搜档网
当前位置:搜档网 › 3.3.2利用导数研究函数的极值

3.3.2利用导数研究函数的极值

3.3.2利用导数研究函数的极值
3.3.2利用导数研究函数的极值

《高二》年级《数学》学科《人教B 版数学选修1-1》部分 导学案

3.3.2 利用导数研究函数的极值(1)

【学习目标】

知识与技能:了解函数在某点取得极值的条件,会用导数求多项式函数的极大值、极小值,以及闭区

间上多项式函数的最大值、最小值.

过程与方法:通过本节课的学习,掌握用导数求函数极大值、极小值和闭区间上的最大值、最小值的

方法.

情感、态度与价值观:通过本节课的学习,体会导数方法在研究函数性质中的一般性和有效性,通过

对函数的极值与最值的类比,体验知识间的联系,逐步提高科学地分析、解决问题的能力. 【重点】利用导数的知识求函数的极值. 【难点】函数的极值与导数的关系.

预习案

《使用说明&学法指导》1.用20分钟左右时间阅读探究课本的基础知识,自主高效预习,提升自己的阅读理解能力;2.完成教材助读的有关问题,迅速完成预习自测题;3.将预习中不能解决的问题标出来,并写到后面“我的疑惑”处。 一. 自主预习 1.极值点与极值

(1)极小值点与极小值

如图,函数y =f (x )在点x =a 的函数值f (a )比它在点x =a 附近其他点的函数值都小,f ′(a )=0;而且在点x =a 附近的左侧 ,右侧 ,则把点a 叫做函数y =f (x )的极小值点,f (a )叫做函数y =f (x )的极小值. (2)极大值点与极大值

如图,函数y =f (x )在点x =b 的函数值f (b )比它在点x =b

附近其他点的函数值都大,f ′(b )=0;而且在点x =b 的左侧 ,右侧 ,则把点b

叫做函数y =f (x )的极大值点,f (b )叫做函数y =f (x )的极大值. 、 统称为极值点,

和 统称为极值.

2.求函数y =f (x )的极值的方法 解方程f ′(x )=0,当f ′(x 0)=0时:

(1)如果在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是 .

(2)如果在x 0附近的左侧f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是 .

二.预习自测

1.“函数y =f (x )在一点的导数值为0”是“函数y =f (x )在这点取得极值”的 ( )

A.充分不必要条件

B.必要不充分条件

C.充要条件

D.既不充分也不必要条件

2. 已知函数f (x ),x ∈R ,且在x =1处,f (x )存在极小值,则 ( )

A .当x ∈(-∞,1)时,f ′(x )>0;当x ∈(1,+∞)时,f ′(x )<0

B .当x ∈(-∞,1)时,f ′(x )>0;当x ∈(1,+∞)时,f ′(x )>0

C .当x ∈(-∞,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0

D .当x ∈(-∞,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )<0 3.函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如图所示,则函数f (x )在开区间(a ,b )内有 个极小值点.

探究案

例1.

求下列函数的极值.

(1)f (x )=x 3-3x 2-9x +5(2)f(x)=3

x +3ln x

例2. 已知f (x )=x 3+3ax 2+bx +a 2在x =-1时有极值0,求常数a ,b 的值. 例3.

设函数f (x )=x 3-6x +5,x ∈R . (1)求函数f (x )的单调区间和极值;

(2)若关于x 的方程f (x )=a 有三个不同的实根,求实数a 的取值范围.

测试训练案 1.下列关于函数的极值的说法正确的是 ( )

A .导数值为0的点一定是函数的极值点

B .函数的极小值一定小于它的极大值

C .函数在定义域内有一个极大值和一个极小值

D .若f (x )在(a ,b )内有极值,那么f (x )在(a ,b )内不是单调函数 2.若函数y =x 3

-3ax +a 在(1,2)内有极小值,则实数a 的取值范围是 ( ) A .14或a <1 3.已知f (x )=x 3+ax 2

+(a +6)x +1有极大值和极小值,则a 的取值范围为 ( ) A.-12 D.a <-3或a >6 4.若函数f (x )=x 2+a x +1在x =1处取极值,则a =________.

