搜档网
当前位置:搜档网 › XRD求颗粒尺寸jade5.0详细方法(原创截图)

XRD求颗粒尺寸jade5.0详细方法(原创截图)

XRD求颗粒尺寸jade5.0详细方法(原创截图)
XRD求颗粒尺寸jade5.0详细方法(原创截图)

然后analyse—FWHM curve plot, file—save---FWHM curve of peaks,

ok,再analyse---size&Strain plot, 最后结果出来了:

尺寸单位是0.1nm………..(牢记)

XRD晶粒尺寸计算

XRD晶粒尺寸分析 很多人都想算算粒径有多大。 其实,我们专业的术语不叫粒径,而叫“亚晶尺寸”,它表征的并不是一个颗粒的直径。 A。这么说吧,粉末由很多“颗粒”组成,每个颗粒由很多个“晶粒”聚集而成,一个晶粒由很多个“单胞”拼接组成。X射线测得的晶块尺寸是指衍射面指数方向上的尺寸,如果这个方向上有M个单胞,而且这个方向上的晶面间距为d,则测得的尺寸就是Md。如果某个方向(HKL)的单胞数为N,晶面间距为d1,那么这个方向的尺寸就是Nd1。由此可见,通过不同的衍射面测得的晶块尺寸是不一定相同的。 B 如果这个晶粒是一个完整的,没有缺陷的晶粒,可以将其视为一个测试单位,但是,如果这个晶粒有缺陷,那它就不是一个测试单位了,由缺陷分开的各个单位称为“亚晶”。比如说吧,如果一个晶粒由两个通过亚晶界的小晶粒组成(称为亚晶),那么,测得的就不是这个晶粒的尺寸而是亚晶的尺寸了。 C 为什么那么多人喜欢抛开专业的解释而用“粒径”这个词呢?都是“纳米材料”惹的祸。纳米晶粒本来就很小,一般可以认为一个纳米晶粒中不再存在亚晶,而是一个完整的晶粒,因此,亚晶尺寸这个术语就被套用到纳米晶粒的“粒径”上来了。实际上,国家对于纳米材料的粒径及粒径分布的表征是有标准的,需要用“小角散射”方法来测量。比如,北京钢铁研究总院做这个就做了很长时间。但是呢,一则,做小角散射的地方还不多,做起来也特别麻烦(现在好一些了,特别是对光能自动一些了),所以,很少有人去做,而且,用衍射峰宽计算出来的“粒径”总是那么小,何乐而不为呢?我私下地觉得吧,这些人在偷换概念。久而久之,大家也就接受了。 为了这个事吧,有些人就问了,既然做出来的纳米材料的“粒径”是这么小,那么有没有办法在做SEM或TEM时将团聚在一起的小晶粒分开呢?确实分不开,分得开的是一个个的晶粒,分不开的是亚晶。 D 至于为什么通过衍射峰宽测出来的“粒径”为什么总是那么小,还有一个原因。实际上吧,使衍射峰变宽的原因可能有两个,一是晶粒变小了,另一个原因是晶粒内部存在“微观应变”。打个比方吧,甲乙两个人同时做一件事,结果把功劳算到甲一个人头上,当然这个人的功劳就大了(功能劳大就峰宽,峰越宽晶粒就越细)。有时候发现,有个别人在有意无意地避口不谈乙的功劳。 E 为什么允许将亚晶尺寸称为“粒径”呢?称为径,必假定晶粒为“球形”,从而假定了不论从哪个晶面去测都会是相同的,即忽略了A 所说的那种差别。事实上,这种不同方向的尺寸差异在很多情况下确实可以忽略。但是,也有一些特殊情况是不可以的。下面我们再谈。 注意这两个假定,这就是为什么很多人都说,XRD测出来的粒径不可靠,总是小于SEM和TEM量出来的值。因为概念都不相同,它们怎么可能相同呢? 既然大家都说是粒径,那么要怎么样来算粒径呢? 我们先来看一个简单的问题。 怎么做拟合?

