搜档网
当前位置:搜档网 › 三端双向可控硅应用电路

三端双向可控硅应用电路

三端双向可控硅应用电路
三端双向可控硅应用电路

三端双向可控硅元件和其他硅控整流器(半导体闸流管)

1 Triac的理论与工作原理(Theory and Operation of Triacs)

Triac是一三端元件,用以控制流向负载的平均电流,与SCR最大不同在于:Triac在电源的正负半周都能导通。

当Triac处于截止状态时(off),无论外加电压极性如何,两主端点间无电流流动,如开启的开关。处于导通转态时(on),两主端点间构成一电阻极低的电流通路,电流流向根据外加电压而定(方向一致),如闭合的开关。

负载的平均电流取决与每周期内,Triac处于导通的时间多少,可以调整,与SCR类似,长,电流大,短,电流小。

Triac的导通角度可达360°,可做全波控制(与SCR半波不同)。

Triac优于机械手开关:无接触反弹、无接触火化、动作较迅速、更准确地控制电流。

2 Triac的波形(Triac Waveform)

些方法消除此导火不调和性。

3 Triac的电气特性(Electrical Characteristics of Triac)

顺向:电压MT2>MT1。用以触发的闸极电压记为V GT(一般0.6-2.0V),闸极电流I GT (0.1-20mA)常因温度变化而变。对一特定Triac,顺向与反向的I GT不同。

如同SCR,Triac一旦导通后,不必继续维持闸极触发电流存在,在主端点电压极性改变或主端点间流通电流低于保持电流I HO(一般100mA)前,Triac继续维持导通。

另外一些重要特性:

1)主端点可容许最大有效值电流I T(RMS),在此之内,Triac可承受(一般,1,3,6,10,15,25)

2)主端点转态电压(breakover voltage)V DROM,在无闸极信号时,维持截止状态,主端点所能加的最大电压,若超过,则无论闸极有无控制信号,都会导通,但

不会对Triac造成损坏(一般,100,200,400,600)

4 Triac的触发方法(Triggering Methods for Triac)1 RC闸极控制电路

每半周,电容器C由R1,R2充电,正半周,上正下负,供应触发闸极电流,顺向导通Triac;负半周,上负下正,供应触发闸极电流,反向导通Triac。

C充电速度由R2调整,R2大,速度慢,延迟角大,负载平均电流小,R2小,反之。a 图延迟角不超过90,b图,改良后,可超过。

2 定压转态元件组成的闸极控制电路

图5-4的闸极控制电路可在闸极加一定压转态元件加以改良,如Diac(其他亦可),送入闸极是脉冲式电流非弦波式电流(RC闸极控制电路),较RC电路为优。

Diac,双向触发二极管(bidirectional trigger diode)或对称触发二极管(symmetrical trigger diode),典型的电流-电压特性曲线。当供应的顺向电压低于Diac的顺向转态电压(forward breakover voltage)V BO时,Diac无电流流动,一旦电压达到,Diac导通,电流突然加大,两端电压下降,造成脉冲电流;反向电压区,类似。

Diac的温度特性稳定,顺向、反向转态电压差异小(低于1V),因此2个半周延迟角几乎相等。一般,Diac的转态电压为32V,十分适合交流供电系统。因Diac的转态电压较高,因此,相同的导火延迟角,RC时间常数要降低(对比RC电路),R/C值要求小些。

另一种Diac的符号表示法,较少使用。

5 硅双向开关(Silicon Bilateral Switches)

1 SBS的理论和动作原理(Theory and Operation of an SBS)

SBS,硅双向开关(Silicon Bilateral Switch),另一可触发Triac的转态元件。适于低压触发控制电路,转态电压较低(8V),电流-电压曲线与Diac类似,但“负电阻区”较为明显,电压降落区间较大(8降至1,有7 V的转回电压,breakover voltage)。

SBS的闸极用于改变SBS的基本电流-电压动作,若闸极不接,可取代Diac,但SBS 有如下优点:

1)导通区间明显

2)温度变化稳定

3)特性在正负半周较对称

4)同型号特性较为接近

举例,一般SBS的温度系数为0.20%/度,正负转态差异0.3,同型差异0.1(而Diac为4V)

2 SBS的的闸极端应用(Using the Gate Terminal of an SBS)

SBS的闸极可用来转换基本转态特性,如图,加入增纳二极管,顺向状态电压变为V Z +0.6(PN结),而反向转态电压不变。应用于正负半周不同导火延迟角(不太普遍)。

3 SBS用于闸极消除Triac的迟滞(Eliminating Triac Flash-on(Hysteresis)with a Gated

SBS)

迟滞现象:从两个方向调整电阻(大变小,小变大),电路的反映不同,(hysteresis)原因:每个半周,C上残存反向的电荷,须克服后,才能正常充电。

Triac的闪现现象即迟滞的一个特殊现象。

当SBS的闸极端加入一个电阻R,因此有少量闸流由A2流向G,表示闸极电阻上的电压较A2为负,将使顺向转态特性急剧下降,转态电压降至1V,表示一旦A2对A1的电压达到1V时,SBS立即转态并导通(反向转态电压不变)。

当交流电源完成正半周接近于0时,C上端电压为正,R3的上端电压对C的下端电压约为0V,因此二极管D1顺向偏压,顺向闸流,只要C的电压超过1V,SBS即导通,C放电(经过SBS,R4),当负半周来临,C已放电完毕,可由零电压开始充电,因此不论Triac 是否导通,负半周都由同一初始电荷(此时几乎为0)开始充电,消除迟滞现象。

6 单向转态元件(Unilateral Breakover Devices)

单向转态元件:包括四层二极管、硅单向开关(SUS),常用于SCR触发电路,加上某

些支持电路,可用于Triac的触发电路。

四层二极管和SUS的动作与SBS类似,只是仅有顺向转态点(forward breakover),逆向崩溃电压(breakdown)很大,若有,会使元件损坏。

SUS也具有闸极,改变其转态特性,如图,闸极阴极间接一增纳二极管(增纳的阴极接闸极,阳极接阴极),转态电压降为VZ+0.6。若SUS的阳极至闸极间流有电流,SUS就可在极低的阳极到阴极电压(约1V)下导通,控制动作与SBS类似。

SUS是一种低电压、低电流的元件,大部分转态电压为8V,电流在1A以下。

7 用以触发Triac的四层二极管(Breakover Device(SUS)used to Trigger a Triac)

工作原理:

1 桥式整流,加于RC电路

2 C的电压与电源类似,滞后一个由R1、R2所决定的相位角度

3 C电压达到四层二极管的转态电压点时,四层二极管导通,C通过其向脉冲变压器

(pulse transformer)的初级绕组放电(转态电压20V),产生一个脉冲电流波形,持续至V C无法提供四层二极管导通所需的保持电流为止

4 脉冲变压器将电流耦合至次级,至Triac的G-MT1电路上,令Triac导火(脉冲变压

器起到隔离作用)

