搜档网
当前位置:搜档网 › IcePak软件在电子设备热设计中的应用

IcePak软件在电子设备热设计中的应用

IcePak软件在电子设备热设计中的应用
IcePak软件在电子设备热设计中的应用

IcePak软件在电子设备热设计中的应用

摘要:该文阐述了军用电子设备的发展趋势,明确了热管理技术的重要性。在热管理技术实施过程中,我们将采用软件仿真的手段对热设计方案进行计算,通过计算结果来判断热设计方案的可行性。文中采用icepak软件对典型风冷机箱进行仿真,详细介绍了仿真分析的全过程,说明了数值仿真可以为电子设备的热设计提供依据,希望对热设计师起到指导作用。

关键词:icepak;风冷机箱;网格划分;热设计

中图分类号:tp319 文献标识码:a 文章编号:1009-3044(2013)05-1151-03

随着科技的不断进步,电子设备特别是军用电子系统领域正向集成化、小型化发展,系统的集成度空前提高。电路设计普遍采用大规模集成电路,独立器件、模块的功能日趋复杂,输出功率不断加大。目前,某些大功率元件,其热流密度常常达到了50w/cm2以上,有时候甚至达到了200w/cm2。在功率器件的功耗不断增加、效率却提升不大的情况下,使得大量电能转换为热能,从而导致了高热流密度和热量聚集效应。根据统计数据可知,电子产品故障发生的原因有55%以上是由于热设计不理想所导致的。[1]以美国f/a-18飞机为例,由于该产品在设计开始就开展了可靠性工作,因而取得了良好的效果。其中关键的一项措施就是改进了电子设备的冷却系统。因此,设备内的温升必须予以控制,从而隔离复杂恶劣的环境的影响,营造电子设备舒适工作的“微环境”,确保电子设备达到

电子产品热设计、热分析及热测试

电子产品热设计、热分析及热测试培训 各有关单位: 随着微电子技术及组装技术的发展,现代电子设备正日益成为由高密度组装、微组装所形成的高度集成系统。电子设备日益提高的热流密度,使设计人员在产品的结构设计阶段必将面临热控制带来的严酷挑战。热设计处理不当是导致现代电子产品失效的重要原因,电子元器件的寿命与其工作温度具有直接的关系,也正是器件与PCB中热循环与温度梯度产生热应力与热变形最终导致疲劳失效。而传统的经验设计加样机热测试的方法已经不适应现代电子设备的快速研制、优化设计的新需要。因此,学习和了解目前最新的电子设备热设计及热分析方法,对于提高电子设备的热可靠性具有重要的实用价值。所以,我协会决定分期组织召开“电子产品热设计、热分析及热测试讲座”。现具体事宜通知如下 【主办单位】中国电子标准协会培训中心 【协办单位】深圳市威硕企业管理咨询有限公司 一、课程提纲:课程大纲以根据学员要求,上课时会有所调整,具体以报到时的讲义为准。 一、热设计定义、热设计内容、传热方法 1 热设计定义 2 热设计内容 3 传热方法简介 二、各种元器件典型的冷却方法 1 哪些元器件需要热设计

2 冷却方法的选择 3.常用的冷却方法及冷却极限各种元器件典型的冷却方法 4. 冷却方法代号 5 各种冷却方法的比较 三、自然冷却散热器设计方法 1 自然冷却散热器设计条件 2 热路图 3 散热器设计计算 4 多个功率器件共用一个散热器的设计计算 5 正确选用散热器 6 自然冷却散热器结温的计算 7 散热器种类及特点 8 设计与选用散热器禁忌 四、强迫风冷设计方法 1 强迫风冷设计基本原则 2 介绍几种冷却方法 3. 强迫风冷用风机 4. 风机的选择与安装原则 5 冷却剂流通路径的设计 6 气流倒流问题及风道的考虑 7 强迫风冷设计举例(6个示例) 五、液体冷却设计方法

舰载电子设备结构总体设计_陈京会

舰载电子设备结构总体设计 陈京会 (武汉数字工程研究所 武汉 430074) 摘 要:提出了结构总体设计的基本概念,阐述了结构总体设计框架,详细分析了结构总体设计的主要内容和计算机技术的发展对结构总体设计的重要影响。分析表明结构总体设计在当代舰载电子设备结构设计中起到至关重要的作用。 关键词:电子设备;结构总体设计;概念设计;环境适应性;结构体系 中图分类号:TP303 C onstruct Collectivity Design of Shipborne Electronic Equipment C hen Jinghui (Wuhan Digital Engineering Institu te,Wuhan 430074) Abstract:This paper proposes the frame of construct collectivity design,explains the basic concept of construct collectivi ty design,ana-l yses the mostly content construct collectivity design and the important effect of the development of computers on it in detail.The analysis has shown that construct collectivity desi gn is very importan t in construct design of shipborne electronic equip ment. Key words:electronic equipmen t,construct collectivity design,concept design,adaptabili ty to environmen t,construct system Class number:TP303 1 概述 一个系统或者一个设备要形成产品,一般要经过总体设计阶段和工程设计阶段。总体设计按设计级别分为系统总体设计、分系统总体设计和设备总体设计;按设计专业分为软件总体设计、硬件总体设计和结构总体设计。结构总体设计是以机械设计为基础,针对设计要求进行的多目标、多方案的优化设计,是进行结构工程设计的基础和重要前提。 结构总体设计的思想和方法是随科技的进步而不断发展的。20世纪80年代以来,随着现代计算机技术的快速发展以及C AD/CAE/C AM软件的广泛应用,结构总体设计产生了飞跃。 舰载电子设备作为舰载系统重要的硬件组成部分,首先功能上不是独立的,必须满足舰用环境条件、相关国军标和系统的技术要求;其次,它是一个机电一体化系统,必须在达到设备机械性能的条件下同时实现雷达、声纳、光电、指控、火控、电子对抗、导航、通信、机电控制、损管控制等系列装备的信息处理、传输、显示以及操控的需要。 计算机技术在舰载电子设备结构总体设计的推广应用是从上世纪90年代开始的,十几年的发展,逐渐形成了一套较完善的设计体系,为缩短舰载设备乃至舰艇的研制周期,提高整体可靠性发挥了重要作用。 2 舰载电子设备结构总体设计框架 2.1结构总体设计是结构设计的一部分 舰载电子设备结构设计的基本程序与普通产品的结构设计是一致的,依次是概念设计、结构初步设计、结构详细设计、样机试制、样机定型和批生产准备,主要过程如图1所示。 2.2结构总体设计的重要性 舰载电子设备结构功能复杂,使用环境特殊,结构总体设计的重要性要大于结构详细设计。结构总体设计决定结构详细设计的难度,对整个结构设计产生重要影响。当然,不能强调了结构总体设 163 总第152期2006年第2期 舰船电子工程 Ship Electronic Engineering Vol.26No.2 收稿日期:2005年9月21日,修回日期:2005年10月8日

