3).图象都关于 对称.

联系:它们的图象关于 对称.

四、运用新知,巩固新知

例1、已知a <-1,点(a -1,y 1)、(a ,y 2)、(a +1,y 3)都在函数y=x 2的图象上,则y 1,y 2,y 3之间的大小关系为( )

A .y 1<y 2<y 3

B .y 1<y 3<y 2

C .y 3<y 2<y 1

D .y 2<y 1<y 3

练习1:已知a >1,点(a -1,y 1)、(a ,y 2)、(a +1,y 3)都在函数y=x 2的图象上,则y 1,y 2,y 3之间的大小关系为( )

A .y 1<y 2<y 3

B .y 1<y 3<y 2

C .y 3<y 2<y 1

D .y 2<y 1<y 3

例2、已知二次函数m

m mx

y -=2,m= 时,它的图像是开口向下的抛物线,并且当

x 时,y 随x 的增大而增大,此时,图像有最 点,对应的y 有最 值

练习2:已知二次函数m

m mx

y -=2,m= 时,它的图像是开口向上的抛物线,并且

当x 时,y 随x 的增大而增大,此时,图像有最 点,对应的y 有最 值. 例3、已知点A (-1,m ),B (-2,n )在二次函数y= -x 2的图象上,试比较m 和n 的大小.

练习3:当-1≤x ≤2时,二次函数y=x 2的最小值是 ,最大值是 .

例4:已知2

22

-=k x k y 是关于的x 二次函数,

(1).求满足条件的k 值,(2).抛物线有没有最低点?若有,求出这个最低点.此时,当x 为何值时,y 随x 的增大而增大?

五、当堂检测,巩固新知

1.抛物线y =-x 2不具有的性质是( ) A .开口向下;

B .对称轴是y 轴;

C .当x > 0时,y 随x 的增大而减小;

D .函数有最小值

2.关于函数y=x 2

图像的说法:①图像是一条抛物线;②开口向上;③ 是轴对称图形;④过原点;⑤对称轴是y 轴; ⑥y 随x 增大而增大;正确的有( )

A .3个

B .4个

C .5个

D .6个 3.关于抛物线y=x 2

和y= -x 2

,下面说法不正确的是( )

A .顶点相同

B .对称轴相同

C .开口方向不相同

D .都有最小值 4.抛物线y =x 2的对称轴是_______________,顶点坐标是____________,当x _________时,抛物线上的点都在x 轴的上方;若点(a ,4)在其图象上,则a 的值是 . 5.二次函数y =x 2的图象开口 ,当x > 0时,y 随x 的增大而 ;当x < 0时,y 随x 的增大而 ;当x = 0时,函数y 有最 值是 .

6.抛物线y =-x 2的开口向________,除了它的顶点,抛物线上的点都在x 轴的_________

方,它的顶点是图象的最___________点.

7.若点A (2,m )在抛物线y=-x 2上,则点A 关于y 轴对称点的坐标是 ,它是否也在抛物线y=x 2上 .

8.已知点A (-2,1y ),B (4,2y )在二次函数)0(2>=a ax y 的图象上,则1y 2y . 9.若二次函数y=ax 2(a ≠0),图象过点P (2,-8),则函数表达式为 . 10.设边长为x cm 的正方形的面积为y cm 2,y 是x 的 二次函数,该函数的图象是( )

11.已知抛物线2ax y =经过点A (1,-4),

求(1)函数的关系式;(2)x =4时的函数值(3)y =-8时的x 的值.

12.若 22

21

()m m y m

m x

--=+ 是二次函数,

(1)求出它的解析式; (2)m 取何值时,它的图象开口向上. 当x 取何值时,y 随x 的增大而增大; 当x 取何值时,y 随x 的增大而减小;x 取何值时,函数有最小值.

13.(选作)点(x 1,y 1)、 (x 2,y 2)在抛物线y=x 2

上,且x 1 > x 2>0,则 y 1_____y 2 . 14.(选作)已知点A(1,a )在抛物线y = x 2 上.

(1)求A 的坐标;(2)在x 轴上是否存在点P ,使得△OAP 是等腰三角形?若存在,求出点P 的坐标;若不存在,说明理由.

初三数学历年中考抛物线压轴题

已知:如图,抛物线y=-x 2+bx+c 与x 轴、y 轴分别相交于点A (-1,0)、B (0,3)两点,其顶点为D. 求该抛物线的解析式; 若该抛物线与x 轴的另一个交点为E. 求四边形ABDE 的面积; △AOB 与△BDE 是否相似?如果相似,请予以证明;如果不相似,请说明理由. (注:抛物线y=ax2+bx+c(a ≠0)的顶点坐标为 ???? ??--a b ac a b 44,22) 如图,抛物线 21:23L y x x =--+交x 轴于A 、B 两点,交y 轴于M 点.抛物线1L 向右平移2个单位后得到抛物线2L ,2L 交x 轴于C 、D 两点. (1)求抛物线 2L 对应的函数表达式; (2)抛物线1L 或2L 在轴上x 方的部分是否存在点N ,使以A ,C ,M ,N 为顶点的四边形是平行四边形.若存在, 求出点N 的坐标;若不存在,请说明理由; (3)若点P 是抛物线 1L 上的一个动点(P 不与点A 、B 重合),那么点P 关于原点的对称点Q 是否在抛物线2L 上,请说明理由.