5.设函数f (x )=6x 3+3(a +2)x 2+2ax .若f (x )的两个极值点为x 1,x 2,且x 1x 2=1,则实数a 的值为________.

6.直线y =a 与函数y =x 3-3x 的图象有三个相异的交点,则a 的取值范围是________.

7.如果函数y =f (x )的导函数的图象如图所示,给出下列判断:

① 函数y =f (x )在区间????-3,-1

2内单调递增; ② ②函数y =f (x )在区间???

?-12,3内单调递减; ③ 函数y =f (x )在区间(4,5)内单调递增; ④ ④当x =2时,函数y =f (x )有极小值; ⑤当x =-1

2

时,函数y =f (x )有极大值.

则上述判断正确的是________.(填序号)

8.设x =1与x =2是函数f (x )=a ln x +bx 2+x 的两个极值点.

(1)试确定常数a 和b 的值;

(2)判断x =1,x =2是函数f (x )的极大值点还是极小值点,并说明理由.

课后反馈(反思静悟,体验成功)

____________________________________________________________________________________

高中数学 利用导数研究函数的极值和最值

专题4 利用导数研究函数的极值和最值 专题知识梳理 1.函数的极值 (1)函数极值定义:一般地,设函数在点附近有定义,如果对附近的所有的点,都有,就说是函数的一个极大值,记作y 极大值=,是极大值点。如果对附近的所有的点,都 有.就说是函数的一个极小值,记作y 极小值=,是极小值点。极大值与极 小值统称为极值. (2)判别f (x 0)是极大、极小值的方法: 若满足,且在的两侧的导数异号,则是的极值点,是极值,并且如果在两侧满足“左正右负”,则是的极大值点,是极大值;如果在两侧满足“左负右正”,则是的极小值点,是极小值. (3)求可导函数f (x )的极值的步骤: ①确定函数的定义区间,求导数 ; ①求出方程的定义域内的所有实数根; ①用函数的导数为的点,顺次将函数的定义域分成若干小开区间,并列成表格.标出在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号,那么f (x )在这个根处无极值。 ①根据表格下结论并求出需要的极值。 2. 函数的最值 (1)定义:若在函数的定义域内存在,使得对于任意的,都有,则称为函数的最大值,记作;若在函数的定义域内存在,使得对于任意的,都有,则称为函数的最小值,记作; (2)在闭区间上图像连续不断的函数在上必有最大值与最小值. (3)求函数在上的最大值与最小值的步骤: ①求在内的极值; ①将的各极值与比较,其中最大的一个是最大值,最小的一个是最小值, 从而得出函数在上的最值。 考点探究 )(x f x 0x 0f (x )f (x 0)f (x 0))(x f f (x 0)x 00x 0)(0='x f 0x )(x f 0x )(x f )(0x f )(x f '0x 0x )(x f )(0x f )(x f '0x 0x )(x f )(0x f )(x f '¢f (x )=00)(x f ')(x f I x 0x ?I f (x )£f (x 0))(0x f y max =f (x 0))(x f I x 0x ?I f (x )3f (x 0))(0x f y min =f (x 0)[]b a ,)(x f []b a ,)(x f []b a ,)(x f (,)a b )(x f f (a ),f (b ))(x f []b a ,

