搜档网
当前位置:搜档网 › FPGA在ASIC设计流程中的应用(精)

FPGA在ASIC设计流程中的应用(精)

FPGA在ASIC设计流程中的应用(精)
FPGA在ASIC设计流程中的应用(精)

第 29卷第 6期 V ol. 29, N o. 6

微电子技术

MICR OE LECTR ONIC TECHN OLOG Y

总第 142期 2001年 12月

产品与应用

FPG A 在 ASIC 设计流程中的应用

谢长生 , 徐睿

(信息产业部第 58研究所 , 江苏无锡 214035

摘要 :本文介绍了 FPG A 器件在 ASIC 芯片开发中的应用 , 通过仿 ASIC 的 FPG A 在系统验证板在实际硬件环境中的验证可以弥补 ASIC 设计流程中仿真的不足 , 通过该验证也可以加快 ASIC 设计且降低由于逻辑问题所造成 ASIC 开发中的成本损耗。

关键词 : FPG A 应用 ; ASIC 设计 ; 在系统验证

中图分类号 :T N43112文献标识码 :A 文章编号 :20147(

in ASIC Design

Chang -sheng , X U Rui

(Wuxi Microelectronics Institute , Wuxi Jiangsu , 214035, China

Abstract : The application of FPG A devices in ASIC design is introduced in the paper. It can make com pensation to the simulation of ASIC design flow to verify in real running environment by using FPG A Verify 2 in 2System board. It can als o reduce the cost of ASIC development due to logical problems.

K eyw ords : Application of FPG A ; ASIC design ; Verify 2in 2System

1引言

ASIC (专用集成电路器件具有设计自由度大、芯片中没有无用的单元或晶体管、芯片面积小、性能高、大批量生产时成本低的特点 , 被大量地应用于电子工业各领域。但传统的 ASIC 设计存在着开发周期长、投片成本大 , 特别是在一次投片不成功情况下需要重新改版的情况。 FPG A (现场可编程逻辑阵列是目前大量运用于电子系统设计中的器件 , 该器件是在 ASIC 器件的基础上发展起来的 , 具有 ASIC 器件的高密度、高性能和可编程器件灵活编程的特点。当今 , FPG A 已成为半导体产品市场上发展最快的领域之一。

FPG A 器件的应用可以使设计工程师快速实现和修改硬件的功能 , 以极快的时间推出系统原型。同时由于 FPG A 的灵活性 , 使其产品极易适应各种不同的应用领域 , 极易由用户自行配置 , 使其在维持硬件原有水平的同时 , 能够根据实际的需要或者变化进行调整。目前 FPG A 已大量应用于通讯、计算机、视听、医疗电子等设备中。据 Dataquest 目前发布的一份预测报告显示 , 到 2003年 , 世界用户专用器件市场将出现 ASIC 、 FPG A 、 CP LD 三足鼎立、龙争虎斗之势。现今 FPG A 的门数已高达数百万系统门 , FPG A 的主要供应商有 X ilinx 、 Altera 、Actel 和 Cypress 等。

FPG A 器件灵活的可编程特性能否在 ASIC 开发流程中得到应用呢 ? 答案是肯定的。

通常的 ASIC 开发流程是逻辑设计、前仿真及 QT V 分析、版图设计、后仿真及 LVS 、 DRC 、 ERC 、

收稿日期 :2001-10-18

测试向量生成、图形生成 , 其后是掩膜、制造、封装、测试。在 ASIC 设计流程中 , 仿真阶段所花费的时间是最长的 , 然而由于有时仿真向量大、需要模拟电路工作时间长 , 仿真软件的效率、计算机硬件资源的有限 , 通过软件进行仿真还是有限制的。例如 , 笔者所做的一个 C DMA (码分多址信号处理器 , 仅仿真用户所要求仿真时序的 1/20时 , 仿真数据就已高达一百多兆 , 仿真时间长达 10小时 , 最后采用化整为零、功能分块的方法将电路基本功能仿真了一遍 , 然而不能排除电路、功能串起来之后电路没有问题 , 更不能排除电路潜在的 Bug 存

在。实际芯片工作时 , 电路有时会进入到预想不到的状态 , 这一点软件仿真并不能周详地考虑到。

因此 , 在传统的 ASIC 设计流程中 , 如果能够尽早地查出电路功能和电路时序中的错误特别是潜在的 Bug , 那么将对加快设计、降低成本带来益处。在此我们引进了仿 ASIC 的 FPG A 在系统验证 (称 FPG A 在系统验证。

FPG A :● ● 部分电路时序验证 , 潜在的 Bug 发现● 逻辑综合过程验证● 加快设计流程 , 减少重新制版几率 , 降低成本● 加快系统厂商的系统产品开发● 方便系统厂商对逻辑功能全面确认

2 FPG A 器件介绍

FPG A 由一个逻辑块阵列构成 , 其四周环绕着 I/O 块 , 借助于可编程方式把这些微小的逻辑块连

接起来以实现复杂的逻辑运算。一般的 FPG A 都具

有成千上万个逻辑块以及一定数量的触发器。 FPG A 的逻辑块有粗粒和细粒之分。粗粒结构的逻辑块较大 , 含有两个以上的查询表和触发器 , 这种

FPG A 器件比较适合于高性能应用。细粒结构的逻辑块相对较小 , 含有一个 2输出功能块、一个 4至 1多路器和一个触发器。

FPG A 具有时钟功能适于逻辑合成设计。高密度的 FPG A 采用 SRAM 或者反熔丝编程工艺 , 后者集成了一次可编程 (OTP 技术 , 因此其内部效率较高。