5 无论电源极性如何,次级脉冲电流同向,Triac的闸极电流同向,均可导火,由主极

电压决定方向(相反),与SCR不同,反向闸极电流会损坏SCR

6 导火延迟角由R2调整

Triac的导火,与闸极电流与主极电压极性间关系,4种组合,正负主极电压与正负闸极电流。

8 (Triac)截止状态下电压变动(上升)速度的临界值(Critical Rate of Rise od Off-State V oltage(dv/dt))

RC电路与Triac并联,防止Triac主极电压上升太快,超过Triac所能忍受的最大电压变化率,若超过,无论有无闸极信号,都立即进入导通状态(一般,100V/us)。

若交流电源能保证无高速浪涌电流存在,则RC电路可以不要,但实际环境中,一个变电开关动作,就能引起瞬间浪涌电压,故需RC电路予以抑制。通常由C担任,将加于主极的高频信号旁路,对高频形成一极小的阻抗值,任何快速的交流电源噪音都可由C短路落在负载电阻上,而不会加在Triac上。R用于限制C放电电流,以免烧毁Triac。

9 以UJT触发Triac(UJT as Trigger Devices for Triac)

Triac的触发电路控制常用UJT组成的电阻或电压反馈电路。

1电阻反馈式UJT触发电路(UJT Trigger Circuit with Resistive Feedback)

工作原理:

1 T1为隔离变压器(isolation transformer),圈数比为1:1,对初级和次级绕组予以电

气隔离,使电源与触发电路独立,抑制噪音干扰。

2 桥式整流经过增纳剪截,送出与交流电源同步的24V波形

3 建立起24V电压后,C开始充电,至UJT峰值电压后,UJT导火,在T2初级线圈上

建立电流脉冲,耦合送至Triac闸极,令Triac导通

4 C的充电速度由R F对R1比值决定,小则Q1偏压大,导通较厉害,供应较大电流,

C充电较快,UJT导火快,负载平均电流大,大,则相反。

恒流源工作原理:

1 忽略Q1的基极电流(慎选R1和RF的值),R1和R F看作串联电路,分压器

2 对于Q1,射极电流近似等于集极电流(放大倍数很高)

3 由公式得IC与R F值成反比,且为一定值

4 I为常数,由C的公式定压,可知充电速度为常数,电压为斜波

2 电压反馈式UJT触发电路(UJT Trigger Circuit with V oltage Feedback)

将电阻反馈式电路中的R F以电压反馈代替即得。调整V F即可调整Triac的导火延迟角。

由公式得相同特性,C电压上升速度为常数。

总结:

1 Triac 如同一双向导通的SCR ,可控制负载平均电流

2 Triac 的导火触发时间,由闸极触发电路控制

3 Triac 一般在正负半周不对称

4 触发Triac 导火,闸极电流须上升至临界值I GT

5 使用双向转态元件(如Diac 、SBS )于Triac 的闸极,可中和Triac 的温度不稳定性

6 单向转态元件(如UJT )可用作Triac 的触发,一般用脉冲变压器耦合转态脉冲至闸极,电压、电阻式反馈电路。

公式:

1 V BO =V Z +0.6V (含增纳二极管于闸极的SUS 或SBS )

2 C

I t v C

=

ΔΔ(定直流电源的电容)

双向可控硅选型表要点

双向可控硅为什么称为“TRIAC”? 三端:TRIode(取前三个字母) 交流半导体开关:AC-semiconductor switch(取前两个字母) 以上两组名词组合成“TRIAC”,或“TRIACs”中文译意“三端双向可控硅开关”。 由此可见“TRIAC”是双向可控硅的统称。 另: 双向:Bi-directional(取第一个字母) 控制:Controlled (取第一个字母) 整流器:Rectifier (取第一个字母) 再由这三组英文名词的首个字母组合而成:“BCR”,中文译意:双向可控硅。 以“BCR”来命名双向可控硅的典型厂家如日本三菱,如:BCR1AM-12、BCR8KM、BCR08AM 等等。 -------------- 双向:Bi-directional (取第一个字母) 三端:Triode (取第一个字母) 由以上两组单词组合成“BT”,也是对双向可控硅产品的型号命名,典型的生产商如:意法ST公司、荷兰飞利浦-Philips公司,均以此来命名双向可控硅. 代表型号如:PHILIPS 的BT131-600D、BT134-600E、BT136-600E、BT138-600E、BT139-600E、、等。这些都是四象限/非绝缘型/双向可控硅;Philips公司的产品型号前缀为“BTA”字头的,通常是指 三象限的双向可控硅。三象限的品种主要应用于电机电路、三相市电输入的电路、承受的瞬间浪涌电流高。 ------------------- 而意法ST公司,则以“BT”字母为前缀来命名元件的型号,并且在“BT”后加“A”或“B”来表示绝缘与非绝缘。组成:“BTA”、“BTB”系列的双向可控硅型号,如: 四象限、绝缘型、双向可控硅:BTA06-600C、BTA08-600C、BTA10-600B、BTA12-600B、BTA16-600B、BTA41-600、、、等等; 四象限、非绝缘、双向可控硅:BTB06-600C、BTB08-600C、BTB10-600B、BTB12-600B、BTB16-600B、BTB41-600、、、等等; ST公司所有产品型号的后缀字母(型号最后一个字母)带“W”的,均为“三象限双向可控硅”。如“BW”、“CW”、“SW”、“TW”; 代表型号如:BTB12-600BW、BTA26-700CW、BTA08-600SW、、、、等等。 至于型号后缀字母的触发电流,各个厂家的代表含义如下: PHILIPS公司:D=5mA,E=10mA,C=15mA,F=25mA,G=50mA,R=200uA或5mA,型号没有后缀字母之触发电流,通常为25-35mA; PHILIPS公司的触发电流代表字母没有统一的定义,以产品的封装不同而不同。 意法ST公司:TW=5mA,SW=10mA,CW=35mA,BW=50mA,C=25mA,B=50mA,H=15mA,T=15mA, 注意:以上触发电流均有一个上下起始误差范围,产品PDF文件中均有详细说明,一般分为最小值/典型值/最大值,而非“=”一个参数值。 对于产品类别、品种系列的名词国际上通用的命名有:

可控硅调速电路

可控硅调压调速原理 小功率分体机室内风机目前用的是PG调速塑封电机,为单向异步电容运转电动机。为了满足空调正常的运转,达到制冷、制热能力的平衡,所以必须保证室内风机的转速满足系统的要求,并保持转速的稳定。因此采用可控硅调压调速的方法来调节风机的转速。 1.电路原理图 2.工作原理简介 可控硅调速是用改变可控硅导通角的方法来改变电动机端电压的波形,从而改变电动机端电压的有效值,达到调速的目的。 当可控硅导通角α1=180°时,电动机端电压波形为正弦波,即全导通状态;(图示两种状态)当可 控硅导通角α1 <180°时,电动机端电压波形如图实 线所示,即非全导通状态,有效值减小;α1越小, 导通状态越少,则电压有效值越小,所产生的磁场越 小,则电机的转速越低。但这时电动机电压和电流波 形不连续,波形差,故电动机的噪音大,甚至有明显 的抖动,并带来干扰。这些现象一般是在微风或低风 速时出现,属正常。由以上的分析可知,采用可控硅 调速其电机转速可连续调节。 3.各元器件作用及注意事项 3.1D15、R28、R29、E9、Z1、R30、C1组成降压、整流、虑波稳压电路,获得相对直流电压 12V,通过光电偶合器PC817给双向可控硅BT131提供门极电压; 3.2R25、C15组成RC阻容吸收网络,解决可控硅导通与截止对电网的干扰,使其符合EMI测试标准;同时防止可控硅两端电压突变,造成无门极信号误导通。 3.3TR1选用1A/400V双向可控硅,TR1有方向性,T1、T2不可接反,否则电路不能正常工作。 3.4L2为扼流线圈,防止可控硅回路中电流突变,保护TR1,由于它是储能元件,在TR1关断和导通过程中,尖峰电压接近50V,R24容易受冲击损坏,因此禁止将L2放置在TR1前端。