如图16,在平面直角坐标系中,直 线 y=与x轴交于点A,与y轴交于点C,抛物 线2(0) y ax x c a =+≠ 经过A B C ,,三点. (1)求过A B C ,,三点抛物线的解析式并求出顶点F的坐标; (2)在抛物线上是否存在点P,使ABP △为直角三角形,若存在,直接写出P点坐标;若不存在,请说明理由;(3)试探究在直线AC上是否存在一点M,使得MBF △的周长最小,若存在,求出M点的坐标;若不存在,请说明理由. 如图所示,在平面直角坐标系中,矩形ABOC的边BO在x轴的负半轴上,边OC在y轴的正半轴上,且1 AB= ,OB=ABOC绕点O按顺时针方向旋转60 后得到矩形EFOD.点A的对应点为点E,点B的对应点为点F,点C的对应点为点D,抛物线 2 y ax bx c =++过点A E D ,,. (1)判断点E是否在y轴上,并说明理由; (2)求抛物线的函数表达式; (3)在x轴的上方是否存在点P,点Q,使以点O B P Q ,,,为顶点的平行四边形的面积是矩形ABOC面积的2倍,且点P在抛物线上,若存在,请求出点P,点 Q的坐标;若不存在,请说明理由.

高三数学-抛物线专题复习

抛物线 平面内与一个定点F 和一条定直线l(F ?l)的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线. 2.抛物线的标准方程与几何性质 标准方程 y 2=2px (p>0) y 2=-2px(p>0) x 2=2py(p>0) x 2=-2py(p>0) p 的几何意义:焦点F 到准线l 的距离 & 图形 顶点 O(0,0) 对称轴 y =0 x =0 $ 焦点 F ????p 2,0 F ??? ?-p 2,0 F ? ???0,p 2 F ??? ?0,-p 2 离心率 e =1 准线方程 x =-p 2 x =p 2 。 y =-p 2 y =p 2 范围 x ≥0,y ∈R x ≤0,y ∈R y ≥0,x ∈R y ≤0,x ∈R 开口方向 向右 向左 - 向上 向下 题型一 抛物线的定义及应用 例1 已知抛物线y 2=2x 的焦点是F ,点P 是抛物线上的动点,又有点A(3,2),求|PA|+|PF|的最小值,并求出取最小值时点P 的坐标. 》

变式练习 1.已知点P是抛物线y2=2x上的一个动点,则点P到点(0,2)的距离与点P到该抛物线准线的距离之和的最小值为() 题型二抛物线的标准方程和几何性质 例2抛物线的顶点在原点,对称轴为y轴,它与圆x2+y2=9相交,公共弦MN的长为25,求该抛物线的方程,并写出它的焦点坐标与准线方程. * 变式练习 2.设斜率为2的直线l过抛物线y2=ax(a≠0)的焦点F,且和y轴交于点A.若△OAF(O为坐标原点)的面积为4,则抛物线方程为() =±4x =±8x =4x =8x 变式练习 3.已知点A(2,0),抛物线C:x2=4y的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,则|FM|∶|MN|等于() ∶ 5 ∶2 ∶ 5 ∶3 题型三抛物线焦点弦的性质 … 例3设抛物线y2=2px(p>0)的焦点为F,经过点F的直线交抛物线于A、B两点,点C在抛物线的准线上,且BC∥x轴.证明:直线AC经过原点O. :

数学:2.2《结识抛物线》学案(北师大版九年级下)

数学:2.2《结识抛物线》学案(北师大版九年级下) 学习目标: 经历探索二次函数y=x2的图象的作法和性质的过程,获得利用图象研究二次函数性质的经验.掌握利用描点法作出y=x2的图象,并能根据图象认识和理解二次函数y=x2的性质.能够作为二次函数y=-x2的图象,并比较它与y=x2图象的异同,初步建立二次函数表达式与图象之间的联系. 学习重点: 利用描点法作出y=x2的图象过程中,理解掌握二次函数y=x2的性质,这是掌握二次函数y=ax2+bx+c (a≠0)的基础,是二次函数图象、表达式及性质认识应用的开始,只有很好的掌握,才会把二次函数学好.只要注意图象的特点,掌握本质,就可以学好本节. 学习难点: 函数图象的画法,及由图象概括出二次函数y=x2性质,它难在由图象概括性质,结合图象记忆性质.学习方法:[ 探索——总结——运用法. 学习过程: 一、作二次函数y=x2的图象。 二、议一议: 1.你能描述图象的形状吗?与同伴交流。 2.图象与x轴有交点吗?如果有,交点的坐标是什么? 3.当x<0时,y随着x的增大,y的值如何变化?当x>0时呢? 4.当x取什么值时,y的值最小? 5.图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点,并与同伴交流。 三、y=x2的图象的性质: 三、例题: 【例1】求出函数y=x+2与函数y=x2的图象的交点坐标. 【例2】已知a<-1,点(a-1,y1)、(a,y2)、(a+1,y3)都在函数y=x2的图象上,则()A.y1<y2<y3 B.y1<y3<y2 C.y3<y2<y1 D.y2<y1<y3 四、练习作业:小结: 教后记:

九年级数学《二次函数》综合练习题及答案

九年级数学《二次函数》综合练习题 一、基础练习 1把抛物线y=2x 2向上平移1个单位,得到抛物线 _____________ ,把抛物线y=-2x 2?向下平移3个单位,得到 抛物线 _________ . 2 ?抛物线y=3x 2-1的对称轴是 ______ ,顶点坐标为 ________ ,它是由抛物线 y=3x 2?向 _________ 平移 _____ 个单位得到的. 3 .把抛物线y=J 2x 2向左平移1个单位,得到抛物线 _____________ ,把抛物线y=-J2x 2?向右平移3个单位, 得到抛物线 __________ . 4. _____________________________________ 抛物线y=j 3 ( x-1 ) 2的开口向 _____________ ,对称轴为 ,顶点坐标为 __________________________________ , ?它是由抛物线 y=乔x 2向 _______ 平移 _______ 个单位得到的. 1 1 1 5 .把抛物线y=- 1 (X+1) 2向 __________ 平移 _______ 个单位,就得到抛物线 y=-」x 2. 3 2 3 6. _____________________________ 把抛物线y=4 (x-2 ) 2向 平移 个单位,就得到函数 y=4 (x+2) 2的图象. 1 2 1 7. ____________________________________ 函数y=- (x- 1) 2的最大值为 ________ ,函数y=-x 2- 1的最大值为 _________________________________________ . 3 3 &若抛物线y=a (x+m ) 2的对称轴为x=-3,且它与抛物线y=-2 x 2的形状相同,?开口方向相同,则点(a , m )关于原点的对称点为 __________________ . 9. ___________________________________________________________________ 已知抛物线y=a (x-3 ) 2过点(2, -5 ),则该函数y=a (x-3 ) 2当x= _______________________________________?时,?有最 __ 值 _______ . 10. ________________________________________________________________________________________ 若二次函数y=ax 2+b ,当x 取X 1, X 2 (X 1^x)时,函数值相等,则x 取x 什X 2时,函数的值为 ___________________ . 11. 一台机器原价50万元.如果每年的折旧率是 x ,两年后这台机器的价格为 y?万元,则y 与x 的函数 关系式为( ) A . y=50 (1-x ) 2 B . y=50 (1-x ) 2 C . y=50-x 2 D . y=50 (1+x ) 2 12. 下列命题中,错误的是( ) 13 .顶点为(-5 , 0)且开口方向、形状与函数 1 1 A . y=- (x-5) 2 B . y=- x 2-5 C 3 3 .抛物线 y=- J 3X 2-1不与 x 轴相交; 2 .抛物线 尸孚2-1与 y= 3 (x-1 ) 2 2 形状相同,位置不同 .抛物线 .抛物线 1 y=-- 2 1 y= 2 (x- 1) 2 1 (x+ —) 2 2 的顶点坐标为 2 的对称轴是直线 1 , 0); 2 1 x=— 2 1 y=- =x 2的图象相同的抛物线是( ) 3 1 1 y=- (x+5) 2 D . y= (x+5) 2 3 3

高中数学专题:抛物线

抛物线专题复习 通径:过焦点且垂直于对称轴的相交弦 通径:d 2= AB 为抛物线px y 22 =的焦点弦,则=B A x x 4 2p ,=B A y y 2 p -,||AB =p x x B A ++ 考点1 抛物线的定义 [例1 ]已知点P 在抛物线x y 42 =上,则点P 到点)1,2(-Q 的距离与点P 到抛物线焦点距离之和的最小值为 考点2 抛物线的标准方程 [例2 ] 求满足下列条件的抛物线的标准方程,并求对应抛物线的准线方程: (1)过点)2,3(-; (2)焦点在直线240x y --=上 考点3 抛物线的几何性质 [例3 ]设B A ,为抛物线px y 22 =上的点,且O AOB (2 π = ∠为原点),则直线AB 必过的定点坐标为_______ [例4 ]设F 是抛物线2 :4G x y =的焦点.(I )过点(04)P -, 作抛物线G 的切线,求切线方程; (II )设A B ,为抛物线G 上异于原点的两点,且满足,0=?→ → FB FA 延长AF ,BF 分别交抛物线G 于点C D ,,求四边形ABCD 面积的最小值. 二.基本题型 1.过抛物线x y 42 =的焦点作直线交抛物线于1122(,),(,)A x y B x y 两点,如果621=+x x ,那么||AB =( )

(A )10 (B )8 (C )6 (D )4 2.已知抛物线22(0)y px p =>的焦点为F ,点111222()() P x y P x y ,,,,33 3()P x y ,在抛物线上,且||1F P 、||2F P 、||3F P 成等差数列, 则有 ( ) A .321x x x =+ B . 3 21y y y =+ C .2312x x x =+ D. 2312y y y =+ 3.已知M 为抛物线x y 42=上一动点,F 为抛物线的焦点,定点()1,3P ,则||||MF MP +的最小值为( ) (A )3 (B )4 (C )5 (D )6 4.过抛物线()02>=a ax y 的焦点F 作直线交抛物线于P 、Q 两点,则=+| |1 ||1QF PF ( ) (A )a 2 (B ) a 21 (C )a 4 (D )a 4 5.已知抛物线C :24y x =的焦点为,F 准线为,l 过抛物线C 上的点A 作准线l 的垂线,垂足为M ,若△AMF 与△ AOF (其中O 为坐标原点)的面积之比为3:1,则点A 的坐标为( ) A .(2,22) B .(2,-22) C .(2,±2) D .(2,±22) 6.过抛物线焦点F 的直线与抛物线交于两点A 、B,若A 、B 在抛物线准线上的射影为11,B A ,则=∠11FB A ( ) A. 45 B. 60 C. 90 D. 120 7.两个正数a 、b 的等差中项是 9 2 ,一个等比中项是,b a >则抛物线2()y b a x =-的焦点坐标为( ) A .1 (0,)4- B .1(0,)4 C .1(,0)2- D .1(,0)4 - 8.抛物线,42 F x y 的焦点为=准线为l l ,与x 轴相交于点,E 过F 且倾斜角等于3 π 的直线与抛物线在x 轴上方的部分相交于点,,l AB A ⊥垂足为,B 则四边形ABEF 的面积等于( ) A .33 B .34 C .36 D .38 9.已知抛物线C :2 1 2 x y = ,过点(0,4)A -和点(,0)B t 的直线与抛物线C 没有公共点,则实数t 的取值范围是( ) A .(,1)(1,)-∞-+∞ B. (,()22 -∞+∞ C .(,)-∞-+∞ D .(,)-∞-+∞ 10.如果1P ,2P ,…,8P 是抛物线2 4y x =上的点,它们的横坐标依次为1x ,2x ,…,8x ,F 是抛物线的焦点,若)(,,,21* ∈N n x x x n 成等差数列且45921=+++x x x ,则||5F P =( ). A .5 B .6 C . 7 D .9 11.设O 是坐标原点,F 是抛物线2 4y x =的焦点,A 是抛物线上的一点,FA 与x 轴正向的夹角为60 ,则OA 为 . 12.若直线10ax y -+=经过抛物线2 4y x =的焦点,则实数a =

如图,已知抛物线y=ax2+bx+c经过点A(2,3),B(6,1),C(0,-2).