我们在系统验证板所采用的 FPG A 是 X ilinx 公司的 Virtex 215V , 该系

122

, 有 4个专 , 200MH z ,

5万至 100万门 , 内嵌 Block RAM , 在我们完成的两块 FPG A 在系统验证板中分别采用了 XC V300和 XC V150。

3 FPG A 在系统验证在 ASIC 开发流程

中的位置

通常 ASIC 的开发流程如图 1所示

图 1典型的 ASIC 开发流程

FPG A 在系统验证就是将经过逻辑设计和前仿真及 QT V 分析后的门级网表通过工艺重新映射转

成 FPG A 网表 , 做成相应的 FPG A 验证板 , 通过规定的接口在系统硬件环境中进行验证 , 通过在系统的验证可以仿真电路各种情况 , 便于发现潜在的问题。在系统验证通过后 , 就可以进行下一步版图设计。 (见图 2

4 FPG A 在系统验证板的设计

下面简要说明一下 FPG A 在系统验证板的设计过程。首先输出 ASIC 门级网表 , VH D L 格式或 Verilog 格式 , 在 Exem plar 的 Leonardo 综合软件中读入 , 将其转换成所选 FPG A 类型的 E DIF 网表 , 在 FPG A 设计软件 X ilinx 的 F oundation 中调入 , 经过适配 , 布线构造出 FPG A 的上电配置数据 1bit 或

1mcs , 通过编程器对 EEPROM 进行编程。同时 , 进行 FPG A 在系统验证板的原理设计 (可采用 Protel 软件 , 完成后进行印制板设计 , 制作印制板。进

1

5第 6期谢长生 , 徐睿 :FPG A 在 ASIC 设计流程中的应用

行 FPG A 在系统验证板的焊接装配 , 形成最终的

FPG A 在系统验证板 , 然后将该板通过接口插入到

系统中 , 就可以进行验证了。 (见图 3 图 4给出 FPG A 在系统验证板的原理图

图 2 FPG A 在系统验证在 ASIC

开发流程中的位置图 3 FPG A

在系统验证板的设计制造过程

图 4 FPG A 在系统验证板的原理图

5进一步设想

开发所花费的而言 , 但随着需要验证的 ASIC 项目的增多 , 其费用也是可观的。再说 FPG A 的特点就是灵活的可编程特性 , 所以项目之间共享 FPG A 在系统验证板的设想是成立的。方法之一就是将一块 FPG A 在系统验证板分成两部分设计 , 一部分设计成共享的对外采用通用接口 , 其上包括 FPG A 、 CP LD 、 EPROM 、电源转换等 , 其通用的程度仅受门数限

制 , 另一块是根据每个 ASIC 电路所设计的接口部分 , 通过这种设计方法 , 只要做一块通用的 FPG A 在系统验证板 , 以后所要花费的成本几乎可以忽略不计 , 从工艺转换到针对某个项目的 FPG A 在系统验证板完成所花费的有效时间估计只需几个小时。

6结束语

以上的 FPG A 上系统验证方法已经参与过我们两个 ASIC 电路的设计 , 取得了很好的效果。就目前看来 , 无论是设计方还是用户方都对这个验证方法有着兴趣和要求。参考文献 :

[1]X ilinx 现场可编程门阵列器件手册 1October 6, 2000. [2]电子产品世界2001年 6月

25微电子技术

FPGA_ASIC-基于FPGA的ECC算法高速实现

基于FPGA 的ECC 算法高速实现? 武玉华,黄允,李艳俊,欧海文 (北京电子科技学院,北京 100070) 摘要:椭圆曲线密码体制(Elliptic Curve Cryptosystem ,ECC)是目前已知的所有公钥密码体制中能提供最高比特强度(strength-per-bit )的一种公钥加密体制。研究椭圆曲线密码算法的芯片设计有较大的研究价值和实用价值。本文在深入研究椭圆曲线加解密理论基础上,使用Verilog 硬件描述语言实现了一种ECC 加密算法,具有高速低功耗的特点。 关键词:ECC ;FPGA ;高速 中图分类号:TP309 文献标识码:A The FPGA design of ECC encryption algorithm WU Yu-hua, HUANG Yun, LI Yan-jun, OU Hai-wen (Beijing Electronic Science and Technology Institute ,Beijing 100070 China) Abstract :ECC is one of the known public crypto methods that provide the best strength-per-bit. Researching in the hardware design of ECC have much value. In this paper, we lucubrate the ECC’s theory, and implement a sort of ECC encryption algorithm, it has some advantages such as high-speed and low-exploit. Keywords :ECC; FPGA; high-speed 1 引言 1985年,Neal Koblitz 和V https://www.sodocs.net/doc/b5409659.html,ler 提出了基于椭圆曲线群上离散代数问题的公钥密码体制——椭圆曲线密码体制(简记为ECC)。ECC 与RSA 相比具有密钥更短、安全性更高的特点,通常认为163位的ECC 密钥长度能够提供相当于1024位RSA 密钥长度的安全性,571位的ECC 密钥长度能够提供相当于15360位RSA 密钥长度的安全性。ECC 是目前所有公钥密码系统中单位密钥安全性最高的密码系统。因为ECC 的密钥较短,所以运算耗费的资源较少,目前ECC 广泛应用于无线连接设备中,譬如PDA, smart cards 等等。目前,欧洲、俄罗斯、韩国和中国等都己经或打算将ECC 作为国家密码标准。 椭圆曲线密码系统的基域包括素域GF (P)和二进制域GF(n 2),在硬件实现上GF(n 2)椭圆曲线密码系统占用系统资源更少,效率更高。因此最近几年有限域GF(n 2)上基本运算的硬件实现、有限域GF(n 2)上椭圆曲线密码系统的硬件实现都得到了业内重视。相对于软件实现的椭圆曲线加密/解密体制,硬件实现可以提供更高的安全性和更快的速度。本文在深入研究椭圆曲线加解密理论基础上,使用Verilog 硬件描述语言实现了一种ECC 加密算法,并通过QuartusII5.0工具进行了编译仿真,实验结果表明其功能正确,具有高速低功耗的特点。 2 椭圆曲线算法理论 2.1 椭圆曲线数学基础 2.1.1 椭圆曲线定义 椭圆曲线E 是一个光滑的Weierstrass 方程在P(K)中的全部解(x ,y)的集合。K 为域。K 上的摄影平面P(K)是一些等价类的集合{(XY :Z)}。 22322313246:E Y Z a XYZ a YZ X a X Z a XZ a Z ++=+++ 其中曲线上唯一的一个无穷远点是(0:1:0)。这个点对应于点∞。 经过上述方程作如下转化可得: 设x =X/Z,y =Y/Z ?基金项目:国家自然科学基金资助项目(70431002);北京电子科技学院信息安全与保密重点实验室基金项目(YZDJ0509)