军用设备环境试验通用标准方法及方案

军用电子设备环境试验 1、低温试验: 舰船电子设备环境试验低温贮存试验 GJB ;只做:温度≥-70℃ 舰船电子设备环境试验低温试验 GJB ;只做:温度≥-70℃ 军用电子测试设备通用规范 GJB 3947A-2009;只做:温度≥-70℃ 军用计算机通用规范 GJB 322A-1998;只做:温度≥ -70℃ 军用通信设备通用规范 GJB 367A-2001;只做:温度≥ -70℃ 军用装备实验室环境试验方法第4部分:低温试验 GJB ;只做:温度≥-70℃ 2、高温试验: 舰船电子设备环境试验高温试验GJB ;只做:温度≤300℃。 电子及电气元件试验方法? GJB 360B-2009;只做:温度≤300℃。 微电子器件试验方法和程序 GJB 548B-2005;只做:温度≤300℃。 军用电子测试设备通用规范 GJB 3947A-2009;只做:温度≤300℃。 军用计算机通用规范 GJB 322A-1998;只做:温度≤300℃。 军用通信设备通用规范 GJB 367A-2001;只做:温度≤300℃。 军用装备实验室环境试验方法第3部分:高温试验 GJB ;只做:温度≤300℃。 3、交变湿热试验: 舰船电子设备环境试验交变湿热试验;只做:温度(10~95)℃,湿度:(20~98)%RH。 电子及电气元件试验方法? GJB 360B-2009;只做:温度(10~95)℃,湿度:(20~98)%RH。 微电子器件试验方法和程序 GJB 548B-2005;只做:温度(10~95)℃,湿度:(20~98)%RH。 军用电子测试设备通用规范 GJB 3947A-2009;只做:温度(10~95)℃,湿度:(20~98)%RH。 军用通信设备通用规范 GJB 367A-2001;只做:温度(10~95)℃,湿度:(20~98)%RH。 军用装备实验室环境试验方法第9部分:湿热试验GJB ;只做:温度(10~95)℃,湿度:(20~98)%RH。 4、恒定湿热试验: 舰船电子设备环境试验恒定湿热试验;只做:温度(10~95)℃,湿度:(20~98)%RH。 电子及电气元件试验方法? GJB 360B-2009 5;只做:温度(10~95)℃,湿度:(20~98)%RH。 军用计算机通用规范 GJB 322A-1998;只做:温度(10~95)℃,湿度:(20~98)%RH。 5、振动试验: 军用电子测试设备通用规范 GJB 3947A-2009;只做:频率2Hz~3000Hz,位移≤51mm, 载荷≤3000kg。 军用计算机通用规范 GJB 322A-1998;只做:频率2Hz~3000Hz,位移≤51mm,载荷≤3000kg。 军用通信设备通用规范 GJB 367A-2001;只做:频率2Hz~3000Hz,位移≤51mm, 载荷≤3000kg。 军用装备实验室环境试验方法第16部分:振动试验 GJB ;只做:频率2Hz~3000Hz,位移≤51mm,载荷≤3000kg。 舰船电子设备环境试验振动试验GJB ;只做:频率2Hz~3000Hz,位移≤51mm, 载荷≤3000kg。 =电子产品环境应力筛选方法 GJB 1032-1990;只做:频率2Hz~3000Hz,位移≤51mm,? 载荷≤3000kg。 电子及电气元件试验方法? GJB 360B-2009;只做:频率2Hz~3000Hz,位移≤51mm,? 载荷≤3000kg。

电子、电气、电工、铁路机车装置、军用设备产品(环境试验)

我方环境可靠性试验实验室专业为广大企事业单位产品提供高温,低温,湿热,振动,冲击,跌落,碰撞,盐雾,温度变化,快速温变,三综合试验,外壳防护等级,可靠性试验检测服务,试验后出具国家认可的检测报告。 我方实验室获得的环境试验授权范围如下: 1.低温试验 电工电子产品环境试验第2部分:试验方法试验A:低温GB/T 2423.1-2008/IEC 60068-2-1:2007 包装运输包装件基本试验第2部分:温湿度调节处理GB/T 4857.2-2005/ISO 2233:2000 汽车电气设备基本技术条件QC/T 413-2002 军用装备实验室环境试验方法第4部分:低温试验GJB 150.4A-2009 军用通信设备通用规范GJB 367A-2001 军用电子测试设备通用规范GJB3947A-2009 舰船电子设备环境试验低温试验GJB 4.3-1983 舰船电子设备环境试验低温贮存试验GJB 4.4-1983 轨道交通机车车辆电子装置GB/T 25119-2010/IEC 60571:2006 电子测量仪器通用规范GB/T 6587-2012 铁路地面信号产品高温及低温试验方法TB/T 2953-1999 2.高温试验 电工电子产品环境试验第2部分:试验方法试验A:高温GB/T 2423.2-2008/IEC 60068-2-2:2007 包装运输包装件基本试验第2部分:温湿度调节处理GB/T 4857.2-2005/ISO 2233:2000 汽车电气设备基本技术条件QC/T 413-2002 军用装备实验室环境试验方法第4部分:低温试验GJB 150.3A-2009 军用通信设备通用规范GJB 367A-2001 军用电子测试设备通用规范GJB3947A-2009 舰船电子设备环境试验高温试验GJB 4.2-1983 舰船电子设备环境试验高温贮存试验GJB 4.4-1983 轨道交通机车车辆电子装置GB/T 25119-2010/IEC 60571:2006 电子测量仪器通用规范GB/T 6587-2012 铁路地面信号产品高温及低温试验方法TB/T 2953-1999 微电子器件试验方法和程序GJB 548B-2005 电子及电气元件试验方法GJB 360B-2009 3.湿热试验