单向双向可控硅触发电路设计原理

单向/双向可控硅触发电路设计原理 1,可以用直流触发可控硅装置。 2,电压有效值等于U等于开方{(电流有效值除以2派的值乘以SIN二倍电阻)加上(派减去电阻的差除以派)}。 3,电流等于电压除以(电压波形的非正弦波幅值半波整流的两倍值)。 4,回答完毕。 触摸式台灯的控制原理 这种台灯的主要优点是没有开关,使用时通过人体触摸,完成开启、调光、关闭动作,给使用带来方便。 一、电路设计原理 人体感应的信号加在电源电路可控硅的触发极,使电路导通,并给负载——灯泡或灯管供电,使灯按弱光、中光、强光、关闭4个状态动作,达到调光的目的。电路见图1,该电路的关键器件是采用CMOS工艺制造的集成电路BA210l。 二、降压稳压电路 由R3、VDl、VD4、C4组成。输出9V直流电,供给BA2101,由③⑦脚引入。 三、触发电路 由触发电极M将人体的感应信号,经c3、R8、R7送至④脚的sP端,经处理后,由⑥脚输出触发信号,经cl、R1加至可控硅VS的G极,VS导通,电灯H点亮。第二次触摸,可改变触发脉冲前沿的到达时间,而使电灯亮度改变。反复触摸,可按弱光、中光、强光和关闭四个动作状态循环,达到调节亮度的目的。可控硅VS在动作中其导通角分别为120度、86度、17度。 四、辅助电路 VD2和vD3为保护集成电路而设。防止触摸信号过大而遭破坏。C3为隔离安全电容。R4为取得同步交流信号而设。R5为外接振荡电阻。 五、使用中经常出现的故障 (1)由震动引发的故障。触摸只需轻轻触及即可。但在家庭使用中触击的强度因人而异,小孩去触摸可能是重重的一拳。性格刚烈的人去触摸,可能引起剧烈震动。因此经常出现灯泡断丝。 (2)集成块焊脚由震动而产生脱焊。如③脚脱焊,使电源切断而停止工作;④、⑥脚脱焊,使触摸信号中断,都会引起灯泡不亮。因此要检查集成块各脚是否脱焊。 (3)可控硅VS一般采用MAC94A4型双向可控硅,由于反复触发,或意外大信号触发,会引起可控硅击穿而停止工作。 触摸式台灯的控制原理 这种台灯的主要优点是没有开关,使用时通过人体触摸,完成开启、调光、关闭动作,给使用带来方便。 一、电路设计原理 人体感应的信号加在电源电路可控硅的触发极,使电路导通,并给负载——灯泡或灯管供电,使灯按弱光、中光、强光、关闭4个状态动作,达到调光的目的。电路见图1,该电路的关键器件是采用CMOS工艺制造的集成电路BA210l。 二、降压稳压电路 由R3、VDl、VD4、C4组成。输出9V直流电,供给BA2101,由③⑦脚引入。 三、触发电路 由触发电极M将人体的感应信号,经c3、R8、R7送至④脚的sP端,经处理后,由⑥脚输出触发信号,

三端双向可控硅

三端双向可控硅,三端双向可控硅是什么意思 双向可控硅又称为双向晶闸管普通晶闸管(VS)实质上属于直流控制器件。要控制交流负载, 必须将两只晶闸管反极性并联,让每只SCR控制一个半波, 为此需两套独立的触发电路,使用不够方便。双向晶闸管是在普通晶闸管的基础上发展而成的,它不仅能代替两只反极性并联的晶闸管,而且仅需一个触发电路,是目前比较理想的交流开关器件。其英文名称TRIAC即三端双向交流开关之意。 答案补充 下图是双向可控硅的结构; 答案补充 双向可控硅(晶闸管)结构原理:双向可控硅具有两个方向轮流导通、关断的特性。双向可控硅实质上是两个反并联的单向可控硅,是由NPNPN五层半导体形成四个PN结构成、有三个电极的半导体器件 。由于主电极的构造是对称的(都从N层引出),所以它的电极不像单向可控硅那样分别叫阳极和阴极,而是把与控制极相近的叫做第一电极A1,另一个叫做第二电极A2。 双向可控硅的主要缺点是承受电压上升率的能力较低。这是因为双向可控硅在一个方向导通结束时,硅片在各层中的载流子还没有回到截止状态的位置,必须采取相应的保护措施。双向可控硅元件主要用于交流控制电路,如温度控制、灯光控制、防爆交流开关以及直流电机调速和换向等电路。 用万用表电阻R*1Ω挡,用红、黑两表笔分别测任意两引脚间正反向电阻,结果其中两组读数为无穷大。若一组为数十欧姆时,该组红、黑表所接的两引脚为第一阳极A1和控制极G,另一空脚即为第二阳极A2。确定A1、G极后,再仔细测量A1、G极间正、反向电阻,读数相对较小的那次测量的黑表笔所接的引脚为第一阳极A1,红表笔所接引脚为控制极G。

将黑表笔接已确定的第二阳极A2,红表笔接第一阳极A1,此时万用表指针不应发生偏转,阻值为无穷大。再用短接线将A2、G极瞬间短接,给G极加上正向触发电压,A2、A1间阻值约10欧姆左右。随后断开A2、G间短接线,万用表读数应保持10欧姆左右。互换红、黑表笔接线,红表笔接第二阳极A2,黑表笔接第一阳极A1。同样万用表指针应不发生偏转,阻值为无穷大。用短接线将A2、G极间再次瞬间短接,给G极加上负的触发电压,A1、A2间的阻值也是10欧姆左右。随后断开A2、G极间短接线,万用表读数应不变,保持在10欧姆左右。符合以上规律,说明被测双向可控硅未损坏且三个引脚极性判断正确 可控硅的工作原理是什么? 可控硅在自动控制控制,机电领域,工业电气及家电等方面都有广泛的应用。可控硅是一种有源开关元件,平时它保持在非道通状态,直到由一个较少的控制信号对其触发或称“点火”使其道通,一旦被点火就算撤离触发信号它也保持道通状态,要使其截止可在其阳极与阴极间加上反向电压或将流过可控硅二极管的电流减少到某一个值以下。可控硅二极管可用两个不同极性(P-N-P和N-P-N)晶体管来模拟,如图G1所示。当可控硅的栅极悬空时,BG1和BG2都处于截止状态,此时电路基本上没有电流流过负载电阻RL,当栅极输入一个正脉冲电压时BG2道通,使BG1的基极电位下降,BG1因此开始道通,BG1的道通使得BG2的基极电位进一步升高,BG1的基极电位进一步下降,经过这一个正反馈过程使BG1和BG2进入饱和道通状态。电路很快从截止状态进入道通状态,这时栅极就算没有触发脉冲电路由于正反馈的作用将保持道通状态不变。如果此时在阳极和阴极加上反向电压,由于BG1和BG2均处于反向偏置状态所以电路很快截止,另外如果加大负载电阻RL的阻值使电路电流减少BG1和BG2的基电流也将减少,当减少到某一个值时由于电路的正反馈作用,电路将很快从道通状态翻转为截止状态,我们称这个电流为维持电流。在实际应用中,我们可通过一个开关来短路可控硅的阳极和阴极从而达到可控硅的关断。 三端双向可控硅开关原理图 为了减少供给照明开关的能量,调光开关会迅速地开启和关闭照明电路。在这个切换电路中,最关键的要素是一个三极管交流电开关,或者叫作三端双向可控硅开关。 三端双向可控硅开关是一个很小的半导体装置,类似于二极管或晶体管。类似于晶体管的三端双向可控硅开关由很多层不同的半导体材料制成,它包括N型材料(包含许多自由电子)和P型材料(包含许多自由电子可进入的“空穴”)。关于这些材料的说明,请参见半导体工作原理。 这里是N型和P型材料在三端双向可控硅开关中的排列方式。