华为_FPGA设计流程指南

FPGA设计流程指南 前言 本部门所承担的FPGA设计任务主要是两方面的作用:系统的原型实现和ASIC的原型验证。编写本流程的目的是: ●在于规范整个设计流程,实现开发的合理性、一致性、高效性。 ●形成风格良好和完整的文档。 ●实现在FPGA不同厂家之间以及从FPGA到ASIC的顺利移植。 ●便于新员工快速掌握本部门FPGA的设计流程。 由于目前所用到的FPGA器件以Altera的为主,所以下面的例子也以Altera为例,工具组合为modelsim + LeonardoSpectrum/FPGACompilerII + Quartus,但原则和方法对于其他厂家和工具也是基本适用的。

目录 1. 基于HDL的FPGA设计流程概述 (1) 1.1 设计流程图 (1) 1.2 关键步骤的实现 (2) 1.2.1 功能仿真 (2) 1.2.2 逻辑综合 (2) 1.2.3 前仿真 (3) 1.2.4 布局布线 (3) 1.2.5 后仿真(时序仿真) (4) 2. Verilog HDL设计 (4) 2.1 编程风格(Coding Style)要求 (4) 2.1.1 文件 (4) 2.1.2 大小写 (5) 2.1.3 标识符 (5) 2.1.4 参数化设计 (5) 2.1.5 空行和空格 (5) 2.1.6 对齐和缩进 (5) 2.1.7 注释 (5) 2.1.8 参考C语言的资料 (5) 2.1.9 可视化设计方法 (6) 2.2 可综合设计 (6) 2.3 设计目录 (6) 3. 逻辑仿真 (6) 3.1 测试程序(test bench) (7) 3.2 使用预编译库 (7) 4. 逻辑综合 (8) 4.1 逻辑综合的一些原则 (8) 4.1.1 关于LeonardoSpectrum (8) 4.1.1 大规模设计的综合 (8) 4.1.3 必须重视工具产生的警告信息 (8) 4.2 调用模块的黑盒子(Black box)方法 (8) 参考 (10) 修订纪录 (10)

FPGA CPLD ASIC学习书籍集锦

FPGA|CPLD|ASIC学习书籍集锦 《FPGA设计及应用(第二版)》评价:★★★ 作者:褚振勇齐亮田红心高楷娟西安电子科技大学出版社出版日期: 2006年12月第 2 版书号:ISBN 7-5606-1132-X/TP·0574 本书介绍了FPGA的相关基础知识, VHDL硬件描述语言,FPGA开发软件的使用;器件配置与调试;FPGA设计中的基本问题和电路设计实例等。 《CPLD/FPGA应用系统设计与(基础篇)》评价:暂无 作者:亿特科技人民邮电出版社出版日期:2005年7月书号:ISBN 7-115-13200-3/TP.4503 本书介绍了CPLD/FPGA开发工具Quartus II,并精选了10多个实际开发案例进行讲解:16位并行乘法器设计、通用16位乘法器的流水线设计、双端口RAM存储器的设计、同步/异步FIFO存储器的设计、海明码编解码器芯片的设计、RS编解码器芯片设计及其扩展应用、带PWM输出的定时器/计数器芯片设计及其扩展应用、通用存储控制器芯片的设计以及USB2.0接口芯片设计。 《FPGA数字电子系统设计与开发实例导航》评价:暂无 作者:求是科技人民邮电出版社出版日期:2005年6月书号:ISBN 7-115-13189-9/TP.4519 本书首先介绍了FPGA的相关基础知识,然后通过7个在实际工程应用中的案例详细介绍了通过FPGA 实现I2C协议要求的接口、UART控制器、USB接口控制器、数字视频信号处理器、VGA/LCD显示控制器、CAN总线控制器、以太网控制器的方法。

《Altera FPGA/CPLD 设计( 高级篇)》评价: 暂无 作者: EDA 先锋工作室 人民邮电出版社 出版日期:2005年7月 书号:ISBN 7-115-13499-5/TP.4707 本书深讨论了Altera FPGA/CPLD 的设计、优化技巧。在讨论FPGA/CPLD 设计指导原则的基础上,介绍了Altera 器件的高级应用;引领读者学习逻辑锁定设计工具,详细讨论了时序约束与静态时序分析方法;结合实例讨论如何进行设计优化,介绍了Altera 的可编程器件的高级设计工具与系统级设计技巧。 ! 《Altera FPGA/CPLD 设计 (基础篇)》评价: 暂无 作者: EDA 先锋工作室 人民邮电出版社 出版日期:2005年7月 书号:ISBN 7-115-13499-5/TP.4707 本书介绍了FPGA/CPLD 的基本设计方法。在介绍FPGA/CPLD 概念的基础上,介绍了Altera 主流FPGA/CPLD 的结构与特点,实例讲解Quartus II 与ModelSim 、Synplify Pro 等常用EDA 工具的开发流程。 《Verilog HDL 程序设计与应用》评价: 暂无 作者:王伟人民邮电出版社 出版日期:2005年7月 书号:ISBN 7-115-13204-6/TP.4534 本书第1部分讲解Verilog HDL 语法知识;第2部分是实例部分,通过从已公布的成熟源代码中精选的50多个最具代表性的建模实例,辅以框图和详细注释帮助读者理解程序,从而学习典型电路单元的建模方法;第3部分是系统设计实战,为初学者展示了一个小型系统的详细设计流程。 《CPLD/FPGA 应用开发技术与工程实践》评价: 暂无 作者: 求是科技 人民邮电出版社 出版日期:2005年1月 书号:ISBN 7-115-12720-4/TP.4272 本书介绍了CPLD 和FPGA 典型产品的结构原理、性能特点以及Altera 公司提供的开发软件-MAX+PLUSII ,列举了VHDL 语言的各种语法结构以及相应的例程。包括组合逻辑电路设计、时序逻辑电路设计、运算电路设计以及存储器电路设计等。最后用4个有一定难度的例程向读者完整地再