电子设备热设计

习题1 1. 平壁的厚度为δ,两表面温度分别为t 1和t 2,且t 1>t 2。平壁材料之导热系数与温度的关系呈线性,即()01t λλβ=+。试求热流密度和壁内温度分布的表达式。 2. 变压器的钢片束由n 片钢片组成,每一钢片的厚度为0.5mm ,钢片之间敷设有厚度为0.05mm 的绝缘纸板。钢的导热系数为58.15W/(m ·℃),绝缘纸的导热系数为0.116 W/(m ·℃)。试求热流垂直通过钢片束时的当量导热系数。 3. 用稳定平板导热法测定固体材料导热系数的装置中,试件做成圆形平板,平行放置于冷、热两表面之间。已知试件直径为150mm ,通过试件的热流量Φ=60W ,热电偶测得热表面的温度和冷表面的温度分别为180℃和30℃。检查发现,由于安装不好,试件冷、热表面之间均存在相当于0.1mm 厚空气隙的接触热阻。试问这样测得的试件导热系数有多大的误差? 4. 蒸汽管道的外直径为30mm ,准备包两层厚度均为15mm 的不同材料的热绝缘层。第一种材料的导热系数λ1=0.04W/(m ·℃),第二种材料的导热系数λ2=0.1W/(m ·℃)。若温差一定,试问从减少热损失的观点看下列两种方案:⑴第一种材料在里层,第二种材料在外层;⑵第二种材料在里层,第一种材料在外层。哪一种好?为什么? 5. 导热复合壁,由λ1=386W/(m ·℃)的铜板,λ2=0.16W/(m ·℃)的石棉层及λ3=0.038W/(m ·℃)的玻璃纤维层组成,它们的厚度分别为2.5cm 、3.2mm 和5cm 。复合壁的总温差为560℃,试求单位面积的热流量为多少? 6. 内径为300mm 、厚度为8mm 的钢管,表面依次包上一层厚度为25mm 厚的保温材料(λ=0.116W/(m ·℃))和一层厚度为3mm 的帆布(λ=0.093W/(m ·℃))。钢的导热系数为46.5W/(m ·℃)。试求此情况下的导热热阻比裸管时增加了多少倍? 7. 蒸汽管道材料为铝,导热系数为204W/(m ·℃),内、外直径分别为86mm 和100mm ,内表面温度为150℃。用玻璃棉(λ=0.038W/(m ·℃))保温,若要求保温层外表面温度不超过40℃,且蒸汽管道允许的热损失为φ1=50W/m ,试求玻璃棉保温层的厚度至少应为多少?

军用设备环境试验通用标准方法及方案

军用设备环境试验通用标准方法及方案 标准化管理部编码-[99968T-6889628-J68568-1689N]

军用电子设备环境试验 1、低温试验: 舰船电子设备环境试验低温贮存试验 GJB ;只做:温度≥-70℃ 舰船电子设备环境试验低温试验 GJB ;只做:温度≥-70℃ 军用电子测试设备通用规范 GJB 3947A-2009;只做:温度≥-70℃ 军用计算机通用规范 GJB 322A-1998;只做:温度≥ -70℃ 军用通信设备通用规范 GJB 367A-2001;只做:温度≥ -70℃ 军用装备实验室环境试验方法第4部分:低温试验 GJB ;只做:温度≥-70℃ 2、高温试验: 舰船电子设备环境试验高温试验GJB ;只做:温度≤300℃。 电子及电气元件试验方法 GJB 360B-2009;只做:温度≤300℃。 微电子器件试验方法和程序 GJB 548B-2005;只做:温度≤300℃。 军用电子测试设备通用规范 GJB 3947A-2009;只做:温度≤300℃。 军用计算机通用规范 GJB 322A-1998;只做:温度≤300℃。 军用通信设备通用规范 GJB 367A-2001;只做:温度≤300℃。 军用装备实验室环境试验方法第3部分:高温试验 GJB ;只做:温度≤300℃。 3、交变湿热试验: 舰船电子设备环境试验交变湿热试验;只做:温度(10~95)℃,湿度:(20~98)%RH。 电子及电气元件试验方法 GJB 360B-2009;只做:温度(10~95)℃,湿度:(20~98)%RH。 微电子器件试验方法和程序 GJB 548B-2005;只做:温度(10~95)℃,湿度:(20~98)%RH。 军用电子测试设备通用规范 GJB 3947A-2009;只做:温度(10~95)℃,湿度:(20~98)%RH。军用通信设备通用规范 GJB 367A-2001;只做:温度(10~95)℃,湿度:(20~98)%RH。 军用装备实验室环境试验方法第9部分:湿热试验GJB ;只做:温度(10~95)℃,湿度:(20~98)%RH。 4、恒定湿热试验: 舰船电子设备环境试验恒定湿热试验;只做:温度(10~95)℃,湿度:(20~98)%RH。 电子及电气元件试验方法 GJB 360B-2009 5;只做:温度(10~95)℃,湿度:(20~98)%RH。 军用计算机通用规范 GJB 322A-1998;只做:温度(10~95)℃,湿度:(20~98)%RH。 5、振动试验: 军用电子测试设备通用规范 GJB 3947A-2009;只做:频率2Hz~3000Hz,位移≤51mm, 载荷≤3000kg。 军用计算机通用规范 GJB 322A-1998;只做:频率2Hz~3000Hz,位移≤51mm,载荷≤3000kg。 军用通信设备通用规范 GJB 367A-2001;只做:频率2Hz~3000Hz,位移≤51mm, 载荷≤3000kg。 军用装备实验室环境试验方法第16部分:振动试验 GJB ;只做:频率2Hz~3000Hz,位移≤51mm,载荷≤3000kg。 舰船电子设备环境试验振动试验GJB ;只做:频率2Hz~3000Hz,位移≤51mm, 载荷≤3000kg。 =电子产品环境应力筛选方法 GJB 1032-1990;只做:频率2Hz~3000Hz,位移≤51mm, 载荷≤3000kg。 电子及电气元件试验方法 GJB 360B-2009;只做:频率2Hz~3000Hz,位移≤51mm, 载荷≤3000kg。