如图,已知抛物线y=ax 2+bx +c 经过点A (2,3),B (6,1),C (0,-2). (1)求此抛物线的解析式,并用配方法把解析式化为顶点式; (2)点P 是抛物线对称轴上的动点,当AP ⊥CP 时,求点P 的 坐标; (3)设直线BC 与x 轴交于点D ,点H 是抛物线与x 轴的一个交 点,点E (t ,n )是抛物线上的动点,四边形OEDC 的面积为 S .当S 取何值时,满足条件的点E 只有一个?当S 取何值时, 满足条件的点E 有两个? 【答案】解:(1)将A ,B ,C 三点坐标代入y=ax 2+bx +c 中,得 42336612a b c a b c c ++=??++=??=-?,解得12722a b c ?=-???=??=-??? 。∴y=-12x 2+72x -2=-12(x -72)2+338 。 (2)设点P (72 ,m ),分别过A 、C 两点作对称轴的垂线,垂足为A ′,C ′。 ∵AP ⊥CP ,∴△AA ′P ∽△PC ′C 。 ∴AA A P PC CC ''='',即723m 2m 22 --=+, 解得m 1=32,m 2=12 -。 ∴P (72,32)或(72,12 -)。

(3)由B(6,1),C(0,-2),得直线BC的解析式为y=1 2 x- 2,∴D(4,0)。 ∵四边形OEDC只能在x上方,∴n>0。 又S=S△CDO+S△EDO=11 244n=4+2n 22 ??+??,∴ S n=2 2 -。 ∵点E(t,n)在抛物线上,∴n =-1 2 t 2+7 2 t-2,代入S n=2 2 -,得 关于t的方程t 2-7 t+S=0,方程根的判别式△=49-4S。 当△=0时,S=49 4 , 33 n= 8 ,此时方程只有一解,满足条件的点E只有 一个,位于抛物线顶点处(图1)。 当△>0时,S<49 4 ,由S>4,所以4<S< 49 4 。此时点E的情况如 下: 设B′是抛物线上点B关于对称轴的对称点,即n =1,S=6。由t 2-7 t +6=0得 t=1或t=6。此时点E的坐标为(1,1)或(6,1),即满足条件的点E与点B′或B重合(图2)。 ①当6<S<49 4 时,方程有两个不相等的根,此时,1<t<6,1<n< 33 8 ,故满足 条件的点E位于直线B′B上方的抛物线上。。故此时满足条件的点E有两个(图3)。 ②当4<S<6时,方程有两个不相等的根,此时,0<n<1,而满足条 件的点E只能在 点H与点B′之间的抛物线上。故此时满足条件的点E只有一个(图4)。

2019人教版 高中数学【选修 2-1】专题05解密与椭圆双曲线抛物线概念有关的最值问题特色专题训练

2019人教版精品教学资料·高中选修数学 一、选择题 1.【四川省绵阳南山中学2017-2018学年高二上学期期中】已知点P 是抛物线2 2y x =上的一个动点,则点 P 到点()0,2A 的距离与P 到该抛物线的准线的距离之和的最小值为( ) A . 9 2 B C . 2 D . 2 【答案】D 2.【吉林省舒兰一中2017-2018学年高二上学期期中】如图,已知椭圆 22 13216 x y +=内有一点()122,2,B F F 、是其左、右焦点, M 为椭圆上的动点,则1MF MB +的最小值为( ) A . B . C . 4 D . 6 【答案】B 【解析】() 122MF MB a MF MB +=-- 2 2BF a ≥-→ == 当且仅当2,,M F B 共线时取得最小值故答案选B

3.【北京朝阳垂杨柳中学2016-2017学年高二上学期期中】已知经过椭圆 22 12516 x y +=右焦点2F 的直线交椭圆于A 、B 两点,则1AF B 的周长等于( ) A . 20 B . 10 C . 16 D . 8 【答案】A 【解析】因为椭圆的方程为 22 12516x y +=,所以由椭圆的定义可得1212210,210AF AF a BF BF a +==+==, 1ABF ∴?周长为112220AF BF AF BF +++=,故选A . 4.【内蒙古自治区太仆寺旗宝昌一中2016-2017学年高二下学期期中】设为定点,动点满 足 |,则动点的轨迹是( ) A . 椭圆 B . 直线 C . 圆 D . 线段 【答案】D 5.【福建省闽侯第六中学2018届高三上学期第一次月考】已知椭圆: 22 2 1(02)4x y b b +=<<,左、右焦点分别为12,F F ,过1F 的直线l 交椭圆于,A B 两点,若22BF AF +的最大值为5,则b 的值是( ) A . 1 B C . 3 2 D 【答案】D 【解析】试题分析:由椭圆定义,得2248AB AF BF a ++==,所以当线段AB 长度达最小值时, 22BF AF +有最大值.当AB 垂直于x 轴时, 22 2min ||222 b b AB b a =?=?=,所以22BF AF +的最大 值为2 85b -=,所以23b =,即b = D . 考点:1、椭圆的定义及几何性质;2、直线与椭圆的位置关系. 【方法点睛】(1)涉及椭圆上的点与两焦点的距离时,要注意联想椭圆的定义,要结合图形看能否运用定