FPGA原理图方式设计流程图

2 Quartus II软件的使用、开发板的使用 本章将通过3个完整的例子,一步一步的手把手的方式完成设计。完成这3个设计,并得到正确的结果,将会快速、有效的掌握在Altera QuartusII软件环境下进行FPGA设计与开发的方法、流程,并熟悉开发板的使用。 2.1 原理图方式设计3-8译码器 一、设计目的 1、通过设计一个3-8译码器,掌握祝组合逻辑电路设计的方法。 2、初步了解QuartusII采用原理图方式进行设计的流程。 3、初步掌握FPGA开发的流程以及基本的设计方法、基本的仿真分析方法。 二、设计原理 三、设计内容 四、设计步骤 1、建立工程文件 1)双击桌面上的Quartus II的图标运行此软件。

开始界面 2)选择File下拉菜单中的New Project Wizard,新建一个工程。如图所 示。 新建工程向导

3)点击图中的next进入工作目录。 新建工程对话框 4)第一个输入框为工程目录输入框,用来指定工程存放路径,建议可根据自己需要更改路径,若直接使用默认路径,可能造成默认目录下存放多个工程文件影响自己的设计,本步骤结束后系统会有提示(当然你可不必理会,不会出现错误的)。第二个输入框为工程名称输入框。第三个输入框为顶层实体名称输入框,一般情况下保证工程名称与顶层实体名称相同。设定完成后点击next。

指定工程路径、名称 5)设计中需要包含的其它设计文件,在此对话框中不做任何修改,直接点 击next。 工程所需其它文件对话框

6)在弹出的对话框中进行器件的选择。在Device Family框中选用Cyclone II,然后在Available device框中选择EP2C35F484C8,点击next进入下一步。 器件选择界面 7)下面的对话框提示可以勾选其它的第三方EDA设计、仿真的工具,暂时不作任何选择,在对话框中按默认选项,点击next。

(完整版)什么是FPGA

1. FPGA与单片机的区别? 单片机和FPGA的区别,本质是软件和硬件的区别。 单片机设计属软件范畴;它的硬件(单片机芯片)是固定的,通过软件编程语言描述软件指令在硬件芯片上的执行; FPGA设计属硬件范畴,它的硬件(FPGA)是可编程的,是一个通过硬件描述语言在FPGA芯片上自定义集成电路的过程; 二者最大的区别:单片机(无论哈佛总线结构或者冯诺依曼结构)均为取出指令->执行,指令是顺序执行的(即使是中断,其发生后的中断服务程序也是顺序执行的);而FPGA(包括CPLD)是基于逻辑门和触发器的,它是并行执行方式,即 当CLOCK上升沿到来时,所有的触发器都会动作,它没有取出指令->执行这种操 作,数字电路中所有逻辑门和触发器(D,SR等)均可以实现,它适合真正意义上 的并行任务处理。 2. 单片机、FPGA、DSP、ASIC的区别 1、ASIC原本就是专门为某一项功能开发的专用集成芯片,集成度很低,成本很低,可是够用了。后来ASIC发展了一些,称为半定制专用集成电路,相对来说更接近FPGA,甚至在某些地方,ASIC就是个大概念,FPGA属于ASIC之下的一部分。 2、FPGA基本就是高端的CPLD,数字电路。这种器件是用逻辑门来表述性能的。本身他就是一堆的逻辑门,与非门、或非门、触发器(可以用与非门形成吧)等基本数字器件,编程决定了有多少器件被使用以及它们之间的连接。通过硬件描述语言把它转成电路连接,从最基本的逻辑门层面上连接成电路(参见数字电路书上那些全加器触发器什么的)。应该说,虽然看起来像一块CPU,其实是完全硬件实现的。它是在PAL、GAL、EPLD等可编程器件的基础上进一步发展的产物。它是作为专用集成电路(ASIC)领域中的一种半定制电路而出现的,既解决了定制电路的不足,又克服了原有可编程器件门电路数有限的缺点。 FPGA在抗干扰,速度上有很大优势。 后来因为写代码麻烦,对控制部分比较薄弱,本来跟其他CPU配合使用,即麻烦的算法CPU提交给FPGA,FPGA算完把结果再返回给CPU。可是这样外围电路就变得麻烦。 于是提出了SOC设计方法,就是直接在FPGA里写一个CPU出来,既然FPGA万能,做个CPU自然毫无压力。 这其中还有软核和硬核的区别,不过除了性能,使用方法大同小异。所谓IP核,就是把各种专用集成电路用硬件描述语言描述,然后烧到FPGA里形成专门的电路,这样就不必另外搭芯片了,所有的电路在一片FPGA里面形成。 3、DSP实际应该称为DSPs,即用于DSP处理的专用芯片。跟普通计算机的区别一方面是他是哈佛结构的,也就是数据和程序空间分开(普通计算机是冯诺依曼结构)。另一方面他有流水线结构,不过现在其他也有了,见贤思齐。再一方面他有专用的硬件算法电路,用以完成DSP运算,比如最基本的乘法累加。上过DSP的就知道,蝶形算法FFT什么的,拆成最基本单元就是乘法累加,把这部分加速了,整体性能就有非常大的提高。DSP对于