电子产品热设计

目录 摘要: (2) 第1章电子产品热设计概述: (2) 第1.1节电子产品热设计理论基础 (2) 1.1.1 热传导: (2) 1.1.2 热对流 (2) 1.1.3 热辐射 (2) 第1.2节热设计的基本要求 (3) 第1.3节热设计中术语的定义 (3) 第1.4节电子设备的热环境 (3) 第1.5节热设计的详细步骤 (4) 第2章电子产品热设计分析 (5) 第2.1节主要电子元器件热设计 (5) 2.1.1 电阻器 (5) 2.1.2 变压器 (5) 第2.2节模块的热设计 (5) 电子产品热设计实例一:IBM “芯片帽”芯片散热系统 (6) 第2.3节整机散热设计 (7) 第2.4节机壳的热设计 (8) 第2.5节冷却方式设计: (9) 2.5.1 自然冷却设计 (9) 2.5.2 强迫风冷设计 (9) 电子产品热设计实例二:大型计算机散热设计: (10) 第3章散热器的热设计 (10) 第3.1节散热器的选择与使用 (10) 第3.2节散热器选用原则 (11) 第3.3节散热器结构设计基本准则 (11) 电子产品热设计实例三:高亮度LED封装散热设计 (11) 第4章电子产品热设计存在的问题与分析: (15) 总结 (15) 参考文献 (15)

电子产品热设计 摘要: 电子产品工作时,其输出功率只占产品输入功率的一部分,其损失的功率都以热能形式散发出去,尤其是功耗较大的元器件,如:变压器、大功耗电阻等,实际上它们是一个热源,使产品的温度升高。因此,热设计是保证电子产品能安全可靠工作的重要条件之一,是制约产品小型化的关键问题。另外,电子产品的温度与环境温度有关,环境温度越高,电子产品的温度也越高。由于电子产品中的元器件都有一定的温度范围,如果超过其温度极限,就将引起产品工作状态的改变,缩短其使用寿命,甚至损坏,使电子产品无法稳定可靠地工作。 第1章电子产品热设计概述: 电子产品的热设计就是根据热力学的基本原理,采取各种散热手段,使产品的工作温度不超过其极限温度,保证电子产品在预定的环境条件下稳定可靠地工作。 第1.1节电子产品热设计理论基础 热力学第二定律指出:热量总是自发的、不可逆转的,从高温处传向低温处,即:只要有温差存在,热量就会自发地从高温物体传向低温物体,形成热交换。热交换有三种模式:传导、对流、辐射。它们可以单独出现,也可能两种或三种形式同时出现。 1.1.1 热传导: 气体导热是由气体分子不规则运动时相互碰撞的结果。金属导体中的导热主要靠自由电子的运动来完成。非导电固体中的导热通过晶格结构的振动实现的。液体中的导热机理主要靠弹性波的作用。 1.1.2 热对流 对流是指流体各部分之间发生相对位移时所引起的热量传递过程。对流仅发生在流体中,且必然伴随着有导热现象。流体流过某物体表面时所发生的热交换过程,称为对流换热。 由流体冷热各部分的密度不同所引起的对流称自然对流。若流体的运动由外力(泵、风机等)引起的,则称为强迫对流。 1.1.3 热辐射 物体以电磁波方式传递能量的过程称为热辐射。辐射能在真空中传递能量,且有能量方

热 设 计 讲 座

热设计讲座 (一)常用词汇和三种传热方式 热设计是设备开发中必不可少的环节。本连载将为大家讲解热设计中的常见词汇,然 后结合习题,学习三种传热方式及各种方式的作用,以及能够简化散热措施相关计算的“热欧姆定律”等。 关于“热”,最重要的定律是“能守恒定律”,因为热也是一种能量。热能出现后不会消失,只能转移到其他物体或转移成其他形式。也就是说,制造散热机构的目的,就是想办法让热尽快转移。水会蒸发但是不会消失,与热类似。下面就以水为例来解释热(图1)。水从水龙头中流出相当于发热,积存的水量(L)相当于热量(J),水位(m)相当于温度(K 或℃)。 图1:用水打比方,思考热的移动 从宏观来看,热是“能量的集合”,可以认为与水相同。热量的单位是“J(焦耳)”,温度(相当于水位)由单位时间产生的热能及其移动量决定,因此,热计算中主要使用的公式是热流量(J/s或W)。 根据能量守恒定律,能量是守恒的,但温度不守恒。守恒意味着加法成立,例如,1J 热量加上1J热量等于2J热量。但另一方面,就像容器改变大小后水位会发生变化一样,温度也会随状态改变,加法自然不成立。 根据守恒守恒定律,热能只能转移,因此,要想实现散热,就必须要把热释放出去。如果水龙头一直出水,容器(图1中的水箱A)的水位就会一直上升,最终灌满整个容器。而散热措施的作用,就是防止水位上升。因此,我们通过用管道将水箱A与其他容器(图1中的水箱B)连接的方法来放水。管道越粗,释放到水箱B里的水就越多,A的水位也就越低。这种对管道的控制就是热设计。 热设计中的常用词汇 电子产品中经常会用到“热阻”(K/W)这个词。在图1的示例中,连接A和B的管道越细,