人教版九年级数学精品专题6.抛物线中的压轴题

6.拔高专题抛物线中的压轴题常见模型 思考在边长为1的正方形网格中有A, B, C三点,画出以A,B,C为其三个顶点的平行四边形 ABCD。在射线BD上可以找出一点组成三角形,可得△ABC、△BEC、△CBD为等腰三角形。 探究点一:因动点产生的平行四边形的问题 例1: 在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点.(1)求抛物线的解析式; (2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S. 求S关于m的函数关系式,并求出S的最大值. (3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标。 解:(1)设此抛物线的函数解析式为:y=ax2+bx+c(a≠0), 将A(-4,0),B(0,-4),C(2,0)三点代入函数解析式得: 1640 4 420 a b c c a b c -+ ? - + ? ?+ ? ? == =

解得1412a b c - ??????? ===,所以此函数解析式为:y=12x 2+x ?4; (2)∵M 点的横坐标为m ,且点M 在这条抛物线上,∴M 点的坐标为:(m , 12m 2+m ?4), ∴S=S △AOM +S △OBM -S △AOB =12×4×(-12m 2-m+4)+12×4×(-m )-12 ×4×4=-m 2-2m+8-2m-8 =-m 2-4m=-(m+2)2+4,∵-4<m <0,当m=-2时,S 有最大值为:S=-4+8=4.答:m=-2时S 有最大值S=4. (3)设P (x ,12 x 2+x-4). 当OB 为边时,根据平行四边形的性质知PQ ∥OB ,且PQ=OB ,∴Q 的横坐标等于P 的横坐标, 又∵直线的解析式为y=-x ,则Q (x ,-x ).由PQ=OB ,得|-x-(12 x 2+x-4)|=4, 解得x=0,-4,-2±25.x=0不合题意,舍去.如图,当BO 为对角线时,知A 与P 应该重合,OP=4.四边形PBQO 为平行四边形则BQ=OP=4,Q 横坐标为4,代入y=-x 得出Q 为(4,-4). 由此可得Q (-4,4)或(-2+25,2-25)或(-2-2 5,2+2 5)或(4,-4). 【变式训练】(2015?贵阳)如图,经过点C (0,-4)的抛物线y=ax 2+bx+c (a ≠0)与x 轴相交于A (-2,0),B 两点. (1)a > 0,b 2-4ac > 0(填“>”或“<”); (2)若该抛物线关于直线x=2对称,求抛物线的函数表达式; (3)在(2)的条件下,连接AC ,E 是抛物线上一动点,过点E 作AC 的平行线交x 轴于点F .是否存在这样的点E ,使得以A ,C ,E ,F 为顶点所组成的四边形是平行四边形?若

高中数学抛物线知识点归纳总结与经典习题

抛物线经典结论和例题

焦 点弦 长 AB 12()x x p ++ 12()x x p -++ 12()y y p ++ 12()y y p -++ 焦点弦 AB 的几条性质 11(,) A x y 22(,) B x y 以AB 为直径的圆必与准线l 相切 若AB 的倾斜角为α,则22sin p AB α= 若AB 的倾斜角为α ,则22cos p AB α = 2 124 p x x = 212y y p =- 112AF BF AB AF BF AF BF AF BF p ++===?? 切线 方程 00()y y p x x =+ 00()y y p x x =-+ 00()x x p y y =+ 00()x x p y y =-+ 1. 直线与抛物线的位置关系 直线 ,抛物线 , ,消y 得: (1)当k=0时,直线l 与抛物线的对称轴平行,有一个交点; (2)当k ≠0时, Δ>0,直线l 与抛物线相交,两个不同交点; Δ=0, 直线l 与抛物线相切,一个切点; Δ<0,直线l 与抛物线相离,无公共点。 (3)若直线与抛物线只有一个公共点,则直线与抛物线必相切吗?(不一定) o x ()22,B x y F y ()11,A x y

2. 关于直线与抛物线的位置关系问题常用处理方法 直线l :b kx y += 抛物线 ,)0(φp ① 联立方程法: ???=+=px y b kx y 22 ?0)(2222=+-+b x p kb x k 设交点坐标为),(11y x A ,),(22y x B ,则有0φ?,以及2121,x x x x +,还可进一步求出 b x x k b kx b kx y y 2)(212121++=+++=+, 2212122121)())((b x x kb x x k b kx b kx y y +++=++= 在涉及弦长,中点,对称,面积等问题时,常用此法,比如 a. 相交弦AB 的弦长 2122122124)(11x x x x k x x k AB -++=-+=a k ?+=2 1 或 2122122124)(1111y y y y k y y k AB -++=-+ =a k ?+=2 1 b. 中点),(00y x M , 2210x x x += , 2 2 10y y y += ② 点差法: 设交点坐标为),(11y x A ,),(22y x B ,代入抛物线方程,得 1212px y = 22 22px y = 将两式相减,可得 )(2))((212121x x p y y y y -=+-所以 2 121212y y p x x y y += -- a. 在涉及斜率问题时,2 12y y p k AB += b. 在涉及中点轨迹问题时,设线段AB 的中点为),(00y x M , 021*******y p y p y y p x x y y ==+=--,即0y p k AB =, 同理,对于抛物线)0(22≠=p py x ,若直线l 与抛物线相交于B A 、两点,点 ),(00y x M 是弦AB 的中点,则有p x p x p x x k AB 0 021222==+=