FPGA型号对比

FPGA入门 什么是FPGA与CPLD的区别FPGA的应用FPGA的优势Altera产品介绍设计流程开始FPGA设计设计工具与实例获得下一步资源Altera产品介绍 ASIC 如果您正在寻找 ASIC,这里将为您提供所需要的一切。我们的 HardCopy ASIC支持Stratix原型的无缝移植,在最短的时间内帮助您以最低的风险、最低的ASIC 开发总成本将产品推向市场。 CPLD 对于胶合逻辑以及任何控制功能,我们的非易失 MAX 系列提供市场上成本最低的CPLD —— 单芯片解决方案,非常适合接口桥接、电平转换、I/O 扩展和模拟 I/O 管理应用。 产品系列密度工艺节点

FPGAs逻辑单元ALM (高性能自适应逻辑模块)工艺节点 Stratix V1,052,000397,00028nm Stratix IV813,050325,22040nm Stratix III338,000135,20065nm Stratix II132,54053,01690nm Stratix79,040-130nm FPGAs逻辑单元ALM (高性能自适应逻辑模块)工艺节点 Arria V503,500190,00028nm Arria II348,500139,40040nm Arria GX90,22036,08890nm FPGAs逻辑单元ALM (高性能自适应逻辑模块)工艺节点 Cyclone V300,000113,20828nm Cyclone IV149,760-60nm Cyclone III198,464-60nm Cyclone II68,416-90nm Cyclone I20,060-130nm CPLD逻辑单元ALM (高性能自适应逻辑模块)工艺节点 MAX V2,210-0.18um MAX II2,210-0.18um MAX 3000A640-0.30um

FPGA基本设计流程资料

FPGA基本设计流程 首先建立工作库目录,以便设计工程项目的存储。注意不要将文件夹 1 建立工作库文件夹和编辑设计文件 1.1 新建一个文件夹(注意文件夹不能用中文,也不要用数字) 任何一项设计都是一项工程(Project),都必须首先为此工程建立一个放置与此工程相关的所有设计文件的文件夹。此文件夹将被EDA软件默认为工作库(Work Library)。一般,不同的设计项目最好放在不同的文件夹中,而同一工程的所有文件都必须放在同一文件夹中。在建立了文件夹后就可以将设计文件通过Quartus II的文本编辑器编辑并存盘,这里新建文件夹在E盘中,取名为 jsq,则其路径是e:\jsq。步骤如下: 1.2 源程序输入 打开计算机桌面上图表,选择菜单File→New,出现如图1所示见面,在New窗口Device Design Files中选择编译文件的语言类型,这里选择VHDL File,选好后用鼠标左键点击OK,出现源程序输入窗口如图2所示(以十进制为例)。 图1 选择编译文件的语言类型

图2 源程序输入窗口 源程序 LIBRARY IEEE; USE IEEE.STD_LOGIC_1164.ALL; USE IEEE.STD_LOGIC_UNSIGNED.ALL; ENTITY CNT10 IS PORT (CLK,RST,EN : IN STD_LOGIC; CQ : OUT STD_LOGIC_VECTOR(3 DOWNTO 0); COUT : OUT STD_LOGIC ); END CNT10; ARCHITECTURE behav OF CNT10 IS BEGIN PROCESS(CLK, RST, EN) VARIABLE CQI : STD_LOGIC_VECTOR(3 DOWNTO 0); BEGIN IF RST = '1' THEN CQI := (OTHERS =>'0') ; --计数器异步复位 ELSIF CLK'EVENT AND CLK='1' THEN --检测时钟上升沿 IF EN = '1' THEN --检测是否允许计数(同步使能) IF CQI < 9 THEN CQI := CQI + 1; --允许计数, 检测是否小于9 ELSE CQI := (OTHERS =>'0'); --大于9,计数值清零 END IF; END IF; END IF; IF CQI = 9 THEN COUT <= '1'; --计数大于9,输出进位信号 ELSE COUT <= '0'; END IF;

FPGA设计流程

基于多种 EDA工具的FPGA设计流程 发表时间:2008-6-30 蒋昊李哲英来源:万方数据 关键字:FPGA EDA CPU 信息化应用调查在线投稿加入收藏发表评论好文推荐打印文本 本文介绍了FPGA的完整设计流程,其中包括电路设计与输入、功能仿真、综合优化、综合后仿真、实现与布局布线、时序仿真、板级仿真与脸证、调试与加载配置等主要步珠。并通过一个8-bit RISC CPU的设计来例系统地介绍了利用多种EDA工具进行 FPGA协同设计的实现原理及方法 近年来,随着微电子学的迅速发展以及SoC(System on Chip,片上系统)技术在设计领域引起的深刻变革, EDA(Electornic Design Automatic,电子设计自动化)工具在系统设计中的地位愈发重要。特别是20世纪90年代后,电子系统已经由电路板级发展为ASIC(Application SpecificIntegrated Circuit,专用集成电路),FPGA(Field Porgrammable Gate Array,现场可编程门阵列)以及嵌人式系统等多种模式,其中FPGA设计正是当前数字系统设计领域中的重要方式之一。 本文以Altera公司的FPGA为目标器件,通过一个8-bit RISC CPU的设计实例,系统地介绍了FPGA的完整设计流程以及开发过程中用到的多种EDA工具,包括Modelsim,Synplify,QuatrusII,并重点说明如何使用这些EDA工具进行协同设计。 1FPGA的设计流程 一般来说,完整的FPGA设计流程包括电路设计与输人、功能仿真、综合优化、综合后仿真、实现与布局布线、时序仿真、板级仿真与验证、调试与加载配置等主要步骤,如图1所示。电路设计与输人是指通过某些规范的描述方式,将工程师的电路构思输人给EDA工具,常用的设计方法有HDL(Hardwaer Description Language,硬件描述语言)设计输人法与原理图设计输人法。目前进行大型工程设计时,最常用的设计方法是HDL设计输人法,它利于自顶向下设计以及模块的划分与复用,可移植性和通用性好,设计不因芯片的工艺与结构的不同而变化,更利于向ASIC移植。 电路设计完成后,要用专用的仿真工具对设计进行功能仿真(FunctionalSimulation),验证电路功能是否符合设计要求。功能仿真又称前仿真(Per-Simulation)。通过仿真能及时发现设计中的错误,加快设计进度,提高设计的可靠性。综合(Synthesis)优化是指将HDL语言、原理图等设计输人翻译成由基本门、RAM、触发器等基本逻辑单元组成的逻辑网表,并根据目标与要求(约束条件)优化所生成的逻辑网表,输出标准格式的网表文件,供FPGA厂商的布局布线器进行实现。综合后仿真(Post Synthesis Simulation)的作用是检查综合出的结果与原设计是否一致。作综合后仿真时,要把综合生成的标准延时格式SDF(Standard Dela Format)文件反标注到综合仿真模型中去,可估计门延时带来的影响。综合后仿真虽然比功能仿真精确一些,但是只能估计门延时,不能估计线延时,仿真结果与布线后的实际情况还有一定