军用设备环境试验通用标准方法及方案

军用设备环境试验通用标 准方法及方案 Newly compiled on November 23, 2020

军用电子设备环境试验 1、低温试验: 舰船电子设备环境试验低温贮存试验 GJB ;只做:温度≥-70℃ 舰船电子设备环境试验低温试验 GJB ;只做:温度≥-70℃ 军用电子测试设备通用规范 GJB 3947A-2009;只做:温度≥-70℃ 军用计算机通用规范 GJB 322A-1998;只做:温度≥ -70℃ 军用通信设备通用规范 GJB 367A-2001;只做:温度≥ -70℃ 军用装备实验室环境试验方法第4部分:低温试验 GJB ;只做:温度≥-70℃ 2、高温试验: 舰船电子设备环境试验高温试验GJB ;只做:温度≤300℃。 电子及电气元件试验方法 GJB 360B-2009;只做:温度≤300℃。 微电子器件试验方法和程序 GJB 548B-2005;只做:温度≤300℃。 军用电子测试设备通用规范 GJB 3947A-2009;只做:温度≤300℃。 军用计算机通用规范 GJB 322A-1998;只做:温度≤300℃。 军用通信设备通用规范 GJB 367A-2001;只做:温度≤300℃。 军用装备实验室环境试验方法第3部分:高温试验 GJB ;只做:温度≤300℃。 3、交变湿热试验: 舰船电子设备环境试验交变湿热试验;只做:温度(10~95)℃,湿度:(20~98)%RH。 电子及电气元件试验方法 GJB 360B-2009;只做:温度(10~95)℃,湿度:(20~98)%RH。 微电子器件试验方法和程序 GJB 548B-2005;只做:温度(10~95)℃,湿度:(20~98)%RH。 军用电子测试设备通用规范 GJB 3947A-2009;只做:温度(10~95)℃,湿度:(20~98)%RH。军用通信设备通用规范 GJB 367A-2001;只做:温度(10~95)℃,湿度:(20~98)%RH。 军用装备实验室环境试验方法第9部分:湿热试验GJB ;只做:温度(10~95)℃,湿度:(20~98)%RH。 4、恒定湿热试验: 舰船电子设备环境试验恒定湿热试验;只做:温度(10~95)℃,湿度:(20~98)%RH。 电子及电气元件试验方法 GJB 360B-2009 5;只做:温度(10~95)℃,湿度:(20~98)%RH。 军用计算机通用规范 GJB 322A-1998;只做:温度(10~95)℃,湿度:(20~98)%RH。 5、振动试验: 军用电子测试设备通用规范 GJB 3947A-2009;只做:频率2Hz~3000Hz,位移≤51mm, 载荷≤3000kg。 军用计算机通用规范 GJB 322A-1998;只做:频率2Hz~3000Hz,位移≤51mm,载荷≤3000kg。 军用通信设备通用规范 GJB 367A-2001;只做:频率2Hz~3000Hz,位移≤51mm, 载荷≤3000kg。 军用装备实验室环境试验方法第16部分:振动试验 GJB ;只做:频率2Hz~3000Hz,位移≤51mm,载荷≤3000kg。 舰船电子设备环境试验振动试验GJB ;只做:频率2Hz~3000Hz,位移≤51mm, 载荷≤3000kg。 =电子产品环境应力筛选方法 GJB 1032-1990;只做:频率2Hz~3000Hz,位移≤51mm, 载荷≤3000kg。 电子及电气元件试验方法 GJB 360B-2009;只做:频率2Hz~3000Hz,位移≤51mm, 载荷≤3000kg。

大功率电子元器件及设备结构的热设计

大功率电子元器件及设备结构的热设计 电子元器件以及电子设备已经在人们生产生活当中的各个领域内所应用。随着电子元器件的集成度越来越高以及功率要求越来越大,因此必然会引起电器元器件的热效应,因此对于大功率电子元器件或电子设备需要进行热设计。文章对大功率电子元器件及设备结构热设计的考虑因素,设计流程及要求以及主要参数计算等均作了简单阐述,可以对研究大功率电子元器件及设备结构的热设计起到积极作用。 标签:大功率;电子元器件;电子设备;热设计 前言 随着现代社会的发展,电子设备已经在人们的生产生活当中得到普遍应用。因此电子设备的可靠性对于人们的生产生活具有十分重要的作用。特别是在一些关键或核心领域,即使是一个小的电子元器件出现问题,都极易可能造成极大的危害。特别是近些年随着硅集成电路的普遍应用,电路的集成得到了成倍的增加,因此各电子元器件或芯片的热量也得到了相应的增加。同时在电子产品小型化,高功率的背景下,电子元器件或电子设备的散热问题就成为了保障设备安全可靠的关键性问题。因此对于现代电子元器件或电子设备若想保持安全可靠性就需要采取科学合理的热设计。 1 大功率电子元器件及设备结构热设计的考虑因素 1.1 大功率电子元器件及设备结构的传热方式 大功率电子元器件及设备结构的传热方式有三种,即导热、对流和辐射。其中导热基本是由气体分子不规则运动时相互碰撞,金属自由电子的运动,非导电固体晶格结构的振动以及液体弹性波产生的。对流则是指流体各部分之间发生相对位移时所引起的热量传递过程。对流仅发生在流体中,且必然伴随着导热现象。流体流过某物体表面时所发生的热交换过程称为对流。辐射主要为电磁波一般考察与太阳、空间环境间的传热时才考虑,其辐射传热系数为: 1.2 大功率电子元器件结温 从广义上将元器件的有源区称为“结”,而将元器件的有源区温度称为“结温”。元器件的有源区可以是结型器件的Pn结区,场效应器件的沟道区或肖特器件的接触势垒区,也可以是集成电路的扩散电阻或薄膜电阻等,默认为芯片上的最高温度。大功率电子元器件的最高结温,对于硅器件塑料封装为125~150℃,金属封装为150~200℃。对于锗器件为70~90℃当结温较高时(如大于50℃),结温每降低40~50℃,元器件寿命可提高约一个数量级。所以对于航空航天和军事领域应用的元器件,由于有特别长寿命或低维护性要求,并受更换费用限制以及须承受频繁的功率波动,平均结温要求低于60℃。