xRD晶粒尺寸分析

xRD晶粒尺寸分析

XRD晶粒尺寸分析 注:晶粒尺寸和晶面间距不同 计算晶粒大小:谢乐公式:D=kλ/βcosθ D—垂直于反射晶面(hkl)的晶粒平均粒度D是晶粒大小 β--(弧度)为该晶面衍射峰值半高宽的宽化程度 K—谢乐常数,取决于结晶形状,常取0.89 θ--衍射角 λ---入射X射线波长(?) 计算晶面间距:布拉格方程:2dsinθ=nλd是晶面间距。 此文档是用XRD软件来分析晶粒尺寸,用拟合的办法,而不是用谢乐公式 很多人都想算算粒径有多大。 其实,我们专业的术语不叫粒径,而叫“亚晶尺寸”,它表征的并不是一个颗粒的直径。 A 这么说吧,粉末由很多“颗粒”组成,每个颗粒由很多个“晶粒”聚集而成,一个晶粒由很多个“单胞”拼接组成。X射线测得的晶块尺寸是指衍射面指数方向上的尺寸,

如果这个方向上有M 个单胞,而且这个方向上的晶面间距为d ,则测得的尺寸就是Md 。如果某个方向(HKL )的单胞数为N ,晶面间距为d 1,那么这个方向的尺寸就是Nd 1。由 此可见,通过不同的衍射面测得的晶块尺寸是不一定相同的。 B 如果这个晶粒是一个完整的,没有缺陷的晶粒,可以将其视为一个测试单位,但是,如果这个晶粒有缺陷,那它就不是一个测试单位了,由缺陷分开的各个单位称为“亚晶”。比如说吧,如果一个晶粒由两个通过亚晶界的小晶粒组成(称为亚晶),那么,测得的就不是这个晶粒的尺寸而是亚晶的尺寸了。 C 为什么那么多人喜欢抛开专业的解释而用“粒径”这个词呢?都是“纳米材料”惹的祸。纳米晶粒本来就很小,一般可以认为一个纳米晶粒中不再存在亚晶,而是一个完整的晶粒,因此,亚晶尺寸这个术语就被套用到纳米晶粒的“粒径”上来了。实际上,国家对于纳米材料的粒径及粒径分布的表征是有标准的,需要用“小角散射”方法来测量。比如,北京钢铁研究总院做这个就做了很长时间。但是呢,一则,做小角散射的地方还不多,做起来也特别麻烦(现在好一些了,特别是对光能自动一些了),所以,很少有人去做,而且,用衍射峰宽计算出来的“粒径”总

晶粒尺寸的测定

用X射线粉末衍射法测定超细晶的粒径及微观应力 适用于1~100纳米的超细晶

用X射线粉末衍射法测定超细 晶的粒径及微观应力 问题-1 ?粉末衍射法测定超细晶粒径的原理是什么? ?用粉末衍射法测定超细晶粒径是怎样做的? ?用粉末衍射法测定超细晶粒径要注意什么? 问题-2 ?粉末衍射法测定超细晶微观应力的原理是什么? ?用粉末衍射法测定超细晶微观应力是怎样做的? ?用粉末衍射法测定超细晶微观应力要注意什么? 2

用X射线粉末衍射法测定 超细晶的粒径及微观应力 多晶衍射测定微晶粒径 ?衍射峰的基本要素; ?微晶宽化效应(粉末衍射法测定超细晶粒径的 原理与方法); ?粉末衍射法测定超细晶粒径应用举例; 多晶衍射测定微观应力 ?微观应力的测定方法; ?微观应力与微晶宽化的分离; ?微观应力计算应用实例; 3

4任何一个衍射峰都是由五个基本要素组成的。 ?衍射峰的位置,最大衍射强度(I max ),半高宽,形态(通常衍射峰的峰形态,可具有Gauss, Cauchy, Voigt 或Pearson VII 分布)及对称性或不对称性。 ?不对称有为左右半高宽不对称;B 为左右形态不对称;C 为左右半高宽与形态不对称;D 为上下不对称;以及任意不对称;完 全对称(图1)。 衍射峰5要素

衍射峰5要素 五个基本要素的物理学意义 ?衍射峰位置是衍射面网间距的反映(即Bragg定理); ?最大衍射强度是物相自身衍射能力强弱的衡量指标及在混合物当中百分含量的函数(Moore and Reynolds,1989); ?半高宽及形态是晶体大小与应变的函数(Stokes and Wilson,1944); ?衍射峰的对称性是光源聚敛性(Alexander,1948)、样品吸收性(Robert and Johnson,1995)、仪器机械装置等因素及其他衍射峰或物相存在的函数(Moore and Reynolds,1989;Stern et al.,1991)。 5