双向可控硅及其触发电路

双向可控硅及其触发电路 双向可控硅是一种功率半导体器件,也称双向晶闸管,在单片机控制系统中,可作为功率驱动器件,由于双向可控硅没有反向耐压问题,控制电路简单,因此特别适合做交流无触点开关使用。双向可控硅接通的一般都是一些功率较大的用电器,且连接在强电网络中,其触发电路的抗干扰问题很重要,通常都是通过光电耦合器将单片机控制系统中的触发信号加载到可控硅的控制极。为减小驱动功率和可控硅触发时产生的干扰,交流电路双向可控硅的触发常采用过零触发电路。(过零触发是指在电压为零或零附近的瞬间接通,由于采用过零触发,因此需要正弦交流电过零检测电路) 双向可控硅分为三象限、四象限可控硅,四象限可控硅其导通条件如下图: 总的来说导通的条件就是:G极与T1之间存在一个足够的电压时并能够提供足够的导通电流就可以使可控硅导通,这个电压可以是正、负,和T1、T2之间的电流方向也没有关系。因为双向可控硅可以双向导通,所以没有正极负极,但是有T1、T2之分 再看看BT134-600E的简介:(飞利浦公司的,双向四象限可控硅,最大电流4A)

推荐电路: 为了提高效率,使触发脉冲与交流电压同步,要求每隔半个交流电的周期输出一个触发脉冲,且触发脉冲电压应大于4V ,脉冲宽度应大于20us.图中BT 为变压器,TPL521 - 2 为光电耦合器,起隔离作用。当正弦交流电压接近零时,光电耦合器的两个发光二极管截止,三极管T1基极的偏置电阻电位使之导通,产生负脉冲信号,T1的输出端接到单片机80C51 的外部中断0 的输入引脚,以引起中断。在中断服务子程序中使用定时器累计移相时间,然后发出双向可控硅的同步触发信号。过零检测电路A、B 两点电压输出波形如图2 所示。

三端双向可控硅进行可靠操作的设计规则

三端双向可控硅进行可靠操作的设计规则 1,正确触发 要打开一个双向可控硅开,栅极驱动电路必须提供一个“活力”的栅极电流来保证快速有效的触发。 栅极电流的振幅: 门极电流(IG)要比指定的最大门触发电流高得多(IGTmax)。此参数是温度Tj = 25度时给定的。 在较低的温度下,用曲线表现为门极触发电流随温度的相对变化。设计预期的最低工作温度的栅极驱动。高IG值提供了一个高效触发(看§2)。 作为一个实际的原则,我们建议: 门电路的设计:

VOL = output voltage of the microcontroller (at 0 logic level) VOL=微处理器的输出电压 VG = voltage across the gate of the triac. Take the specified VGT. 在双向晶闸管的栅极电压。采取指定的VGT IG = required gate current (IG > 2. IGT max)所需的栅极电流 栅极电流持续时间: (对于ON-OFF开关) 脉宽的操作可以明显的降低栅极驱动功耗。 采用栅电流Ig直到负载电流达到闭锁电流(IL) 建议使用连续的栅极直流电流,避免流过的负载电流(IT < 50 or 100 mA)低于维持电流和擎住电流而引起电流的不连续性。 象限: 在新的项目中,为了是双向可控硅高性能运行,应避免在第4象限工作,仅在指定的1、2、3象限。2,平滑导通 当可控硅导通,确保了通态电流上升率不超过规定的最高值。例如在有缓冲网络跨接在双向可控硅时,在电容放电的情况下,检查这一点是非常重要的。 如果di / dt的超过规定值,然后栅区周围的电流密度过高时,产生过热。高重复性的di / dt可能引起硅晶片的逐步退化,引起栅极电流的增加和阻断能力的丧失。 在大多数情况下开关零电压大大降低了通态di / dt和浪涌电流。 提醒: &一个强大的栅极电流提高了可控硅的di / dt的能力,并提高通态的换向的可靠性:IG >> IGT (at least 2 or 3 times IGT max,至少2或3倍IGT max)。 &在三端双向可控硅跨接有RC网络的情况下,串联电阻的值必须足以限制通过双向可控硅的峰值电流和di / dt。 我们推荐: *在门极两端不要使用电容。 该电容显著降低di / dt的能力,此外,这种电容并不能改善静态dv / dt特性。 图2 为了尽量减少在打开时的di / dt的应力: R必须是大于47Ω更高; 不能并接栅极电容(CGK)

双向晶闸管交流调压电路分析

双向晶闸管交流调压电路分析 双向晶闸管交流调压电路分析 同学:老师,双向晶闸管看起来与单向晶闸管的外形差不多,也有三个电极(图2 ),它的主要工作特性是什么呢? 教师:双向晶闸管相当于两个单向晶闸管的反向并联(图3 ),但只有一个控制极。这样,双向晶闸管在正、反两个方向上都能够控制导电,而单向晶闸管却是一种可控的单方向导电器件。给双向晶闸管的控制极加正的或负的触发脉冲,都能使管子触发导通。这样,触发电路的设计就具有很大的灵活性,可以采用多种不同的触发方式。此外,双向晶闸管的两个主电极不再分为阳极和阴极,而是称为第一电极T1 和第二电极T2 。双向晶闸管在电路中不能用作可控整流元件,主要用来进行交流调压、交流开关、可逆直流调速等等。 同学:双向晶闸管触发电路(图 1 )中,使用了双向触发二极管,我们过去没有听说过这种管子,这是一种什么样的器件呢? 老师:双向触发二极管(图 4 )从结构上来说,是一