军用设备环境试验通用标准方法及方案

军用设备环境试验通用标准方法及方案 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

军用电子设备环境试验 1、低温试验: 舰船电子设备环境试验低温贮存试验 GJB ;只做:温度≥-70℃ 舰船电子设备环境试验低温试验 GJB ;只做:温度≥-70℃ 军用电子测试设备通用规范 GJB 3947A-2009;只做:温度≥-70℃ 军用计算机通用规范 GJB 322A-1998;只做:温度≥ -70℃ 军用通信设备通用规范 GJB 367A-2001;只做:温度≥ -70℃ 军用装备实验室环境试验方法第4部分:低温试验 GJB ;只做:温度≥-70℃ 2、高温试验: 舰船电子设备环境试验高温试验GJB ;只做:温度≤300℃。 电子及电气元件试验方法 GJB 360B-2009;只做:温度≤300℃。 微电子器件试验方法和程序 GJB 548B-2005;只做:温度≤300℃。 军用电子测试设备通用规范 GJB 3947A-2009;只做:温度≤300℃。 军用计算机通用规范 GJB 322A-1998;只做:温度≤300℃。 军用通信设备通用规范 GJB 367A-2001;只做:温度≤300℃。 军用装备实验室环境试验方法第3部分:高温试验 GJB ;只做:温度≤300℃。 3、交变湿热试验: 舰船电子设备环境试验交变湿热试验;只做:温度(10~95)℃,湿度:(20~98)%RH。 电子及电气元件试验方法 GJB 360B-2009;只做:温度(10~95)℃,湿度:(20~98)%RH。 微电子器件试验方法和程序 GJB 548B-2005;只做:温度(10~95)℃,湿度:(20~98)%RH。 军用电子测试设备通用规范 GJB 3947A-2009;只做:温度(10~95)℃,湿度:(20~98)%RH。军用通信设备通用规范 GJB 367A-2001;只做:温度(10~95)℃,湿度:(20~98)%RH。 军用装备实验室环境试验方法第9部分:湿热试验GJB ;只做:温度(10~95)℃,湿度:(20~98)%RH。 4、恒定湿热试验: 舰船电子设备环境试验恒定湿热试验;只做:温度(10~95)℃,湿度:(20~98)%RH。 电子及电气元件试验方法 GJB 360B-2009 5;只做:温度(10~95)℃,湿度:(20~98)%RH。 军用计算机通用规范 GJB 322A-1998;只做:温度(10~95)℃,湿度:(20~98)%RH。 5、振动试验: 军用电子测试设备通用规范 GJB 3947A-2009;只做:频率2Hz~3000Hz,位移≤51mm, 载荷≤3000kg。 军用计算机通用规范 GJB 322A-1998;只做:频率2Hz~3000Hz,位移≤51mm,载荷≤3000kg。 军用通信设备通用规范 GJB 367A-2001;只做:频率2Hz~3000Hz,位移≤51mm, 载荷≤3000kg。 军用装备实验室环境试验方法第16部分:振动试验 GJB ;只做:频率2Hz~3000Hz,位移≤51mm,载荷≤3000kg。 舰船电子设备环境试验振动试验GJB ;只做:频率2Hz~3000Hz,位移≤51mm, 载荷≤3000kg。 =电子产品环境应力筛选方法 GJB 1032-1990;只做:频率2Hz~3000Hz,位移≤51mm, 载荷≤3000kg。 电子及电气元件试验方法 GJB 360B-2009;只做:频率2Hz~3000Hz,位移≤51mm, 载荷≤3000kg。

热设计

热设计 在调试或维修电路的时候,我们常提到一个词“**烧了”,这个**有时是电阻、有时是保险丝、有时是芯片,可能很少有人会追究这个词的用法,为什么不是用“坏”而是用“烧”?其原因就是在机电产品中,热失效是最常见的一种失效模式,电流过载,局部空间内短时间内通过较大的电流,会转化成热,热**不易散掉,导致局部温度快速升高,过高的温度会烧毁导电铜皮、导线和器件本身。所以电失效的很大一部分是热失效。 那么问一个问题,如果假设电流过载严重,但该部位散热极好,能把温升控制在很低的范围内,是不是器件就不会失效了呢?答案为“是”。 由此可见,如果想把产品的可靠性做高,一方面使设备和零部件的耐高温特性提高,能承受较大的热应力(因为环境温度或过载等引起均可);另一方面是加强散热,使环境温度和过载引起的热量全部散掉,产品可靠性一样可以提高。下面介绍下热设计的常规方法。 我们机电设备常见的是散热方式是散热片和风扇两种散热方式,有时散热的程度不够,有时又过度散热了,那么何时应该散热,哪种方式散热最合适呢?这可以依据热流密度来评估,热流密度=热量/ 热通道面积。 按照《GJB/Z27-92 电子设备可靠性热设计手册》的规定(如图1),根据可接受的温升的要求和计算出的热流密度,得出可接受的散热方法。如温升40℃(纵轴),热流密度 0.04W/cm2(横轴),按下图找到交叉点,落在自然冷却区内,得出自然对流和辐射即可满足设计要求。