jade分析物相及晶胞参数和晶粒尺寸计算过程教学教材

j a d e分析物相及晶胞参数和晶粒尺寸计算 过程

《无极材料测试技术》课程作业 专业:2011级材料物理与化学姓名:王洪达学号:2011020204 作业要求: 对编号01N2009534的样品XRD测试数据进行物相分析,并计算其平均晶粒尺寸大小与晶胞参数。 1.物相分析过程 使用MDI Jade5.0软件对样品XRD测试数据进行分析,以定性分析样品的物相。 1.1.数据的导入 将测试得到的XRD测试数据文件01N2009534.txt直接拖动到Jade 软件图标上,导入数据,得到样品XRD衍射图(图1-1)。 图1-1 数据导入Jade5.0后得到的XRD图 1.2.初步物相检索 右键点击键,弹出检索对话框,设定初步检索条件:选择所有类型的数据库;检索主物相(Major Phase);不使用限定化学元素检索(Use Chemistry前方框不打钩)(如图1-2所示)。点击“OK”开始检索,得到的检索结果见图1-3。 从初步检索结果可以看出,最可能的物相有四个: CaB5O8(OH)B(OH)3(H2O)3(图1-3)、CaB6O10·5H2O(图1-4a)、

Ca2.62Al9.8Si26.2O72H4.56(图1-4b)和C20H20N16O8S4Th(图1-4c)。其中前三个均为无机物,第四个为有机金属化合物。 从结果分析,由图1-4b、c中可以看出,这两种物相的标准衍射峰没有与样品衍射峰中的最强峰匹配,因此样品中不含有第三、四中物相或者其主晶相不是第三、四种物相。而从图1-3以及图1-4a中可以看出,两种物相的衍射峰与样品的衍射峰几乎都能对上,并且强弱对应良好,因此样品中主晶相可能为CaB5O8(OH)B(OH)3(H2O)3或 CaB6O10·5H2O或者两者的混合物。 图1-2 初步物相检索条件设定 图1-3 经过初步检索得到的检索结果

jade分析物相与晶胞参数和晶粒尺寸计算过程

《无极材料测试技术》课程作业 对编号 01N2009534 的样品 XRD 测试数据进行物相分析,并计算其平 均晶粒尺寸大小与晶胞参数。 1. 物相分析过程 使用 MDI Jade5.0 软件对样品 XRD 测试数据进行分析,以定性分析样品的物相。 1.1. 数据的导入 将测试得到的 XRD 测试数据文件 01N2009534.txt 直接拖动到 Jade 软 件图标上,导入数据,得到样品 XRD 衍射图(图 1-1)。 图 1-1 数据导入 Jade5.0 后得到的 XRD 图 1.2. 初步物相检索 右键点击 键,弹出检索对话框,设定初步检索条件:选择所有类 型的数据库;检索主物相( Major Phase );不使用限定化学元素检索( Use Chemistry 前方框不打钩)(如图 1-2 所示)。点击“ OK ”开始检索,得到的检索结果见图 1-3。 从初步检索结果可以看出,最可能的物相有四个: 5 8 323(图 1-3 )、 CaB 6 O 10 · 5H 2 O ( 图 1-4a )、 CaB O (OH)B(OH) (H O) 2.62 Al 9.8 Si 26.2 O 72 H 4.56(图 1-4b )和 C 20 20 16 8 4(图 1-4c )。其中前 Ca H N O S Th 三个均为无机物,第四个为有机金属化合物。

从结果分析,由图 1-4b、c 中可以看出,这两种物相的标准衍射峰没有与样品衍射峰中的最强峰匹配,因此样品中不含有第三、四中物相或者其主晶相不是第三、四种物相。而从图 1-3 以及图 1-4a 中可以看出,两种 物相的衍射峰与样品的衍射峰几乎都能对上,并且强弱对应良好,因此样品中主晶相可能为 CaB5O8(OH)B(OH) 3(H 2O) 3或 CaB6 O10·5H2O 或者两者的混合物。 图 1-2 初步物相检索条件设定 图 1-3 经过初步检索得到的检索结果