种没有控制极的晶闸管,我们可以把它看成是两个二极管的反向并联。这样,无论在双向触发二极管的两极之间外加什么极性的电压,只要电压的数值达到管子的转折电压值,就能使它导通。值得注意的是,双向触发二极管的转折电压较高,一般在20 ~40V 范围。 同学:老师,您给我们讲讲双向触发二极管组成的双向晶闸管触发电路的工作原理吧。 老师:调压器电路主要由阻容移相电路和双向晶闸管两部分组成。我们单独画出这两部分电路(图 5 ),R5 、RP 和C5 构成阻容移相电路。合上电源开关S ,交流电源电压通过R5 、RP 向电容器C5 充电,当电容器C5 两端的电压上升到略高于双向触发二极管ST 的转折电压时,ST 和双向晶闸管VS 相继导通,负载RL 得电工作。当交流电源电压过零瞬间,双向晶闸管自行关断,接着C5 又被电源反向充电,重复上述过程。分析电路时,大家应该意识到,触发电路是工作在交流电路中的,交流电压的正、负半周分别会发出正、负触发脉冲送到双向晶闸管的控制极,使管子在正、负半周内对称地导通一次。改变R P 的阻值,就改变了C5 的充电速度,也就改变了双向晶闸管的导通角,相应地改变了负载RL 上的交流电压,实现了交流调压。

双向可控硅的工作原理及原理图

双向可控硅得工作原理及原理图 双向可控硅得工作原理1、可控硅就是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它瞧作由一个PNP管与一个NPN管所组成当阳极A加上正向电压时,BG1与BG2管均处于放大状态。此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=β2ib2。因为BG2得集电极直接与BG1得基极相连,所以ib1=ic2。此时,电流ic2再经BG1放大,于就是BG1得集电极电流ic1=β1ib1=β1β2ib2。这个电流又流回到BG2得基极,表成正反馈,使ib2不断增大,如此正向馈循环得结果,两个管子得电流剧增,可控硅使饱与导通.由于BG1与BG2所构成得正反馈作用,所以一旦可控硅导通后,即使控制极G得电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种可控硅就是不可关断得。 由于可控硅只有导通与关断两种工作状态,所以它具有开关特性,这种特性需要一定得条件才能转化2,触发导通在控制极G上加入正向电压时(见图5)因J3正偏,P2区得空穴时入N2区,N2区得电子进入P2区,形成触发电流IGT。在可控硅得内部正反馈作用(见图2)得基础上,加上IGT得作用,使可控硅提前导通,导致图3得伏安特性OA 段左移,IGT越大,特性左移越快。 TRIAC得特性?什么就是双向可控硅:IAC(TRI—ELECTRODEACSWITCH)为三极交流开关,亦称为双向晶闸管或双向可控硅。TRIAC为三端元件,其三端分别为T1(第二端子或第二阳极),T 2(第一端子或第一阳极)与G(控制极)亦为一闸极控制开关,与SCR最大得不同点在于TRIAC无论于正向或反向电压时皆可导通,其符号构造及外型,如图1所示。因为它就是双向元件,所以不管T1 ,T2得电压极性如何,若闸极有信号加入时,则T1,T2间呈导通状态;反之,加闸极触发信号,则T1,T2间有极高得阻抗。 ?(a)符号(b)构造 图1TRIAC 二、TRIAC得触发特性: ?由于TRIAC为控制极控制得双向可控硅,控制极电压VG极性与阳极间之电压VT1T2四种组合分别如下:?(1)、VT1T2为正,VG为正。?(2)、VT1T2为正,VG为负。?(3)、VT1T2为负, VG 为正。?(4)、VT1T2为负,VG为负。 一般最好使用在对称情况下(1与4或2与3),以使正负半周能得到对称得结果,最方便得控制方法则为1与4之控制状态,因为控制极信号与VT1T2同极性。

单相晶闸管调压电路

单向可控硅调压电路 可控硅交流调压器由可控整流电路和触发电路两部分组成,其电路原里图如下图所示。从图中可知,二极管D1—D4组成桥式整流电路,双基极二极管T1构成张弛振荡器作为可控硅的同步触发电路。当调压器接上市电后,220V交流电通过负载电阻RL经二极管D1—D4整流,在可控硅SCR的A、K两端形成一个脉动直流电压,该电压由电阻R1降压后作为触发电路的直流电源。在交流电的正半周时,整流电压通过R4、W1对电容C充电。当充电电压Uc达到T1管的峰值电压Up时,T1管由截止变为导通,于是电容C通过T1管的e、b1结和R2迅速放电,结果在R2上获得一个尖脉冲。这个脉冲作为控制信号送到可控硅SCR的控制极,使可控硅导通。可控硅导通后的管压降很低,一般小于1V,所以张弛振荡器停止工作。当交流电通过零点时,可控硅自关断。当交流电在负半周时,电容C又从新充电……如此周而复始,便可调整负载RL上的功率了。

双向可控硅的工作原理及原理图 2007年12月09日09:11 来源:本站整理作者:本站我要评论(1) 标签:可控硅(358) 双向可控硅的工作原理 1.可控硅是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它看作由一个PNP管和一个NPN 管所组成 当阳极A加上正向电压时,BG1和BG2管均处于放大状态。此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=β2ib2。因为BG2的集电极直接与BG1的基极相连,所以ib1=ic2。此时,电流ic2再经BG1放大,于是BG1的集电极电流ic1=β1ib1=β1β2ib2。这个电流又流回到BG2的基极,表成正反馈,使ib2不断增大,如此正向馈循环的结果,两个管子的电流剧增,可控硅使饱和导通。 由于BG1和BG2所构成的正反馈作用,所以一旦可控硅导通后,即使控制极G的电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种可控硅是不可关断的。 由于可控硅只有导通和关断两种工作状态,所以它具有开关特性,这种特性需要一定的条件才能转化 2,触发导通 在控制极G上加入正向电压时(见图5)因J3正偏,P2区的空穴时入N2区,N2区的电子进入P2区,形成触发电流IGT。在可控硅的内部正反馈作用(见图2)的基础上,加上IGT的作用,使可控硅提前导通,导致图3的伏安特性OA段左移,IGT越大,特性左移越快。 一、可控硅的概念和结构? 晶闸管又叫可控硅。自从20世纪50年代问世以来已经发展成了一个大的家族,它的主要成员有单向晶闸管、双向晶闸管、光控晶闸管、逆导晶闸管、可关断晶闸管、快速晶闸管,等等。今天大家使用的是单向晶闸管,也就是人们常说的普通晶闸管,它是由四层半导体材料组成的,有三个PN结,对外有三个电极〔图2(a)〕:第一层P型半导体引出的电极叫阳极A,第三层P 型半导体引出的电极叫控制极G,第四层N型半导体引出的电极叫阴极K。从晶闸管的电路符号〔图2(b)〕可以看到,它和二极管一样是一种单方向导电的器件,关键是多了一个控制极G,这就使它具有与二极管完全不同的工作特性。 图2 二、晶闸管的主要工作特性