大部分热设计适用于上面这个图表,因为基本上散热都是通过面散热。但对于密封设备,则应该用体积功率密度来估算,热功率密度=热量/ 体积。下图(图2)是温升要求不超过40℃时,不同体积功率密度所对应的散热方式。比如某电源调整芯片,热耗为0.01W,体积为0.125cm3,体积功率密度=0.1/0.125=0.08W/cm3,查下图得出金属传导冷却可满足要求。 按照上图,可以得出冷却方法的选择顺序:自然冷却一导热一强迫风冷一液冷一蒸发冷却。体积功率密度低于0.122W/cm3传导、辐射、自然对流等方法冷却;0.122-0.43W/cm3强

电子设备的热设计

2010-02兵工自动化 29(2)Ordnance Industry Automation ·49·doi: 10.3969/j.issn.1006-1576.2010.02.016 电子设备的热设计 郝云刚1,刘玲2 (1. 中国兵器工业第五八研究所投资管理处,四川绵阳 621000; 2. 中国兵器工业第五八研究所数控事业部,四川绵阳 621000) 摘要:热设计是保证电子设备能安全可靠工作的重要条件。介绍了热力学散热理论,从散热方法的选择以及器 件的布局等方面详细地说明了电子设备结构设计中热设计的基本步骤,介绍了一些新的散热技术与方法。总结得来 的热设计技术和经验对于结构设计有重要辅助作用。 关键词:热设计;对流;散热 中图分类号:O551.3 文献标识码:A Thermal Design of Electronic Equipment HAO Yun-gang1, LIU Ling2 (1. Management Office of Investment, No. 58 Research Institute of China Ordnance Industries, Mianyang 621000, China; 2. Dept. of CNC Engineering, No. 58 Research Institute of China Ordnance Industries, Mianyang 621000, China) Abstract: Thermal design is an important condition for electron-equipment’s reliability. Introduce thermodynamic theory about elimination of heat, expound the basic steps of thermal design from how to choose the technique about elimination of heat and the element layout in detail, discuss some new technique and methods about elimination of heat. The theory and experience from practice about thermal design have important assistant effect in configuration design. Keywords: Thermal design; Convection; Elimination of heat 0 引言 电子设备工作时,其输出功率只占设备输入功率的一部分,其损失的功率都以热能形式散发出去,尤其是功耗较大的元器件,如:变压器、功耗大的电阻等,实际上它们是一个热源,使设备的温度升高。因此,热设计是保证电子设备能安全可靠工作的重要条件之一,是制约设备小型化的关键问题。 另外,电子设备的温度与环境温度有关,环境温度越高,电子设备的温度也越高。由于电子设备中的元器件都有一定的温度范围,如果超过其温度极限,就将引起设备工作状态的改变,缩短其使用寿命,甚至损坏,使电子设备无法稳定可靠地工作。 电子设备的热设计就是根据热力学的基本原理,采取各种散热手段,使设备的工作温度不超过其极限温度,保证电子设备在预定的环境条件下稳定可靠地工作。故对其进行研究。 1 理论基础 热力学第二定律指出:热量总是自发的、不可逆转的,从高温处传向低温处,即:有温差存在,就有热量的传递。热量传递是一种普遍的自然现象。热传递现象常是不同基本方式的主次组合。这些基本方式包括热传导、热对流和热辐射。 在电子设备的冷却中普遍采用对流方式。对流是固体表面与流体表面间传热的主要方式。功耗首先以传导方式传递到与流体相接触的表面,通过对流传入流体中,然后该流体再流到其他地方。 2 一般热设计步骤 2.1 熟悉元器件的参数 确定元器件的各种参数,如:结温、内阻、标称额定功率、使用功率、耗散功率、满足可靠性指标时的结温以及工作环境的温度范围,先尽量选用耐高温的元器件。 2.2 散热方法的选择 对于一些小型化、高功率密度的元器件来说,由于体积、成本等因素的影响,采用自然风冷作为主要的散热方式,有2个要点: 1) 通过自然对流的方式,将热量从模块外壳和暴露表面传至空气中,热量由元器件间形成的沟道散发到周围的环境中。 2) 通过辐射的方式,将热量从器件的暴露外壳辐射到周围物体表面上。主要依靠自然对流和热辐射来散热,所以器件周围的环境一定要通风良好, 收稿日期:2009-09-04;修回日期:2009-10-30 作者简介:郝云刚(1982-),男,江苏人,助理工程师,2004年毕业于重庆大学,从事投资管理研究。

电子产品热设计方案规范

电子产品热设计规范 1概述 1.1 热设计的目的 采用适当可靠的方法控制产品内部所有电子元器件的温度,使其在所处的工作环境条件下不超过稳定运行要求的最高温度,以保证产品正常运行的安全性,长期运行的可靠性。 1.2 热设计的基本问题 1.2.1 耗散的热量决定了温升,因此也决定了任一给定结构的温度; 1.2.2 热量以导热、对流及辐射传递出去,每种形式传递的热量与其热阻成反比; 1.2.3 热量、热阻和温度是热设计中的重要参数; 1.2.4 所有的冷却系统应是最简单又最经济的,并适合于特定的电气和机械、环境条件,同时满足可靠性要求; 1.2.5 热设计应与电气设计、结构设计、可靠性设计同时进行,当出现矛盾时,应进行权衡分析,折衷解决; 1.2.6 热设计中允许有较大的误差; 1.2.7 热设计应考虑的因素:包括 结构与尺寸 功耗 产品的经济性