jade物相及晶胞参数和晶粒尺寸计算过程

《无极材料测试技术》课程作业 对编号01N2009534的样品XRD测试数据进行物相分析,并计算其平均晶粒尺寸大小与晶胞参数。 1.物相分析过程 使用MDI Jade5.0软件对样品XRD测试数据进行分析,以定性分析样品的物相。 1.1.数据的导入 将测试得到的XRD测试数据文件01N2009534.txt直接拖动到Jade软件图标上,导入数据,得到样品XRD衍射图(图1-1)。 图1-1 数据导入Jade5.0后得到的XRD图 1.2.初步物相检索 右键点击键,弹出检索对话框,设定初步检索条件:选择所有类型的数据库;检索主物相(Major Phase);不使用限定化学元素检索(Use Chemistry前方框不打钩)(如图1-2所示)。点击“OK”开始检索,得到的检索结果见图1-3。 从初步检索结果可以看出,最可能的物相有四个:CaB5O8(OH)B(OH)3(H2O)3(图1-3)、CaB6O10·5H2O(图1-4a)、Ca2.62Al9.8Si26.2O72H4.56(图1-4b)和C20H20N16O8S4Th(图1-4c)。其中前三个均为无机物,第四个为有机金属化合物。

从结果分析,由图1-4b、c中可以看出,这两种物相的标准衍射峰没有与样品衍射峰中的最强峰匹配,因此样品中不含有第三、四中物相或者其主晶相不是第三、四种物相。而从图1-3以及图1-4a中可以看出,两种物相的衍射峰与样品的衍射峰几乎都能对上,并且强弱对应良好,因此样品中主晶相可能为CaB5O8(OH)B(OH)3(H2O)3或CaB6O10·5H2O或者两者的混合物。 图1-2 初步物相检索条件设定 图1-3 经过初步检索得到的检索结果

Scherrer公式计算晶粒尺寸(XRD数据计算晶粒尺寸)

Scherrer公式计算晶粒尺寸(XRD数据计算晶粒尺寸) Scherrer公式计算晶粒尺寸(XRD数据计算晶粒尺寸) Scherrer公式计算晶粒尺寸(XRD数据计算晶粒尺寸) 根据X射线衍射理论,在晶粒尺寸小于100nm时,随晶粒尺寸的变小衍射峰宽化变得显著,考虑样品的吸收效应及结构对衍射线型的影响,样品晶粒尺寸可以用Debye-Scherrer公式计算。 Scherrer公式:Dhkl=kλ/βcosθ 其中,Dhkl为沿垂直于晶面(hkl)方向的晶粒直径,k为Scherrer 常数(通常为0.89),λ为入射X射线波长(Cuka 波长为 0.15406nm,Cuka1 波长为0.15418nm。),θ为布拉格衍射角(°),β为衍射峰的半高峰宽(rad)。 但是在实际操作中如何从一张普通的XRD图谱中获得上述的参数来计算晶粒尺寸还存在以下问题: 1) 首先,用XRD计算晶粒尺寸必须扣除仪器宽化和应力宽化影响。如何扣除仪器宽化和应力宽化影响?在什么情况下,可以简化这一步骤? 答:在晶粒尺寸小于100nm时,应力引起的宽化与晶粒尺度引起的宽化相比,可以忽略。此时,Scherrer公式适用。但晶粒尺寸大到一定程度时,应力引起的宽化比较显著,此时必须考虑引力引起的宽化, Scherrer公式不再适用。

2) 通常获得的XRD数据是由Kα线计算得到的。此时,需要Kα1 和Kα2必须扣除一个,如果没扣除,肯定不准确。 3) 扫描速度也有影响,要尽可能慢。一般2°/min。 4)一个样品可能有很多衍射峰,是计算每个衍射峰对应晶粒尺寸后 平均?还是有其它处理原则? 答:通常应当计算每个衍射峰晶粒尺寸后进行平均。当然只有一两 峰的时候,就没有必要强求了! 5) 有的XRD数据中给出了width值,是不是半高宽度的值?能不能 直接代入上面公式吗?如果不能,如何根据XRD图谱获得半峰宽? TOP 20 β为衍射峰的半高 峰宽时,k=0.89 β为衍射峰的积分 宽度时,k=1.0。其 中积分宽度=衍射峰 面积积分/峰高 如何获得单色Kα1: 1)硬件滤掉Kβ:K系射线又可以细分为Kα(L层电子填充)和Kβ(M层电 子填充)两种波长略有差异的两种射线。而X射线衍射仪要求使用单色X射线,因此,需要在XRD实验时把后者除掉。 a). 传统的方法是在光路上加入一个滤波片(如Ni)。 b).现在一般使用铜靶,在光路上增加一个石墨晶体单色器来去除Kβ射线。通常的做法是在衍射线的光路上,安装弯曲晶体单色器。石墨单晶体单色器是一块磨成弯曲面的石墨单晶体。由试样衍射产生的衍射线(称为一次衍射)经单色器