双向可控硅原理与应用整理

双向可控硅MAC97A6的电路应用 家电维修2010-08-22 00:08:15 阅读2916 评论2 字号:大中小订阅 MAC97A6为小功率双向可控硅(双向晶闸管),最多应用于电风扇速度控制或电灯的亮度控制,市场上流行的“电脑风扇”或“电子程控风扇”,不外乎是用集成电路控制器与老式风扇相结合的新一代产品。这里介绍的电路就是利用一块市售的专用集成电路RY901及MAC97A6,将普通电扇改装为具有多功能的高档电扇,很适宜无线电爱好者制作与改 装。 这种新型IC的主要特点是:(1)集开关、定时、调速、模拟自然风为一体,外围元件少、电路简单、易于制作;(2)省掉了体积较大的机械定时器和调速器,采用轻触式开关和电脑控制脉冲触发,因而无机械磨损,使用寿命长;(3)各种动作电脑程序具备相应的发光管指示,耗电量少,体积小,重量轻,显示直观,便于操作;(4)适合开发或改造成多路家电的定时控制等。RY901采用双列直插式16脚塑封结构,为低功耗CMOS集成电路。其外形、引出脚排列及各脚功能如图1所示。工作原理

典型应用电路如图2所示([url=https://www.sodocs.net/doc/b516753364.html,/ad/ykkz/fsdlkz.rar]点击下载原理图[/url] )。市电220V由C1、R1降压VD9稳压,经VD10、C2整流滤波后, 提供5V-6V左右的直流电源作为RY901IC组成的控制器电压。在刚接通电源时,电脑控制器暂处于复位(静止)状态,面板上所有发光二极管VD1-VD8均不亮,电风扇不转。若这时每按动一次风速选择键SB3,可依次从IC的11-13脚输出控制电平(脉冲信号),经发光管VDl-VD3和限流电阻R2-R4,分别触发双向晶闸管VS1-VS3的G极,用以控制它的导通与截止,再经电抗器L进行阻抗变换,即可按强风、中风、弱风、强风……的顺序来改变其工作状态,并且风速指示管VD1-VD3(红色)对应点亮或熄灭;当按风型选择键SB4,电风扇即按连续风(常风)、阵风(模拟自然风)、连续风……的方式循环改变其工作状态,在连续风状态下,风型指示管VD4(黄色)熄灭,在阵风状态下,VD4闪光;当按动定时时间选择键SB2,定时指示管VD5-VD8依次对应点亮或熄灭,即每按动一次SB2,可选择其中一种定时时间,共有0.5、l、2、4小时和不定时5种工作方式供选择。当定时时间一到,IC内部的定时电路停止工作,相应的定时指示管熄灭同时IC的11-13脚也无控制信号输出,双向晶闸管VS1-VS3截止,从而导致风扇自动停止运转;在风扇不定时工作时,欲停止风扇转动,只要按动一下复位开关SB1,所有指示灯熄灭,电源被切断,风扇停转;如欲启动风扇,照上述方法操作即可。元器件选择与制作图中除降压电容C1用优质的CBB-400V聚苯电容;泄放保护电阻R1用1W金属膜电阻或线绕电阻外,其余元器件均为普通型。电阻为1/8W;电解电容的耐压值取10V-16V,C1取值范围为0.47u-lu之间;稳压管VD9为5V-6V/1W,可选用ZCW104(旧型号为ZCW21B)硅稳压管;VS1-VS3为1A/400V小型塑封双向晶闸管,可选用MAC94A4型或MAC97A6型;L为电抗器,可以自制,亦可采用原调速器中的电抗器;SB1-SB4为轻触型按键开关(也叫微动或点动开关),有条件的可采用导电橡胶组合按键开关。电路焊接无误,一般不用调试就能工作。改装方法该电路对所有普通风扇都能进行改装。将焊接好的电路板装进合适的塑料肥皂盒或原调速器盒中,将原分线器开关拆除不用,留出空余位置便于安装印制板电路。一般风扇用电抗器均采取5挡。不妨利用其中①、③、⑤挡,将强风(第1挡)、中风(第2挡)弱风(第3挡)分别接到电抗器的各挡中。若有的调速器中无电抗器,风扇电机则是采取抽头方式改变风速的,同样将三种风速分别接至分线器的三极引线中。在改装中特别要注意安全,印制板上220V交流电源接线端及所有导电部位应与调整器盒的金属件严格隔离。改装完毕,可用测电笔碰触调速器有否漏电。否则应进一步采取绝缘措施。通电试验时,用万用表DC10V档测C2两端电压应为5V-6V之间,若不正常,应重点检查整流稳压电路,然后再分别按动SB1-SB4开关,观察各路指示管VD1-VD8应按对应的选择功能发光或熄灭,风扇也应同步工作于不同状态。

十二篇可控硅交流调压电路解析

第一篇: 可控硅是一种新型的半导体器件,它具有体积小、重量轻、效率高、寿命长、动作快以及使用方便等优点,目前交流调压器多采用可控硅调压器。这里介绍一台电路简单、装置容易、控制方便的可控硅交流调压器,这可用作家用电器的调压装置,进行照明灯调光,电风扇调速、电熨斗调温等控制。这台调压器的输出功率达100W,一般家用电器都能使用。 1:电路原理:电路图如下 可控硅交流调压器由可控整流电路和触发电路两部分组成,其电路原里图如下图所示。从图中可知,二极管D1—D4组成桥式整流电路,双基极二极管T1构成张弛振荡器作为可控硅的同步触发电路。当调压器接上市电后,220V交流电通过负载电阻RL经二极管D1—D4整流,在可控硅SCR的A、K两端形成一个脉动直流电压,该电压由电阻R1降压后作为触发电路的直流电源。在交流电的正半周时,整流电压通过R4、W1对电容C充电。当充电电压Uc达到T1管的峰值电压Up时,T1管由截止变为导通,于是电容C通过T1管的e、b1结和R2迅速放电,结果在R2上获得一个尖脉冲。这个脉冲作为控制信号送到可控硅SCR的控制极,使可控硅导通。可控硅导通后的管压降很低,一般小于1V,所以张弛振荡器停止工作。当交流电通过零点时,可控硅自关断。当交流电在负半周时,电容C又从新充电……如此周而复始,便可调整负载RL上的功率了。 2:元器件选择 调压器的调节电位器选用阻值为470KΩ的WH114-1型合成碳膜电位器,这种电位器可以直接焊在电路板上,电阻除R1要用功率为1W的金属膜电阻外,其佘的都用功率为1/8W的碳膜电阻。D1—D4选用反向击穿电压大于300V、最大整流电流大于0.3A的硅整流二极管,如2CZ21B、2CZ83E、2DP3B等。SCR选用正向与反向电压大于300V、额定平均电流大于1A的可控硅整流器件,如国产3CT系例。 第二篇: 本例介绍的温度控制器,具有SB260取材方便、性能可靠等特点,可用于种子催芽、食用菌培养、幼畜饲养及禽蛋卵化等方面的温度控制,也可用于控制电热毯、小功率电暖器等家用电器。