利用导数研究函数的极值、最值

利用导数研究函数的极值、最值 【例1-1】设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是( ) A.函数f(x)有极大值f(2)和极小值f(1) B.函数f(x)有极大值f(-2)和极小值f(1) C.函数f(x)有极大值f(2)和极小值f(-2) D.函数f(x)有极大值f(-2)和极小值f(2) 角度2已知函数求极值 【例1-2】已知函数f(x)=ln x-ax(a∈R). (1)当a=1 2 时,求f(x)的极值; (2)讨论函数f(x)在定义域内极值点的个数. 【训练1】 (1)(角度1)已知函数f(x)的定义域为(a,b),导函数f′(x)在(a,b)上的图象如图所示,则函数f(x)在(a,b)上的极大值点的个数为( ) A.1 B.2 C.3 D.4 (2)(角度2) 设函数f(x)=(x-a)(x-b)(x-c),a,b,c∈R,f′(x)为f(x)的导函数. ①若a=b=c,f(4)=8,求a的值; ②若a≠b,b=c,且f(x)和f′(x)的零点均在集合{-3,1,3}中,求f(x)的极小值. 考点二已知函数的极值求参数

【例2】设函数f (x )=[ax 2-(4a +1)x +4a +3]e x . (1)若曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,求a ; (2)若f (x )在x =2处取得极小值,求a 的取值范围. 【训练2】 已知函数f (x )=ax 3 +bx 2 +cx -17(a ,b ,c ∈R)的导函数为f ′(x ),f ′(x )≤0的解集为{x |-2≤x ≤3},若f (x )的极小值等于-98,则a 的值是( ) A.-8122 B.1 3 C.2 D.5 考点三 利用导数求函数的最值 【例3】 已知函数f (x )=2x 3 -ax 2+2. (1)讨论f (x )的单调性; (2)(经典母题)当0

利用导数求函数的单调区间、极值和最值

精锐教育学科教师辅导讲义 讲义编号____________________ 学员编号: 年 级: 课时数及课时进度:3(3/60) 学员姓名: 辅导科目: 学科教师: 学科组长/带头人签名及日期 课 题 利用导数学求函数单调区间、极值和最值 授课时间: 备课时间: 教学目标 1、能熟练运用导数求函数单调区间、判定函数单调性; 2、能用导数求函数的极值和最值。 重点、难点 考点及考试要求 教学内容 一、利用导数判定函数的单调性并求函数的单调区间 1.定义:一般地,设函数)(x f y =在某个区间内有导数,如果在这个区间内0)(' >x f ,那么函数)(x f y = 在 为这个区间内的增函数;如果在这个区间内 0)(' x f 解不等式,得x 的范围就是递增区间. ③令 0)('

二、利用导数求函数的极值 1、极大值 一般地,设函数)(x f 在点x 附近有定义,如果对 x 附近的所有的点,都有)( )(0 x f x f <,就说)(0 x f 是函数的一 个极大值,记作()x y f 0=极大值 ,x 0是极大值点 2、极小值 一般地,设函数)(x f 在x 附近有定义,如果对 x 附近的所有的点,都有)( )(0 x f x f >就说)(0 x f 是函数) (x f 的一个极小值,记作 ()x y f 0=极小值 ,x 0是极小值点 3、极大值与极小值统称为极值 在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值请注意以下几点: (ⅰ)极值是一个局部概念由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小.并不意味着它在函数的整个的定义域内最大或最小. (ⅱ)函数的极值不是唯一的即一个函数在某区间上或定义域内极大值或极小值可以不止一个. (ⅲ)极大值与极小值之间无确定的大小关系即一个函数的极大值未必大于极小值,如下图所示, x 1 是极大值点, x 4 是极小值点,而)()( 1 4 x x f f >. (ⅳ)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点 f(x 2)f(x 4) f(x 5) f(x 3) f(x 1) f(b) f(a) x 5 x 4x 3x 2 x 1b a x O y 4、判别()x f 0 是极大、极小值的方法: 若 x 满足 0)(0' =x f ,且在x 0的两侧)(x f 的导数异号,则x 0是)(x f 的极值点,()x f 0是极值,并且如果 )(' x f 在 x 两侧满足“左正右负”,则x 是)(x f 的极大值点,()x f 0 是极大值;如果)(' x f 在x 0两侧满足“左负右正” ,则x 0是)(x f 的极小值点,()x f 是极小值 5、求可导函数)(x f 的极值的步骤: (1)确定函数的定义区间,求导数 )(' x f