CPLD与FPGA区别

CPLD和FPGA区别 可编程逻辑器件主要包括FPGA和CPLD,FPGA是Field Programmable Gate Array缩写,CPLD是Complex Promrammable Logic Device的缩写。 从可编程逻辑器件的发展历史上来讲,CPLD一般是指采用乘积相结构的基于EEPROM的器件,所以具 有非挥发的,不需要外部配置ROM,具有保密性和有限次编程次数(根据不同的结构,从100次到1万次不等)等特点,适合用在胶合逻辑(glue logic,如DSP芯片外围的译码逻辑),IO扩展,IO电平转换,FPGA 芯片配置等应用场合。如Altera的MAX7000和MAX3000系列芯片,Xilinx的XC9500和CoolRunner/II 系列芯片,Lattice的ispMACH4000/Z系列芯片都是CPLD器件,容量从32宏单元到512宏单元不等。 FPGA主要是指采用四输入查找表(LUT4)的基于SRAM的器件,因为SRAM是挥发的,掉电丢失数据, 所以FPGA需要外部配置ROM,上电的时候,从外部的ROM把FPGA的配置数据导入到FPGA芯片内部后工作。具有SRAM的FPGA采用标准的CMOS制造工艺,可以随着最新的工艺而更新还代,给用户带来了实惠;衡量FPGA容量的一个基本指标是逻辑单元(Logic cell或者Logic element),由一个可编程得LUT4和一个可编程的DFF组成,LUT4完成组合逻辑功能, 而DFF用来实现时序功能。FPGA的容量从几千的逻辑单元到几十万的逻辑单元不等。如Altera的Cyclone/II/III和Stratix/II/III系列芯片,Xilinx Spartan3/3E/3A/3AN和Virtex4/5系列芯片都是FPGA器件。 随着芯片技术的发展,CPLD和FPGA的概念已经模糊在一起,如Altera和Lattice公司把小容量(小于2K 左右逻辑单元)非挥发的可编程器件归到CPLD里,如Altera的MAXII系列和Lattice的MACH XO系列芯片,把基于SRAM的FPGA和FLASH的储存单元做到一个芯片里面,以及跟传统的CPLD不一样了; 总之,我们可以简单的区分FPGA和CPLD,CPLD:小容量(<2K左右LE)的非挥发的可编程器件;其它 的可编程器件都可归到FPGA。 系统的比较: 尽管FPGA和CPLD都是可编程ASIC器件,有很多共同特点,但由于CPLD和FPGA结 构上的差异,具有各自的特点: ①CPLD更适合完成各种算法和组合逻辑,FPGA更适合于完成时序逻辑。换句话说,FPGA更适合于触发器丰富的结构,而CPLD更适合于触发器有限而乘积项丰富的结构。 ②CPLD的连续式布线结构决定了它的时序延迟是均匀的和可预测的,而FPGA的分段式布线结 构决定了其延迟的不可预测性。 ③在编程上FPGA比CPLD具有更大的灵活性。CPLD通过修改具有固定内连电路的逻辑功能 来编程,FPGA主要通过改变内部连线的布线来编程;FPGA可在逻辑门下编程,而CPLD是在逻辑块下编程。 ④FPGA的集成度比CPLD高,具有更复杂的布线结构和逻辑实现。 ⑤CPLD比FPGA使用起来更方便。CPLD的编程采用E2PROM或FASTFLASH技术,无需外部存储器芯片,使用简单。而FPGA的编程信息需存放在外部存储器上,使用方法复杂。 ⑥CPLD的速度比FPGA快,并且具有较大的时间可预测性。这是由于FPGA是门级编程,并 且CLB之间采用分布式互联,而CPLD是逻辑块级编程,并且其逻辑块之间的互联是集总式的。