已知抛物线y

1、已知抛物线y=ax2+bx+c经过点A(-2,7)、B(6,7)、C(3,-8),则该抛物线上纵坐标为-8 的另一点坐标为 2、已知抛物线y=ax2+bx+c经过(0,-6),(8,-6)两点,其顶点的纵坐标是2,求这个抛物线的 解析式. 3、已知抛物线y=ax2+bx+c经过(0,0),(12,0)两点,其顶点的纵坐标是3,求这个抛物线的函 数解析式 4、已知抛物线y=ax2+bx+c经过A(1,-4),B(-1、0),C(-2,5)三点. (1)求抛物线的解析式并画出这条抛物线; (2)直角坐标系中点的横坐标与纵坐标均为整数的点称为整点.试结合图象,写出在第四象限内抛物线上的所有整点的坐标. 5、 6、 7、 8、已知抛物线y=ax2+bx+c的对称轴为x=2,且经过点(1,4)和点(5,0),求此抛物线对应的关 系式及顶点坐标. 9、已知抛物线y=ax2+bx+c经过点(-5,0)、(-1,0)、(1,12),求这个抛物线的表达式及其 顶点坐标. 10、已知抛物线y=ax2+bx+c的顶点A在x轴上,与y轴的交点为B(0,1),且b=-4ac. (1)求抛物线的解析式; (2)在抛物线上是否存在一点C,使以BC为直径的圆经过抛物线的顶点A?若不存在,说明理由; 若存在,求出点C的坐标,并求出此时圆的圆心点P的坐标; (3)根据(2)小题的结论,你发现B、P、C三点的横坐标之间、纵坐标之间分别有何关系? 11、已知抛物线y=ax2+bx+2经过点(3,2),那么该抛物线的对称轴是直线 12、已知,抛物线y=ax2+bx-3a经过A(-1,0)、C(0,-3)两点,与轴交于另一点B. (1)求抛物线的解析式; (2)已知点D与C关于抛物线的对称轴对称,求点D关于直线BC对称的点的坐标; (3)在(2)的条件下,连接DB,问在抛物线上是否存在一点M,使∠DBM=45°?若存在,求出点M的坐标;若不存在,请说明理由. 13、物线y=ax2+bx+c经过点A(0,3)、B(4,3)、C(1,0)、 (1)填空:抛物线的对称轴为直线x=,抛物线与x轴的另一个交点D的坐标为 (2)求该抛物线的解析式.

高中数学抛物线最值问题

1.已知抛物线和一条直线,求抛物线上的一点到直线与(y 轴、准线、焦点)距离之和的最小值问题。 此类题常用方法转化为求焦点到直线的距离。 例题已知抛物线方程为x y 42=,直线l 的方程为04=+-y x ,在抛物线上有一动点P 到y 轴的距离为d1,P 到直线l 的距离为d2,则d1+d2的最小值为多少? 分析:如图点P 到y 轴的距离等于点P 到焦点F 的距离减1,过焦点F 作直线x-y+4=0的垂线,此时d1+d2最小,根据抛物线方程求得F ,进而利用点到直线的距离公式求得d1+d2的最小值. 解:如图点P 到准线的距离等于点P 到焦点F 的距离, 从而P 到y 轴的距离等于点P 到焦点F 的距离减1. 过焦点F 作直线x-y+4=0的垂线,此时d1+d2=|PF|+d2-1最小, ∵F (1,0),则|PF|+d2==, 则d1+d2的最小值为 .

2.已知抛物线和一个定点,①:定点在抛物线“内”,求抛物线上的一点到定点与(焦点、准线)距离之和的最值问题;②定点在抛物线“外”,求抛物线上的一点到定点与(焦点、准线)距离之差绝对值的最值问题。 此类题常用方法转化为三点共线或者顶点到直线问题。 例题已知点P在抛物线y2=4x上,那么点P到点Q(2,-1)的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标为() A. ? ? ? ? ? -1 , 4 1 B. ? ? ? ? ? 1, 4 1 C.(1,2)D.(1,-2) 分析:先判断点Q与抛物线的位置,即点Q在抛物线内,再由点P到抛物线焦点距离等于点P到抛物线准线距离,根据图象知最小值在M,P,Q三点共线时取得,可得到答案. 解:点P到抛物线焦点距离等于点P到抛物线准线距离,如图PF+PQ=PM+PQ,故最小值在M,P,Q三点共线时取得,此时P,Q的纵坐标都是-1,

二次函数y=abc解析式求法

第8课时二次函数y=ax2+bx+c解析式求法 一、学习目标: 1.会用待定系数法求二次函数的解析式; 2.实际问题中求二次函数解析式. 二、课前基本练习 1.已知二次函数y=x2+x+m的图象过点(1,2),则m的值为________________.2.已知点A(2,5),B(4,5)是抛物线y=4x2+bx+c上的两点,则这条抛物线的对称轴为_____________________. 3.将抛物线y=-(x-1)2+3先向右平移1个单位,再向下平移3个单位,则所得抛物线的 解析式为____________________. 4.抛物线的形状、开口方向都与抛物线y=-1 2x 2相同,顶点在(1,-2),则抛物线 的解 析式为________________________________. 三、例题分析 例1 已知抛物线经过点A(-1,0),B(4,5),C(0,-3),求抛物线的解析式. 例2 已知抛物线顶点为(1,-4),且又过点(2,-3).求抛物线的解析式. 例3 已知抛物线与x轴的两交点为(-1,0)和(3,0),且过点(2,-3).求抛物线的解析式. 四、归纳 用待定系数法求二次函数的解析式用三种方法: 1.已知抛物线过三点,设一般式为y=ax2+bx+c. 2.已知抛物线顶点坐标及一点,设顶点式y=a(x-h)2+k. 3.已知抛物线与x轴有两个交点(或已知抛物线与x轴交点的横坐标),设两根式:y=a(x-x1)(x-x2) .(其中x1、x2是抛物线与x轴交点的横坐标) 五、实际问题中求二次函数解析式 例4 要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,高度为 3m,水柱落地处离池中心3m,水管应多长? 六、课堂训练 1.已知二次函数的图象过(0,1)、(2,4)、(3,10)三点,求这个二次函数的关系式. 2.已知二次函数的图象的顶点坐标为(-2,-3),且图像过点(-3,-2),求这个二次 函数的解析式. 3.已知二次函数y=ax2+bx+c的图像与x轴交于A(1,0),B(3,0)两点,与y轴交于点C(0,3),求二次函数的顶点坐标.