(完整版)导数与函数的极值、最值问题(解析版)

【高考地位】 导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试题难度考查较大. 【方法点评】 类型一 利用导数研究函数的极值 使用情景:一般函数类型 解题模板:第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ; 第二步 求方程'()0f x =的根; 第三步 判断'()f x 在方程的根的左、右两侧值的符号; 第四步 利用结论写出极值. 例1 已知函数x x x f ln 1 )(+= ,求函数()f x 的极值. 【答案】极小值为1,无极大值. 【点评】求函数的极值的一般步骤如下:首先令'()0f x =,可解出其极值点,然后根据导函数大于0、小于0即可判断函数()f x 的增减性,进而求出函数()f x 的极大值和极小值. 【变式演练1】已知函数322()f x x ax bx a =+++在1x =处有极值10,则(2)f 等于( ) A .11或18 B .11 C .18 D .17或18 【答案】C 【解析】

试题分析:b ax x x f ++='23)(2,???=+++=++∴1010232 a b a b a ???-==????=----=?114012232b a a a a b 或???=-=33 b a .当???=-=3 3 b a 时,∴≥-=',0)1(3)(2x x f 在1=x 处不存在极值. 当???-==11 4b a 时, )1)(113(1183)(2-+=-+='x x x x x f ,0)(),1,3 11 (<'- ∈∴x f x ;0)(),,1(>'+∞∈x f x ,符合题意. 所以???-==114b a .181622168)2(=+-+=∴f .故选C . 考点:函数的单调性与极值. 【变式演练2】设函数()21 ln 2 f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为 ( ) A .()1,0- B .()1,-+∞ C .()0,+∞ D .()(),10,-∞-+∞U 【答案】B 【解析】 考点:函数的极值. 【变式演练3】函数x m x m x x f )1(2)1(2 1 31)(23-++-=在)4,0(上无极值,则=m _____. 【答案】3 【解析】 试题分析:因为x m x m x x f )1(2)1(2 1 31)(23-++-= , 所以()()2'()(1)2(1)21f x x m x m x x m =-++-=--+,由()'0f x =得2x =或1x m =-,又因为

导数与函数的极值、最值问题(解析版)

【高考地位】 导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试题难度考查较大. 【方法点评】 类型一 利用导数研究函数的极值 使用情景:一般函数类型 解题模板:第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ; 第二步 求方程'()0f x =的根; 第三步 判断'()f x 在方程的根的左、右两侧值的符号; 第四步 利用结论写出极值. 例1 已知函数x x x f ln 1 )(+= ,求函数()f x 的极值. 【答案】极小值为1,无极大值. 【点评】求函数的极值的一般步骤如下:首先令'()0f x =,可解出其极值点,然后根据导函数大于0、小于0即可判断函数()f x 的增减性,进而求出函数()f x 的极大值和极小值. 【变式演练1】已知函数322()f x x ax bx a =+++在1x =处有极值10,则(2)f 等于( ) A .11或18 B .11 C .18

D .17或18 【答案】C 【解析】 试题分析:b ax x x f ++='23)(2,???=+++=++∴1010232 a b a b a ???-==????=----=?114012232b a a a a b 或???=-=33 b a .当???=-=3 3 b a 时,∴≥-=',0)1(3)(2x x f 在1=x 处不存在极值. 当? ??-==114b a 时, )1)(113(1183)(2-+=-+='x x x x x f ,0)(),1,3 11 (<'- ∈∴x f x ;0)(),,1(>'+∞∈x f x ,符合题意. 所以???-==114b a .181622168)2(=+-+=∴f .故选C . 考点:函数的单调性与极值. 【变式演练2】设函数()21 ln 2 f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为 ( ) A .()1,0- B .()1,-+∞ C .()0,+∞ D .()(),10,-∞-+∞U 【答案】B 【解析】 考点:函数的极值.