FPGA_ASIC-一种高精度运动控制器IP核设计与实现

一种高精度运动控制器IP核设计与实现 闫永志 王宏 杨志家刘鹏 (中国科学院沈阳自动化研究所,辽宁 沈阳 110016) (中国科学院研究生院,北京 100039) 摘 要:本文提出了一种运动控制器软IP的设计方案,该控制器可以控制4个轴的步进电机或数字伺服电机,可以进行各轴独立的定位控制、速度控制,也可任选2轴或3轴来进行直线、圆弧和位模式插补。文中介绍了其系统结构、基本功能和插补算法。设计最终形成软IP核,并在Xilinx公司的Vertex2系列FPGA 中予以实现和验证。 关键词:运动控制 插补 IP ASIC FPGA 中图法分类号: TN4文献标识码:A Design and Implementation of High Precision Motion Controller IP Yongzhi Yan1,2 Hong Wang1 Zhijia Yang1Peng Liu1 1( Shenyang Institute of Automation , Chinese Academy of Sciences, Liaoning Shenyang, 110016) 2( Graduate School of the Chinese Academy of Sciences, Beijing, 100039) Abstract: This paper designs a motion controller soft IP, it can control 4 axes of either stepper motor or pulse type servo drivers for position, speed, and interpolation. Any 2 or 3 axes can be selected to perform linear, circular, and bit pattern interpolation. We describe structure, function and interpolation arithmetic of the motion controller. Finally, the montion controller soft IP is implemented and verified in Xilinx Vertex2 FPGA. Key words:motion control interpolation IP ASIC FPGA 1引言 随着计算机、控制理论、微电子等技术的迅速发展,运动控制技术取得了巨大的进步,已成为推动新的产业革命的关键技术。简单地说,运动控制就是对机械运动部件的位置、速度等进行实时的控制管理,使其按照预期的运动轨迹和规定的运动参数进行运动[1]。早期的运动控制技术主要是伴随着数控技术、机器人技术和工厂自动化技术发展而来的。近年来,随着运动控制技术的不断进步和完善,运动控制器作为一个独立的工业自动化控制类产品,已经应用在越来越多的产业领域中。 目前基于PC(Personal Computer)总线的以DSP(Digital Signal Processing)或专用运动控制ASIC(Application Specific Integrated Circuit)作为核心的开放式运动控制技术已经成为主流。将PC 机的信息处理能力和开放式的特点与运动控制器的运动轨迹控制能力有机地结合在一起,具有信息处理能力强、开放程度高、运动轨迹控制准确、通用性好的特点[2]。本设计使用verilog硬件描述语言设计了一种带有通用的PC机总线接口的运动控制器软IP(Intellectual Property)核,并通过FPGA(Field Programmable Gate Array)予以实现和验证。 2系统结构和基本功能 本设计是一个用于实现4轴运动控制的控制器,通过这个控制器可以控制由步进电机或由数字脉冲型伺服电机驱动的4个轴的位置、速度和插补。该系统由5个部分组成,分别是(1)命令/数据处理模块(2)插补控制模块(3)4个轴的运动控制模块(4)中断信号发生模块(5)脉冲分配模块。图1为该运动控制器的系统结构图。 该运动控制器的主要功能如下: (1)独立的四轴驱动:可以分别控制四个电机驱动轴的运动,四个轴的功能完全相同。 (2)驱动速度控制:驱动脉冲的输出速度可以从1PPS(Pulses Per Second)到4MPPS,每个驱动轴可以进行定速驱动、直线加/减速驱动、S曲线加/减速驱动。 (3)2轴/3轴直线插补驱动:可以选择4个轴中的任何2个或3个轴进行直线插补驱动。 (4)圆弧插补驱动:可以选择4个轴中的任何2个轴进行圆弧插补驱动。

FPGA开发设计流程和功能实现

FPGA设计流程与功能实现 前言 本部门所承担的FPGA设计任务主要是两方面的作用:系统的原型实现和ASIC的原型验证。编写本流程的目的是: ●在于规范整个设计流程,实现开发的合理性、一致性、高效性。 ●形成风格良好和完整的文档。 ●实现在FPGA不同厂家之间以及从FPGA到ASIC的顺利移植。 ●便于新员工快速掌握本部门FPGA的设计流程。 由于目前所用到的FPGA器件以Altera的为主,所以下面的例子也以Altera为例,工具组合为modelsim + LeonardoSpectrum/FPGACompilerII + Quartus,但原则和方法对于其他厂家和工具也是基本适用的。

目录 1. 基于HDL的FPGA设计流程概述 (1) 1.1 设计流程图 (1) 1.2 关键步骤的实现 (2) 1.2.1 功能仿真 (2) 1.2.2 逻辑综合 (2) 1.2.3 前仿真 (3) 1.2.4 布局布线 (3) 1.2.5 后仿真(时序仿真) (4) 2. Verilog HDL设计 (4) 2.1 编程风格(Coding Style)要求 (4) 2.1.1 文件 (4) 2.1.2 大小写 (5) 2.1.3 标识符 (5) 2.1.4 参数化设计 (5) 2.1.5 空行和空格 (5) 2.1.6 对齐和缩进 (5) 2.1.7 注释 (5) 2.1.8 参考C语言的资料 (5) 2.1.9 可视化设计方法 (6) 2.2 可综合设计 (6) 2.3 设计目录 (6) 3. 逻辑仿真 (6) 3.1 测试程序(test bench) (7) 3.2 使用预编译库 (7) 4. 逻辑综合 (8) 4.1 逻辑综合的一些原则 (8) 4.1.1 关于LeonardoSpectrum (8) 4.1.1 大规模设计的综合 (8) 4.1.3 必须重视工具产生的警告信息 (8) 4.2 调用模块的黑盒子(Black box)方法 (8) 参考 (10) 修订纪录 (10)

华为FPGA设计高级技巧(Xilinx篇)

共62页 产品名称Xilinx 篇 yyyy/mm/dd 日期 2001/09/15 日期深圳市华为技术有限公司 版权所有 不得复制

修订记录 内部公开请输入文档编号 FPGA 设计高级技巧

目 录 41 4.3 减少关键路径的逻辑级数.............................................404.2IF 语句和Case 语句揭开 逻辑级数未 变 速度更快 SRL VirtexII Xilinx 篇

62 6.3.3 专有资源的利用................................................ 616.3.2 Distributed RAM 代替通道计数器...................................616.3.1 Distributed RAM 代替BlockRAM ....................................616.3 如何降低芯片面积..................................................616.2.9 迂回策略为关键路径腾挪空间 进行位置约束..................................... 616.2.7 关键路径单独综合 ....................................... 616.2.5 专有资源的利用................................................ 616.2.4 基本设计技巧..................................................616.2.3 采用BUFGS ...................................................616.2.2 对线延时比较大的net TIG 和Multi-Cycle-Path ................... 606.2 如何提高芯片速度.................................................. 606.1 可能成为关键路径的电路.............................................606 综合运用..............................................................605.4 TimingAnalyzer 的作用...............................................595.3 FloorPlanner 的作用..................................................595.2 FPGA Editor 的作用..................................................595.1.3 正确看待map 之后的资源占用报告..................................585.1.2 布局布线策略 设计方案阶段对关键电路的处理....................... 585.1 布局布线.......................................................... 585 如何使用后端工具.......................................................574.16 LFSR 加1计数器...................................................574.15 SRL 的使用.......................................................574.14 Block SelectRAM 的使用.............................................564.13 Distributed RAM 的使用.............................................554.12 高效利用IOB ......................................................544.11 利用LUT 四输入特点 减少扇出 巧妙地延时................................ 49 4.7 组合逻辑和时序逻辑分离............................................. 474.6 流水线................................................464.5.4 综合工具与资源共享............................................464.5.3 子表达式共享..................................................454.5.2 loop 语句......................................................444.5.1 if 语句........................................................444.5 资源共享..........................................................434.4 合并if 语句 赋予关键路径最高优先级............................ 内部公开请输入文档编号 FPGA 设计高级技巧