Jade 是如何计算晶粒尺寸的

Jade 是如何计算晶粒尺寸的? 不止10次有人问到这个问题,让我有兴趣去了解。看了看这个软件的帮助,也没有得到答案。只好一种一种方法去试,好象还真是得到了解答。今天,把它写出来供大家验证。 Jade 按照谢乐公式来计算。 θ βλcos k D = λ 是辐射的波长,按K α1的波长计算,如铜靶,则λ=0.154056nm 。 D 就是晶块尺寸,单位可以是纳米,与波长λ的单位相同。 k 是一个参数,可以取0.89,0.95或者1,一般人都愿意取1。但是,软件是按0.89计算的。 θ是半衍射角,单位可以是度或者弧度,只要你能正确计算出它的余弦就可以。 β是衍射峰的加宽。一般按两种方法来计算,即b B ?=β,22b B ?=β一般人愿意用b B ?=β。但是,Jade 却用后者。确实,一些教科书中都提到,后者更符合实际情况。 这里的B 就是FWHM ,即样品的衍射峰宽,b 则是仪器宽度。 好了。让大家来看看我的试验过程。 有这么一个衍射峰,我们先来做拟合:

通过Report----peak profile report菜单,查看到拟合的结果: 通过菜单Edit-----Preferences,可看到下面的窗口:

单击View FWHM Curve,你看到: 你可能看到的不一样,这是因为你没有做仪器校正,而使用了软件自带的某个“标样”,如Constant FWHM。这里看到的是我在07年12月19日做的硅标数据。 移动你的鼠标,并定位于116°处,你可看到FWHM=0.140°。这就是仪器宽度,即b。

在这个窗口中,你还看到了仪器波长是 1.54056埃,即0.145056nm。 怎么样?把这些数据代入到公式,得到14.40902nm。 这里讲的是单峰处理时的晶块尺寸。要注意,除非你的样品是分散单体纳米晶,否则,这个数据是不可信的。 关于晶块尺寸计算与微观应变更详细的解释,请访问我的QQ空间,也许会有些帮助。