函数的极值与导数教学设计一等奖

函数的极值与导数 作者单位:宁夏西吉中学作者姓名:蒙彦强联系电话: 一.教材分析 本节课选自高中数学人教A版选修2-2教材函数的极值与导数,就本册教材而言本节既是前面所学导数的概念、导数的几何意义、导数的计算、函数的单调性与导数等内容的延续和深化,又为下节课最值的学习奠定了知识与方法的基础,起着承上启下的作用.就整个高中教学而言,函数是高中数学主要研究的内容之一,而导数又是研究函数的主要工具,同时导数在化学、物理中都有所涉及可见它的重要性. 二.教学目标 1. 了解极大值、极小值的概念,体会极值是函数的局部性质; 2. 了解函数在某点取得极值的必要条件与充分条件; 3. 会用导数求函数的极值; 4. 培养学生观察、分析、探究、推理得出数学概念和规律的学习能力; 5. 感受导数在研究函数性质中的一般性和有效性,体会导数的工具作用.三.重点与难点 重点是会用导数求函数的极值. 难点是导函数的零点是函数极值点的必要不充分条件的理解. 四.学情分析 基于本班学生基础较差,思维水平参差不齐,所以备课上既要考虑到薄弱同学的理解与接受,又要考虑到其他同学视野的拓展,因此在本节课中我设置了许多的问题,来引导学生怎样学,以问答的方式来激发学生的学习兴趣,同时让更多的学生参与到教学中来.学生已经学习了函数的单调性与导数的关系,学生已经初步具备了运用导数研究函数的能力,为了进一步培养学生的这种能力,体会导数的工具作用,本节进一步研究函数的极值与导数. 五.教具教法 多媒体、展台,问题引导、归纳、类比、合作探究发现式教学 六.学法分析 借助多媒体辅助教学,通过观察函数图像分析极值的特征后,得出极值的定义;通过函数图像上极值点及两侧附近导数符号规律的探究,归纳出极值与导数的关系;通过求极值的问题归纳用导数求函数极值的方法与步骤. 七.教学过程 1.引入 让学生观察庐山连绵起伏的图片思考“山势有什么特点”并结合诗句“横看成岭侧成峰,远近高低各不同”,由此联想庐山的连绵起伏形成好多的“峰点”与“谷点”,这就是数学上研究的函数的极值引出课题. 【设计意图】从庐山美景出发并结合学生熟悉的诗句来激发学生学习兴趣,让学生在愉快中知道学什么.

(完整版)专题05导数与函数的极值、最值—三年高考(2015-2017)数学(文)真题汇编.doc

1. 【 2016 高考四川文科】已知函数的极小值点,则=( ) (A)-4 (B) -2 (C)4 (D)2 【答案】 D 考点:函数导数与极值. 【名师点睛】本题考查函数的极值.在可导函数中函数的极值点是方程但是极大值点还是极小值点,需要通过这点两边的导数的正负性来判断,在 的解,附近,如 果时,,时,则是极小值点,如果时,,时,,则是极大值点, 2. 【 2015 高考福建,文A.充分而不必要条 件12】“对任意 B.必要而不充分条件 ,”是“ C .充分必要条件 D ”的() .既不充分也不必 要条件 【答案】 B 【解析】当时,,构造函数,则 .故在单调递增,故,则;当时,不等式等价于,构造函数 ,则,故在递增,故 ”是“,则.综上 ”的必要不充分条件,选 所述,“ 对任 意B. ,