采用 CPU,ASIC,FPGA和NP网络处理器的网络交换机体系结构的比较

通用CPU,ASIC,FPGA和NP网络处理器这四种网络交换机体系结构的详细比较分析 使用NP+ASIC的体系设计方式是最为完美的选择。使用ASIC芯片高速处理各种传统的业务,如二层交换、三层路由、ACL、QoS以及组播处理等等,满足核心交换机对于交换机处理性能的需求;而利用NP实现各种非传统或未成熟的业务,根据需要灵活支持IPV6、Load Balancing、VPN、NAT、IDS、策略路由、MPLS、防火墙等多种业务功能,满足核心交换机对于业务按需叠加的需求…… 多层交换体系结构的引入有效地提高了局域网的速度,对多层交换体系结构排队模型、交换实施和交换结构等方面的了解,可以更深刻地认识到局域网交换机在性能上的提高。 首先明确几个基本概念: 排队模型 交换结构是指数据从一个端点到达另一个端点的“高速路”,排队是一种用于控制拥塞的缓冲机制,当交换结构出现拥塞时,会在很大程度上直接影响交换机的性能,所以进行拥塞管理是非常有必要的。在

多个端口争用同一个端口时就需要拥塞管理,对信息包进行排队处理。排队可以采用动态缓冲区排队或固定缓冲区排队,其中动态缓冲区排队时缓冲区长度为固定增量(如每次64K字节),可以更有效地利用缓冲区资源;而固定缓冲区排序时缓冲区的长度是固定的,这样缓冲区的使用效率不高,但比定制控制器(custom conollers)成本低。排队可以在交换结构的输入端口进行,即输入排队,也可在交换结构的输出端口进行,即输出排队。在输入排队时,信息包在进入端口处得到缓冲,最高可将吞吐量减少60%,但会造成线路端阻塞;在输出排队时缓冲区设在输出端口,无线路阻塞,但在流量高峰期间会造成缓冲区溢出。 交换实施 交换实施用来说明交换决策的地点和方式:是在本地还是在中央地点,是最长匹配还是准确匹配。 交换决策的地点是中央地点时,就是集中交换。集中交换采用集中发送表,针对交换和识别提供集中控制,为达到实施的快速处理,查询由ASIC完成,集中交换可以执行第2层或第3层查询。 在分布式交换时,交换决策由端口或模块在本地进行,其第2层和第3层表必须实现同步化,以便说明添加、移动或修改。 交换实施还可分为基于流量的交换和基于转发信息库的交换。基于流量的交换是基于需求的交换,入口包含源地址、目标地址和/或第4

华为内部硬件开发设计流程

2007年,以2年的工作经验去一家小公司去面试。当时笔试完,对方对我很认可。但当时他说:“我需要招一个,在大公司待过的,最好知道硬件开发流程和规范的。虽然你题答得不错,但是我们需要一个有丰富经验的,最好在华为待过的。” 当时,我就在想“华为的规范和流程是啥样的”。后来我去了华为,我把能想到的华为硬件开发的几个不一样的点,跟大家分享一下。 NO.1 文档,评审,设计 当时刚入职时,三个人做一个电路板。虽然电路复杂一些,还是有一些人力过剩的。所以,我就被安排去写一个PCI转UART的逻辑。 我当时是新员工,也急于表现自己,利用周末的时间,估计用了一周的时间,就写完代码,开始仿真了。我以为我的导师兼主管会表扬一下,结果没有,他说:“你为什么没有召集大家讨论?然后再写方案,评审?然后再动手写代码?”我当时是不理解的,觉得我一个人就搞定的事情,为啥要这样劳师动众? 后来反思过后发现了以下问题: 第一、从主管的角度,不知道新员工的个人能力,你能把做的事情讲清楚了,他才放心。第二、从公司的角度,有一套流程来保证项目的交付。那么则不再太依赖某个人的个人能力,任何一个人的离职,都不会影响项目的交付。这也是华为最了不起的地方,把复杂的项目拆得非常细碎,这样不需要特别牛的人来交付项目。这是为什么华为的工程师的收入是思科的N分之一。 第三、从效果角度,毕竟一个人的想法是有限的,把想法文档化的过程,就是整理思路的过程;讨论的过程,就是收集你自己没有想到的过程。正式的评审,是大家达成意见的过程。提前讨论,让相关的人都参与到你的设计中,总比你设计完了,被别人指出一个致命的问题要强得多。 就是因为华为把一项工作拆散了,所以沟通,文档,评审,讨论,变得非常重要。这个工作模式的缺点,也是显而易见,沟通成本高,工作效率低。 NO.2 硬件领域的人员构成 在华为内部里面,人员角色非常多。硬件的人是对产品开发阶段,端到端负责的。做单板硬件工程师,可以涉猎最多的领域,同时也是工作内容最杂,接触人最多,扯皮的最多的工种。 但是也因为有人专门负责画PCB、EMC、电源、逻辑,原本硬件工程师应该做的领域。那么硬件工程师就武功尽废,变成“连连线”。 其实不然,正是由于每个人都是一个小的领域,没有人统领,所以一个好的硬件经理的作用非常的重要,是贯穿所有领域和全部流程的关键角色。正如原来华为内部论坛上有一个人比喻的,硬件工程师更像是处理器里面的“Cache”,是所有环节的中转站。大公司把人的分工分的这么细,也是防止某一拨掌握了太多公司的核心技术,出去单搞了。 NO.3 华为的流程

相关主题