RD晶粒尺寸分析

R D晶粒尺寸分析 Revised final draft November 26, 2020

很多人都想算算粒径有多大。 其实,我们专业的术语不叫粒径,而叫“亚晶尺寸”,它表征的并不是一个颗粒的直径。 A。这么说吧,粉末由很多“颗粒”组成,每个颗粒由很多个“晶粒”聚集而成,一个晶粒由很多个“单胞”拼接组成。X 是指衍射面指数方向上的尺寸,如果这个方向上有M个单胞,而且这个方向上的晶面间距为d,则测得的尺寸就是Md。如单胞数为N,晶面间距为d1,那么这个方向的尺寸就是Nd1。由此可见,通过不同的衍射面测得的晶块尺寸是不一定相同B如果这个晶粒是一个完整的,没有缺陷的晶粒,可以将其视为一个测试单位,但是,如果这个晶粒有缺陷,那它就不是陷分开的各个单位称为“亚晶”。比如说吧,如果一个晶粒由两个通过亚晶界的小晶粒组成(称为亚晶),那么,测得的寸而是亚晶的尺寸了。 C为什么那么多人喜欢抛开专业的解释而用“粒径”这个词呢都是“纳米材料”惹的祸。纳米晶粒本来就很小,一般可以再存在亚晶,而是一个完整的晶粒,因此,亚晶尺寸这个术语就被套用到纳米晶粒的“粒径”上来了。实际上,国家对于径分布的表征是有标准的,需要用“小角散射”方法来测量。比如,北京钢铁研究总院做这个就做了很长时间。但是呢,地方还不多,做起来也特别麻烦(现在好一些了,特别是对光能自动一些了),所以,很少有人去做,而且,用衍射峰宽总是那么小,何乐而不为呢我私下地觉得吧,这些人在偷换概念。久而久之,大家也就接受了。 为了这个事吧,有些人就问了,既然做出来的纳米材料的“粒径”是这么小,那么有没有办法在做SEM或TEM时将团聚在确实分不开,分得开的是一个个的晶粒,分不开的是亚晶。 D至于为什么通过衍射峰宽测出来的“粒径”为什么总是那么小,还有一个原因。实际上吧,使衍射峰变宽的原因可能有了,另一个原因是晶粒内部存在“微观应变”。打个比方吧,甲乙两个人同时做一件事,结果把功劳算到甲一个人头上,大了(功能劳大就峰宽,峰越宽晶粒就越细)。有时候发现,有个别人在有意无意地避口不谈乙的功劳。 E为什么允许将亚晶尺寸称为“粒径”呢?称为径,必假定晶粒为“球形”,从而假定了不论从哪个晶面去测都会是相同那种差别。事实上,这种不同方向的尺寸差异在很多情况下确实可以忽略。但是,也有一些特殊情况是不可以的。下面我注意这两个假定,这就是为什么很多人都说,XRD测出来的粒径不可靠,总是小于SEM和TEM量出来的值。因为概念都不同呢? 既然大家都说是粒径,那么要怎么样来算粒径呢? 我们先来看一个简单的问题。 怎么做拟合? 我们并不需要对所有的峰都做拟合,也不能用“全谱自动拟合”,正确的方法是做单峰拟合。 今天有同学发过来一个数据,看看。 当晶粒细化时,衍射峰就会变宽,随之而来的是强度降低,峰就不那么好看了,做拟合时有三点要注意: 1)并不需要选择全部的峰来参与计算,如果某个峰长得不好,宁可不要这个峰的数据; 2)做单峰拟合,有的同学不管三七二十一,一个拟合按钮按下去,自动去算吧,结果当然是错误的; 3)如果有重叠峰,可以先将重叠峰分离,但最后最好将其去掉,软件自动分解重叠峰的效果可能并不是令人满意的。 这里,拟合分作两段,只用到六个峰。特别是一些背底不平的情况,尤其要如此。 看看拟合结果,每个晶面计算出来的晶粒尺寸差不了多少,说明: 1)确实不存在微应变; 2)晶粒基本上是球形。 既然这样,那么计算粒径的时候只要一个峰不是也差不离吗确实是这样的,如果能假定样品中不存在微观应变,用一个低尺寸就可以了,没有必要用很多峰,很多峰算出来不就是“平均粒径”吗 按下上面那个窗口中的“Size&Strain”按钮,弹出上面的窗口,发现这些数据点基本上落在一条水平线上,那么选择“S “平均粒径”。 我们再来玩玩这个样品。将这个样品做一点处理,比如加热烧一会,会得到怎么样的衍射谱呢? 这个图比上面那个图好看多了,为什么呢?因为峰明显变窄了,窄了也就高了,高了也就掩盖误差了。 注意,尽管这个图长得这么好,我们还是做单峰拟合,不厌其烦地,任劳任怨地一个峰一个峰地做拟合。 有点意思了,看看XS下面的数据,从衍射角由低到高的顺序,XS值是由大到小(除了最后两个例外)。点下“Size&Str 据点落在一条斜线上。而且还不过原点。在纵坐标上的截距大于0,这就说明,这个峰变宽,有你的一半也有我的一半。计算的结果可以从图上看得清(吧) 那么,最后两个点,为什么会突然变大了呢?都是重叠峰惹的祸。注意,上面的谱图可以清楚看到,最后两个点的数据是怎么办呢?去掉呀,在图上的红点上用鼠标点一下,红点就消失了,这个数据点被舍弃。如果舍弃一个点还不满足,干脆什么大不了的。