高中数学抛物线解题方法总结归纳

圆锥曲线抛物线 知识点归纳 1抛物线的定义:平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线 的准线. 2抛物线的图形和性质: ①顶点是焦点向准线所作垂线段中点。 ②焦准距:FK p = ③通径:过焦点垂直于轴的弦长为2p 。 ④顶点平分焦点到准线的垂线段:2 p OF OK ==。 3抛物线标准方程的四种形式: ,,px y px y 2222-==。,py x py x 2222-== 特点:焦点在一次项的轴上,开口与“±2p ”方向同向 4抛物线px y 22=的图像和性质: ①焦点坐标是:?? ? ??02, p ,②准线方程是:2p x -=。 ③焦半径公式: (称为焦半径)是:02 p PF x =+, ④焦点弦长公式:过焦点弦长121222 p p PQ x x x x p =+ ++=++ ⑤抛物线px y 22 =上的动点可设为P ),2(2 y p y 或2(2,2)P pt pt 5一般情况归纳:题型讲解 (1)过点(-3,2)的抛物线方程为 ;y 2=-3 4x 或x 2=2 9y , (2)焦点在直线x -2y -4=0 y 2=16x 或x 2=-8y ,

(3)抛物线 的焦点坐标为 ; (4)已知抛物线顶点在原点,焦点在坐标轴上,抛物线上的点 到焦点F 的距离为5,则抛物线方程为 ; 或 或 . (5)已知点),4,3(A F 是抛物线x y 82=的焦点,M 是抛物线上的动点,当 MF MA +最小时,M 点坐标是 )4,2( 例2.斜率为1的直线l 经过抛物线24y x =的焦点F ,且与抛物线相交于A B 、两点,求线段AB 的长. 解:法一 通法 法二 设直线方程为1y x =-, 1122(,)(,)A x y B x y 、, 则由抛物线定义得1212||||||||||22p p AB AF FB AC BD x x x x p =+=+=+++=++, 又1122(,)(,)A x y B x y 、是抛物线与直线的交点,由24, 1, y x y x ?=?=-?得2610x x -+=, 则126x x +=,所以||8AB =. 例3.求证:以通过抛物线焦点的弦为直径的圆必与抛物线的准线相切. 证明:(法一)设抛物线方程为22y px =,则焦点(,0)2p F ,准线2 p x =-.设以过焦点F 的弦AB 为直径的圆的圆心M ,A 、B 、M 在准线l 上的射影分别是1A 、1B 、1M , 则11||||||||||AA BB AF BF AB +=+=, 又111||||2||AA BB MM +=, ∴11 ||||2 MM AB =,即1||MM 为以AB 为直径的圆 的半径,且准线1l MM ⊥, ∴命题成立. (法二)设抛物线方程为22y px =,则焦点(,0)2 p F , 准线2 p x =-.过点F 的抛物线的弦的两个端点11(,)A x y ,22(,)B x y ,线段AB 的 中点00(,)M x y ,则1212||22 p p AB x x x x p =+++=++, ∴以通过抛物线焦点的弦为直径的圆的半径1211 ||()22 r AB x x p ==++. M 1M

高考数学抛物线试题汇编

第三节 抛物线 高考试题 考点一 抛物线的定义和标准方程 1.(2010年陕西卷,理8)已知抛物线y 2 =2px (p>0)的准线与圆x2 +y 2 -6x-7=0相切,则p 的值为( ) (A) 1 2 (B )1 (C)2(D)4 解析:圆x 2 +y 2 -6x -7=0化为标准方程为(x-3)2 +y 2 =16,∴圆心为(3,0),半径是4, 抛物线y 2 =2px(p >0)的准线是x =- 2 p , ∴3+ 2 p =4, 又p >0,解得p =2.故选C. 答案:C 2.(2011年辽宁卷,理3)已知F 是抛物线y 2 =x 的焦点,A,B是该抛物线上的两点,|AF|+|BF |=3,则线段AB的中点到y 轴的距离为( ) (A) 3 4 (B)1 (C) 54 (D) 74 解析:∵|A F|+|BF|=xA +xB + 1 2 =3, ∴xA+xB= 52 . ∴线段AB 的中点到y 轴的距离为 2A B x x =5 4 .故选C . 故选C. 答案:C 3.(2012年四川卷,理8)已知抛物线关于x轴对称,它的顶点在坐标原点O,并且经过点M(2,y 0).若点M 到该抛物线焦点的距离为3,则|O M|等于( )