与所要求的元器件的失效率相应的温度极限 电路布局 工作环境 1.3 遵循的原则 1.3.1热设计应与电气设计、结构设计同时进行,使热设计、结构设计、电气设计相互兼顾; 1.3.2 热设计应遵循相应的国际、国内标准、行业标准; 1.3.3 热设计应满足产品的可靠性要求,以保证设备内的元器件均能在设定的热环境中长期正常工作。 1.3.4 每个元器件的参数选择及安装位置及方式必须符合散热要求; 1.3.5 在规定的使用期限内,冷却系统(如风扇等)的故障率应比元件的故障率低; 1.3.6 在进行热设计时,应考虑相应的设计余量,以避免使用过程中因工况发生变化而引起的热耗散及流动阻力的增加。 1.3.7 热设计不能盲目加大散热余量,尽量使用自然对流或低转速风扇等可靠性高的冷却方式。使用风扇冷却时,要保证噪音指标符合标准要求。 1.3.8 热设计应考虑产品的经济性指标,在保证散热的前提下使其结构简单、可靠且体积最小、成本最低。 1.3.9 冷却系统要便于监控与维护 2热设计基础

电子设备热设计散热技术与方法选择数据分析

龙源期刊网 https://www.sodocs.net/doc/b76260677.html, 电子设备热设计散热技术与方法选择数据分析 作者:唐田 来源:《科学与信息化》2016年第31期 摘要热设计关系到电子设备是否能安全可靠的运行。本论文根据热力学散热理论,从散热方法的选择以及基板上器件的布局等方面说明了电子设备结构设计中热设计的方法及重要性,介绍了最新的散热技术与方法。 关键词电子设备;可靠;散热 1 概述 近些年,微电子技术突飞猛进,多功能、高密度封装、高速运转、体积小等特点的器件在电子设备中应该越来越广泛,引起了相应电子设备的热流密度集中放大。要保证电子设备可靠、稳定工作,必须对整个设备有良好的热设计,提高散热能力和速度,从而提高产品的可靠性和安全性。电子设备的热设计是指通过元器件选择、电路设计、结构设计和布局来减少温度对产品可靠性的影响,使设备能在较宽的温度范围内工作。热设计的目的是:保证电器性能稳定,避免或减小电参数的温度漂移;降低元器件的基本失效率,提高设备的平均无故障工作时间;减缓机械零部件氧化、老化、疲劳以及磨损等进程,从而延长电子设备的使用寿命[1]。 2 热设计的基础 电子设备的热设计应根据所要求的设备可靠性和分配给每个器件的失效率,利用元器件应力分析预计法,确定元器件的最高允许工作温度和功耗,使热设计满足可靠性的要求;另外,充分考虑设备预期工作的热环境,包括环境温度和压力的极限值、变化率、太阳或周围其他物体的辐射热载荷、可利用的热沉状况以及冷却剂的种类、温度、压力和允许的压降等。最后,热设计还应符合相关的标准和规范规定的要求[2]。 3 冷却技术应用的条件 目前冷却方法分为直接冷却、间接冷却(即把内部的热源导到散热片上)、蒸发冷却、自然冷却(包括导热、自然对流、辐射换热)、热管传热、强迫冷却(强迫风冷和强迫液体冷却)等[3]。 3.1 当温升条件为40℃时,不同冷却方法带来的热流密度和体积功率密度值如图1和图2所示。 3.2 温升要求不同的各类设备冷却,可参照热流密度和温升的要求(图3)进行选择。

电子设备热设计实验4

实验四热管换热器测试(选做) 一、实验目的 1.了解热管换热器实验台的工作原理; 2.熟悉热管换热器实验台的使用方法; 3.掌握热管换热器换热量Φ和传热系数K的测量和计算方法。 二、实验台结构及原理 1 6 11—热段风机 热段中的电加热器使空气加热,热风经热段风道时,通过翅片管进行换热和传递,从而使冷段风道的空气温度升高。利用风道中的热电偶对冷、热段的进出口温度进行测量,并用热球风速仪对冷、热段的出口风速进行测量,从而可以计算换热器的换热量Φ和传热系数K。 三、实验台参数 1.冷段出口内径:直径D=61mm 2.热段出口尺寸:长158mm。宽70mm 3.冷段传热表面参数:

翅片管长280mm 钢管直径20mm 翅片直径40mm 翅片个数104个 4.热段传热表面参数: 翅片管长280mm 钢管直径20mm 翅片直径40mm 翅片个数104个 5.笛形管修正系数(用于毕托管测量风速) 热端:动压修正系数ξ=0.845 流量修正系数α=0.925 冷端:动压修正系数ξ=0.943 流量修正系数α=0.980 6.换热器面积:A=5.06 m2 四、实验步骤 1.接通电源; 2.打开冷、热段风机; 3.将工况开关按在“加热Ⅰ”位置(Ⅰ—450W),此时电加热器开始工作; 4.用热线风速仪在冷、热段出口的测孔中测量风速(为使测量工作在风道温 度不超过40℃的情况下进行,必须在开风机后立即测量)。风速仪使用方法,请参阅该仪器说明书; 5.待工况稳定后(约10分钟),按下琴键开关,切换测温点,逐点测量工况 Ⅰ的冷热段进出口温度(参看实验台结构图);同时根据加热电流和电压计算出加热功率; 6.将工况开关按在“加热Ⅱ”位置(Ⅱ—1000W),重复上述步骤,测量工况Ⅱ 的冷热段进出口温度; 7.实验结束后,切断所有电源。 五、实验数据的整理 将实验测得的数据填入下表中:

相关主题