单向可控硅与双向可控硅结构电原理图及测试方法

单向可控硅与双向可控硅结构电原理图及测试方法 可控硅的检测 1.单向可控硅的检测 万用表选用电阻R×1档,用红黑两表笔分别测任意两引脚间正反向电阻直至找出读数为数十欧姆的一对引脚,此时黑笔接的引脚为控制极G,红笔接的引脚为阴极K,另一空脚为阳极A。此时将黑表笔接已判断了的阳极A,红表笔仍接阴极K。此时万用表指针应不动。用短接线瞬间短接阳极A和控制极G,此时万用表指针应向右偏转,阻值读数为10欧姆左右。如阳极A接黑表笔,阴极K接红表笔时,万用表指针发生偏转,说明该单向可控硅已击穿损坏

。 2.双向可控硅的检测 用万用表电阻R×1档,用红黑两表笔分别测任意两引脚正反向电阻,结果其中两组读数为无穷大。若一组为数十欧姆时,该组红黑表笔所接的两引脚为第一阳极A1和控制极G,另一空脚即为第二阳极A2。确定A、G极后,再仔细测量A1、G极间正反向电阻,读数相对较小的那次测量的黑表笔所接的引脚为第一阳极A1,红表笔所接引脚为控制极G。将黑表笔接已确定了的第二阳极A2,红表笔接第一阳极A1,此时万用表指针应不发生偏转,阻值为无穷大。再用短接线将A2、G极瞬间短接,给G极加上正向触发电压,A2、A1间阻值约为10欧姆左右。随后断开A2、G极短接线,万用表读数应保持10欧姆左右。互换红黑表笔接线,红表笔接第二阳极A2,黑表笔接第一阳极A1。同样万用表指针应不发生偏转,阻值为无穷大。用短接线将A2、G极间再次瞬间短接,给G极加上负向的触发电

压,A1、A2间阻值也是10欧姆左右。随后断开A2、G极间短接线,万用表读数应不变,保持10欧姆左右。符合以上规律,说明被测双向可控硅管未损坏且三个引脚极性判断正确。 检测较大功率可控硅管是地,需要在万用表黑笔中串接一节1.5V干电池,以提高触发电压。双向可控硅(TRIAC)在控制交流电源控制领域的运用非常广泛,如我们的日光灯调光电路、交流电机转速控制电路等都主要是利用双向可控硅可以双向触发导通的特点来控制交流供电电源的导通相位角,从而达到控制供电电流的大小[1]。然而对其工作原理和结构的描述,以我们可以查悉的资料都只是很浅显地提及,大部分都是对它的外围电路的应用和工作方式、参数的选择等等做了比较多的描述,更进一步的--哪怕是内部方框电路--内容也很难找到。 由于可控硅所有的电子部件是集成在同一硅源之上,我们根本是不可能通过采用类似机械的拆卸手段来观察其内部结构。为了深入了解和运用可控硅,依据现有可查资料所给P 型和N型半导体的分布图,采用分离元器件--三极管、电阻和电容--来设计一款电路,使该电路在PN的连接、分布和履行的功能上完全与双向可控硅类似,从而通过该电路来达到深入解析可控硅和设计实际运用电路的目的。 1 双向可控硅工作原理与特点 从理论上来讲,双向可控硅可以说是有两个反向并列的单向可控硅组成,理解单向可控硅的工作原理是理解双向可控硅工作原理的基础[2-5]。 1.1单向可控硅 单向可控硅也叫晶闸管,其组成结构图如图1-a所示,可以分割成四个硅区P、N、P、N和A、K、G三个接线极。把图一按图1-b 所示切成两半,就很容易理解成如图1-c所示由一个PNP三极管和一个NPN三极管为主组成一个单向可控硅管。

三端双向交流开关

三端双向交流开关(TRIAC=TRIode(三端)AC semiconductor switch)实质上是双向晶闸管,它是在普通晶闸管的基础上发展起来的,它不仅能代替两只反极性并联的晶闸管,而且仅用一个触发电路,是目前比较理想的交流开关器件。其英文名称TRIAC就是三端双向交流开关的意思。尽管从形式上可以把双向晶闸管看成两只普通晶闸管的组合,但实际上它是由七只晶体管和多只电阻构成的功率集成器件。小功率双向晶闸管一般采用塑料封存装,有的还带小散热极。典型产品有BCM1AM(1A/600V)、BCM3AM (3A/600V)、2N6075(4A/600V)、MAC218-10(8A/800V)等。大功率双向晶闸管大多采用RD91型封装,例如 BTA40-700型的主要参数是:IT=40A,VDRM=700V,IGT=100mA。 编辑本段组成材料 双向晶闸管(TRIAC)是由NPNPN五层半导体材料构成的,相当于两只普通晶闸管反相并联,它也有三个电极,分别是主电极T1、主电极T2和栅极G。 与单向晶闸管相比较,双向晶闸管的主要区别是:在触发之后是双向导通的;触发电压不分极性,只要绝对值达到触发门限值即可使双向晶闸管导通。 与单向晶闸管相比较,双向晶闸管的主要区别是: ①在触发之后是双向导通的; ②触发电压不分极性,只要绝对值达到触发门限值即可使双向晶闸管导通。 双向晶闸管可广泛用于工业、交通、家电领域,实现交流调压、交流调速、交流开关、舞台调光、台灯调光等多种功能。此外,它还被用在固态继电器和固态接触器的电路中。 编辑本段选用须知 在选用三端双相可控硅(TRIAC),需要考虑以下4个方面的因素: 1、三端双相可控硅的耐压:Vdrm=电源电压的2-3倍,如电源电压 AC=220V,则Vdrm>=600V。 2、三端双相可控硅的允许电流:在无浪涌冲击电流(如加热器负载)必须至少>=1.3-1.5倍的负载电流;但当有浪涌冲击电流(如马达负载)时,必须综合考虑环境温度、冲击电流的峰值、散热器的尺寸等。 3、合理选择CR吸收电路,当控制电感性负载时,如在转换期间由于电流延迟的作用,(di/dt)c和(dv/dt)c 超过某个值时,(di/dt)c 和 (dv/dt)c 可能不需栅极信号而Z直接进入导通状态,从而变得无法控制。如电源电压AC=220V,一般选取C=0.01--0.47uF, R=47--100Ω.

双向可控硅命名方式

双向可控硅命名方式,晶闸管,整流器 双向可控硅是怎样命名的? 双向可控硅为什么称为“TRIAC”? 三端:TRIode(取前三个字母) 交流半导体开关:ACsemiconductor switch (取前两个字母) 以上两组名词组合成“TRIAC” 中文译意“三端双向可控硅开关”。 由此可见“TRIAC”是双向可控硅的统称。 另: 双向:Bi-directional(取第一个字母) 控制:Controlled (取第一个字母) 整流器:Rectifier (取第一个字母) 再由这三组英文名词的首个字母组合而成:“BCR”,中文译意:双向 可控硅。 以“BCR”来命名双向可控硅的典型厂家如日本三菱 如:BCR1AM-12、BCR8KM、BCR08AM等等。 -------------- 双向:Bi-directional (取第一个字母) 三端:Triode (取第一个字母) 由以上两组单词组合成“BT”,也是对双向可控硅产品的型号命名,典型的生产商如:意法ST公司、荷兰飞利浦-Philips公司,均以此来命名双向可控硅。代表型号如:PHILIPS 的 BT131-600D、BT134-600E、BT136-600E、BT138-600E、BT139- 600E、、等。 这些都是四象限/非绝缘型/双向可控硅;