(A)2 2 (B)2 3(C)4 (D)2 5 解析:由题意设抛物线方程为y 2 =2px(p>0),则M 到焦点的距离为xM+ 2p =2+2 p =3,∴p=2,∴y 2 =4x .∴ 20y =4×2,∴|OM|=20 4y += 48+=23.故选B. 答案:B 4.(2010年上海卷,理3)动点P 到点F(2,0)的距离与它到直线x+2=0的距离相等,则点P 的轨迹方程是. 解析:由抛物线的定义知,点P的轨迹是以F 为焦点,定直线x+2=0为准线的抛物线,故其标准方程为y 2 =8x. 答案:y2 =8x 5.(2012年陕西卷,理13)如图所示是抛物线形拱桥,当水面在l时,拱顶离水面2 m,水面宽4 m.水位下降 1 m 后,水面宽m . 解析:建立如图所示的平面直角坐标系,设抛物线方程为 x 2 =-2py (p >0), 则A (2,-2),将其坐标代入 x 2 =-2py,得p=1.∴x 2 =-2y . 当水面下降1 m,得D(x 0,-3)(x 0>0), 将其坐标代入x 2 =-2y得2 0x =6, ∴x 06,∴水面宽6 m. 答案6

人教版九年级数学上册解题技巧专题:抛物线中与

解题技巧专题:抛物线中与 系数a,b,c有关的问题 ◆类型一由某一函数的图象确定其 他函数图象的位置 1.二次函数y=-x2+ax-b的图象如 图所示,则一次函数y=ax+b的图象不经 过() A.第一象限B.第二象限 C.第三象限D.第四象限 第1题图第2题图 2.已知一次函数y=-kx+k的图象如 图所示,则二次函数y=-kx2-2x+k的图 象大致是() 3.已知函数y=(x-a)(x-b)(其中a> b)的图象如图所示,则函数y=ax+b的图 象可能正确的是() 第3题图第4题图 4.如图,一次函数y1=x与二次函数 y2=ax2+bx+c的图象相交于P,Q两点, 则函数y=ax2+(b-1)x+c的图象可能是 () ◆类型二由抛物线的位置确定代数 式的符号或未知数的值 5.(2016·新疆中考)已知二次函数y= ax2+bx+c(a≠0)的图象如图所示,则下列 结论中正确的是【方法10】() A.a>0 B.c<0 C.3是方程ax2+bx+c=0的一个根 D.当x<1时,y随x的增大而减小 第5题图第7题图 6.(2016·黄石中考)以x为自变量的二 次函数y=x2-2(b-2)x+b2-1的图象不经 过第三象限,则实数b的取值范围是【方法 10】() A.b≥ 5 4B.b≥1或b≤-1 C.b≥2 D.1≤b≤2 7.(2016·孝感中考)如图是抛物线y= ax2+bx+c(a≠0)的部分图象,其顶点坐标 为(1,n),且与x轴的一个交点在点(3,0) 和(4,0)之间.则下列结论:①a-b+c>0; ②3a+b=0;③b2=4a(c-n);④一元二次 方程ax2+bx+c=n-1有两个不相等的实 数根.其中正确结论的个数是() A.1个B.2个 C.3个D.4个 8.(2016·天水中考)如图,二次函数y =ax2+bx+c(a≠0)的图象与x轴交于A,B 两点,与y轴交于点C,且OA=OC,则下 列结论:①abc<0;② b2-4ac 4a>0;③ac-b

高中数学抛物线经典性质的总结

抛物线

焦点弦长 AB 12()x x p ++ 12()x x p -++ 12()y y p ++ 12()y y p -++ 焦点弦 AB 的几条性质 11(,) A x y 22(,) B x y 以AB 为直径的圆必与准线l 相切 若AB 的倾斜角为α,则22sin p AB α= 若AB 的倾斜角为α ,则22cos p AB α = 2 124 p x x = 212y y p =- 112AF BF AB AF BF AF BF AF BF p ++===?? 切线 方程 00()y y p x x =+ 00()y y p x x =-+ 00()x x p y y =+ 00()x x p y y =-+ 直线 ,抛物线 , ,消y 得: (1)当k=0时,直线l 与抛物线的对称轴平行,有一个交点; (2)当k ≠0时, Δ>0,直线l 与抛物线相交,两个不同交点; Δ=0, 直线l 与抛物线相切,一个切点; Δ<0,直线l 与抛物线相离,无公共点。 (3)若直线与抛物线只有一个公共点,则直线与抛物线必相切吗?(不一定) (4) 2. 关于直线与抛物线的位置关系问题常用处理方法 直线l :b kx y += 抛物线 ,)0(φp ① 联立方程法: o x ()22,B x y F y ()11,A x y

???=+=px y b kx y 22 ?0)(2222=+-+b x p kb x k 设交点坐标为),(11y x A ,),(22y x B ,则有0φ?,以及2121,x x x x +,还可进一步求出 b x x k b kx b kx y y 2)(212121++=+++=+, 2212122121)())((b x x kb x x k b kx b kx y y +++=++= 在涉及弦长,中点,对称,面积等问题时,常用此法,比如 a. 相交弦AB 的弦长 2122122124)(11x x x x k x x k AB -++=-+=a k ?+=2 1 或 2122122124)(1111y y y y k y y k AB -++=-+ =a k ?+=2 1 b. 中点),(00y x M , 2210x x x += , 2 2 10y y y += ② 点差法: 设交点坐标为),(11y x A ,),(22y x B ,代入抛物线方程,得 12 12px y = 22 22px y = 将两式相减,可得 )(2))((212121x x p y y y y -=+- 2 121212y y p x x y y += -- a. 在涉及斜率问题时,2 12y y p k AB += b. 在涉及中点轨迹问题时,设线段AB 的中点为),(00y x M , 021*******y p y p y y p x x y y ==+=--, 即0 y p k AB = , 同理,对于抛物线)0(22≠=p py x ,若直线l 与抛物线相交于B A 、两点,点

相关主题