XRD计算晶粒尺寸

Scherrer公式计算晶粒尺寸() Scherrer公式计算晶粒尺寸(XRD数据计算晶粒尺寸) 根据X射线衍射理论,在晶粒尺寸小于100nm时,随晶粒尺寸的变小衍射峰宽化变得显著,考虑样品的吸收效应及结构对衍射线型的影响,样品晶粒尺寸可以用Debye-Scherrer公式计算。 Scherrer公式:Dhkl=kλ/βcosθ 其中,Dhkl为沿垂直于晶面(hkl)方向的晶粒直径,k为Scherrer常数(通常为0.89),λ为入射X射线波长(Cuka 波长为0.15406nm,Cuka1 波长为0.15418nm。),θ为布拉格衍射角(°),β为衍射峰的半高峰宽(rad)。 但是在实际操作中如何从一张普通的XRD图谱中获得上述的参数来计算晶粒尺寸还存在以下问题: 1) 首先,用XRD计算晶粒尺寸必须扣除仪器宽化和应力宽化影响。如何扣除仪器宽化和应力宽化影响?在什么情况下,可以简化这一步骤? 答:在晶粒尺寸小于100nm时,应力引起的宽化与晶粒尺度引起的宽化相比,可以忽略。此时,Scherrer公式适用。但晶粒尺寸大到一定程度时,应力引起的宽化比较显著,此时必须考虑引力引起的宽化,Scherrer公式不再适用。 2) 通常获得的XRD数据是由Kα线计算得到的。此时,需要Kα1和Kα2必须扣除一个,如果没扣除,肯定不准确。 3) 扫描速度也有影响,要尽可能慢。一般2°/min。 4)一个样品可能有很多衍射峰,是计算每个衍射峰对应晶粒尺寸后平均?还是有其它处理原则? 答:通常应当计算每个衍射峰晶粒尺寸后进行平均。当然只有一两峰的时候,就没有必要强求了! 5) 有的XRD数据中给出了width值,是不是半高宽度的值?能不能直接代入上面公式吗?如果不能,如何根据XRD图谱获得半峰宽? β为衍射峰的半高峰宽时,k=0.89 β为衍射峰的积分宽度时,k=1.0。其中积分宽度=衍射峰面积积分/峰高 如何获得单色Kα1: 1)硬件滤掉Kβ:K系射线又可以细分为Kα(L层电子填充)和Kβ(M层电子填充)两种波长略有差异的两种射线。而X射线衍射仪要求使用单色X射线,因此,需要在XRD实验时把后者除掉。 a). 传统的方法是在光路上加入一个滤波片(如Ni)。 b).现在一般使用铜靶,在光路上增加一个石墨晶体单色器来去除Kβ射线。通常的做法是在衍射线的光路上,安装弯曲晶体单色器。石墨单晶体单色器是一块磨成弯曲面的石墨单晶体。由试样衍射产生的衍射线(称为一次衍射)经单色器时,通过调整单晶体的方位使它的某个高反射本领晶面与一次衍射线的夹角刚好等于该晶面对一次衍射的Kα辐射的布拉格角。单色器可以去除衍射背底,也可以去除Kβ射线的干扰。这样,由单晶体衍射后发出的二次衍射线就是纯净的与试样衍射对应的Kα衍射线。 2) 软件分离Kα2:Kα辐射还可以细分为Kα1和Kα2两种波长差很小的辐射。由于它们的波长差很小,无法通过硬件的方法来消除其中任何一种,因此,只有通过软件的方法来消除

jade分析报告物相及晶胞全参数和晶粒尺寸计算过程

《无极材料测试技术》课程作业 专业:2011级材料物理与化学姓名:王洪达学号:2011020204 作业要求: 对编号01N2009534的样品XRD测试数据进行物相分析,并计算其平均晶粒尺寸大小与晶胞参数。 1.物相分析过程 使用MDI Jade5.0软件对样品XRD测试数据进行分析,以定性分析样品的物相。 1.1.数据的导入 将测试得到的XRD测试数据文件01N2009534.txt直接拖动到Jade软件图标上,导入数据,得到样品XRD衍射图(图1-1)。 图1-1 数据导入Jade5.0后得到的XRD图 1.2.初步物相检索 右键点击键,弹出检索对话框,设定初步检索条件:选择所有类型的数据库;检索主物相(Major Phase);不使用限定化学元素检索(Use Chemistry前方框不打钩)(如图1-2所示)。点击“OK”开始检索,得到的检索结果见图1-3。 从初步检索结果可以看出,最可能的物相有四个:CaB5O8(OH)B(OH)3(H2O)3(图1-3)、CaB6O10·5H2O(图1-4a)、

Ca2.62Al9.8Si26.2O72H4.56(图1-4b)和C20H20N16O8S4Th(图1-4c)。其中前三个均为无机物,第四个为有机金属化合物。 从结果分析,由图1-4b、c中可以看出,这两种物相的标准衍射峰没有与样品衍射峰中的最强峰匹配,因此样品中不含有第三、四中物相或者其主晶相不是第三、四种物相。而从图1-3以及图1-4a中可以看出,两种物相的衍射峰与样品的衍射峰几乎都能对上,并且强弱对应良好,因此样品中主晶相可能为CaB5O8(OH)B(OH)3(H2O)3或CaB6O10·5H2O或者两者的混合物。 图1-2 初步物相检索条件设定 图1-3 经过初步检索得到的检索结果

相关主题