Philips公司的产品型号前缀为“BTA”字头的,通常是指三象限的双向 可控硅。 三象限的品种主要应用于电机电路、三相市电输入的电路、承受的瞬 间浪涌电流高。 ------------------- 而意法ST公司,则以“BT”字母为前缀来命名元件的型号,并且在“BT”后加“A”或“B”来表示绝缘与非绝缘。 组成:“BTA”、“BTB”系列的双向可控硅型号,如: 四象限、绝缘型、双向可控硅:BTA06-600C、BTA08-600C、BTA10-600B、BTA12-600B、BTA16-600B、BTA41-600、、、等等; 四象限、非绝缘、双向可控硅:BTB06-600C、BTB08-600C、BTB10-600B、BTB12-600B、BTB16-600B、BTB41-600、、、等等; ST公司所有产品型号的后缀字母(型号最后一个字母)带“W”的,均为“三象限双向可控硅”。如“BW”、“CW”、“SW”、“TW”; 代表型号如:BTB12-600BW、BTA26-700CW、BTA08-600SW、、、、 等等。 至于型号后缀字母的触发电流,各个厂家的代表含义如下:PHILIPS公司:D=5mA,E=10mA,C=15mA,F=25mA,G=50mA,R=200uA或5mA,型号没有后缀字母之触发电流,通常为25-35mA;PHILIPS公司的触发电流代表字母没有统一的定义,以产品的封装不 同而不同。 意法 ST公司:TW=5mA,SW=10mA,CW=35mA,BW=50mA,C=25mA,B=50mA,H=15mA,T=15mA, 注意:以上触发电流均有一个上下起始误差范围,产品PDF文件中均有详细说明,一般分为最小值/典型值/最大值,而非“=”一个参数值。

可控硅控制交流电的使用方法

可控硅控制交流电的使用方法 时间:2009-10-14 08:00:13 来源:作者: 一、概述 在日常的控制应用中我们都通常会遇到需要开关交流电的应用,一般控制交流电的时候,我们会使用很多种方法,如: 1、使用继电器来控制,如电饭煲,洗衣机的水阀: 2、使用大功率的三极管或IGBT来控制: 3、使用整流桥加三极管:

4、使用两个SCR来控制: 5、使用一个Triac来控制: 晶闸管(Thyristor)又叫可控硅,按照其工作特性又可分单向可控硅(SCR)、双向可控硅(TRIAC)。其中双向可控硅又分四象限双向可控硅和三象限双向可控硅。同时可控硅又有绝缘与非绝缘两大类,如ST的可控硅用BT名称后的“A”、与“B”来区分绝缘与非绝缘。 单向可控硅SCR:全称Semiconductor Controlled Rectifier(半导体整流控制器)

双向可控硅TRIAC:全称Triode ACSemiconductor Switch(三端双向可控硅开关),也有厂商使用Bi-directional Controlled Rectifier(BCR)来表示双向可控硅。

请注意上述两图中的红紫箭头方向! 可控硅的结构原理我就不提了。 二、可控硅的控制模式 现在我们来看一看通常的可控硅控制模式1、On/Off 控制:

对于这样的一个电路,当通过控制信号来开关Triac时,我们可以看到如下的电流波形 通常对于一个典型的阻性的负载使用该控制方法时,可以看到控制信号、电流、相电压的关联。

2、相角控制: 也叫导通角控制,其目的是通过触发可控硅的导通时间来实现对电流的控制,在简单的马达与调光系统中多可以看到这种控制方法 在典型的阻性负载中,通过控制触发导通角a在0~180之间变化,从而实现控制电流的大小

双向可控硅的调光电路

双向可控硅的调光电路 核心提示:双向可控硅的调光电路工作原理说明一接通电源,220V经过灯泡VR4 R19对C 23充电,由于电容二端电压是不能突变的,充电需要一定时间 双向可控硅的调光电路 工作原理说明 一接通电源,220V经过灯泡VR4 R19对C23充电,由于电容二端电压是不能突变的,充电需要一定时间的,充电时间由VR4和R19大小决定,越小充电越快,越大充电越慢。当C23上电压充到约为33V左右的时候DB1导通,可控硅也导通,可控硅导通后灯泡中有电流流过,灯泡就亮了。随着DB1导通C23上电压被完全放掉,DB1又截止可控硅也随之截止灯泡熄灭。C23上又进行刚开始一样的循环,因为时间短人眼有暂留的现象,所以灯泡看起来是一直亮的,充放电时间越短灯泡就越亮,反之,R20 C24能保护可控硅,如果用在阻性负载上可以省掉,如果是用在感性负载,比如说电动机上就要加上去,这个电路也可以用于电动机调速上,当然是要求不高的情况下。 这个电路的优点是元件少、成本低、性价比高。缺点是对电源干扰比较大、噪声大、驱动电动机时候在较小的时候可能会发热比较大。 可控硅相当于可以控制的二极管,当控制极加一定的电压时,阴极和阳极就导通了。可控硅分单向可控硅和双向可控硅两种,都是三个电极。单向可控硅有阴极(K)、阳极(A)、控制极(G)。双向可控硅等效于两只单项可控硅反向并联而成。即其中一只单向硅阳极与

另一只阴极相边连,其引出端称T2极,其中一只单向硅阴极与另一只阳极相连,其引出端称T2极,剩下则为控制极(G)。1、单、双向可控硅的判别:先任测两个极,若正、反测指针均不动(R×1挡),可能是A、K或G、A极(对单向可控硅)也可能是T2、T1或T2、G极(对双向可控硅)。若其中有一次测量指示为几十至几百欧,则必为单向可控硅。且红笔所接为K极,黑笔接的为G极,剩下即为A极。若正、反向测批示均为几十至几百欧,则必为双向可控硅。再将旋钮拨至R×1或R×10挡复测,其中必有一次阻值稍大,则稍大的一次红笔接的为G极,黑笔所接为T1极,余下是T2极。 2、性能的差别:将旋钮拨至R×1挡,对于1~6A单向可控硅,红笔接K极,黑笔同时接通G、A极,在保持黑笔不脱离A极状态下断开G极,指针应指示几十欧至一百欧,此时可控硅已被触发,且触发电压低(或触发电流小)。然后瞬时断开A极再接通,指针应退回∞位置,则表明可控硅良好。 对于1~6A双向可控硅,红笔接T1极,黑笔同时接G、T2极,在保证黑笔不脱离T2极的前提下断开G极,指针应指示为几十至一百多欧(视可控硅电流大小、厂家不同而异)。然后将两笔对调,重复上述步骤测一次,指针指示还要比上一次稍大十几至几十欧,则表明可控硅良好,且触发电压(或电流)小。若保持接通A极或T2极时断开G极,指针立即退回∞位置,则说明可控硅触发电流太大或损坏。可按图2方法进一步测量,对于单向可控硅,闭合开关K,灯应发亮,断开K灯仍不息灭,否则说明可控硅损坏。 对于双向可控硅,闭合开关K,灯应发亮,断开K,灯应不息灭。然后将电池反接,重复上述步骤,均应是同一结果,才说明是好的。否则说明该器件已损坏。

相关主题