【考点定位】导数的应用. 【名师点睛】 本题以充分条件和必要条件为载体考查三角函数和导数在单调性上的应用, 根 据已知条件构造函数,进而研究其图象与性质,是函数思想的体现,属于难题. 3. (2014 课标全国Ⅰ,文 12) 已知函数 f ( x ) = ax 3 - 3 2 + 1,若 f ( ) 存在唯一的零点 x 0 ,且 x x x 0>0,则 a 的取值范围是 ( ) . A . (2 ,+∞ ) B . (1 ,+∞) C . ( -∞,- 2) D .( -∞,- 1) 答案: C 解析:当 a = 0 时, f ( x ) =- 3x 2+ 1 存在两个零点,不合题意; 当 a >0 时, f ′(x ) = 3ax 2- 6x = , 令 ′( ) = 0,得 x 1 = 0, , fx 所以 f ( x ) 在 x =0 处取得极大值 f (0) = 1,在 处取得极小值 , 要使 f ( x ) 有唯一的零点,需 ,但这时零点 x 0 一定小于 0,不合题意; 当 a <0 时, f ′(x ) = 3ax 2- 6x = , 令 f ′(x ) = 0,得 x 1=0, ,这时 f ( x ) 在 x =0 处取得极大值 f (0) = 1,在 处取得极小值 , 要使 f ( x ) 有唯一零点,应满足 ,解得 a <- 2( a > 2 舍去 ) ,且这时 零点 x 0 一定大于 0,满足题意,故 a 的取值范围是 ( -∞,- 2) . 名师点睛:本题考查导数法求函数的单调性与极值,函数的零点,考查分析转化能力,分类讨论思想, 较难题 . 注意区别函数的零点与极值点 . 4. 【 2014 辽宁文 12】当 时,不等式 恒成立,则实数 a 的取 值范围是()

核心素养提升练 利用导数研究函数的极值、最值

核心素养提升练 利用导数研究函数的极值、最值 (30分钟 60分) 一、选择题(每小题5分,共25分) 1.已知函数f(x)=x3-x2+cx+d有极值,则c的取值范围为( ) A.c< B.c≤ C.c≥ D.c> 【解析】选A.因为f(x)=x3-x2+cx+d, 所以f′(x)=x2-x+c,要使f(x)有极值,则方程f′(x)=x2-x+c=0有两个实数解, 从而Δ=1-4c>0,所以c<. 2.已知函数y=f(x)的导函数y=f′(x)的图象如图所示,则f(x) ( ) A.既有极小值,也有极大值 B.有极小值,但无极大值 C.有极大值,但无极小值 D.既无极小值,也无极大值

【解析】选B.由导函数图象可知,y=f′(x)在(-∞,x0)上为负,y=f′(x)在 (x0,+∞)上非负,所以y=f(x)在(-∞,x0)上递减,在(x0,+∞)上递增,所以y=f(x)在x=x0处有极小值,无极大值. 3.设动直线x=m与函数f(x)=x3,g(x)=ln x的图象分别交于点M,N,则|MN|的最小值为( ) A.(1+ln 3) B.ln 3 C.1+ln 3 D.ln 3-1 【解析】选A.设F(x)=f(x)-g(x)=x3-ln x,求导得:F′(x)=3x2-. 令F′(x)>0得x>; 令F′(x)<0得00时,x<1,故y=g(x)在(0,1)上单调递增,在(1,+∞) 上单调递减,g(x)max=g(1)=,当x→+∞时,g(x)>0,所以t∈.

用导数求函数的极值..

用导数来求函数的极值 例 求下列函数的极值: 1.x x x f 12)(3-=;2.x e x x f -=2)(;3..21 2)(2-+= x x x f 分析:按照求极值的基本方法,首先从方程0)(='x f 求出在函数)(x f 定义域内所有可能的极值点,然后按照函数极值的定义判断在这些点处是否取得极值. 解:1.函数定义域为R .).2)(2(3123)(2-+=-='x x x x f 令0)(='x f ,得2±=x . 当2>x 或2-'x f , ∴函数在()2,-∞-和()+∞,2上是增函数; 当22<<-x 时,0)(<'x f , ∴函数在(-2,2)上是减函数. ∴当2-=x 时,函数有极大值16)2(=-f , 当2=x 时,函数有极小值.16)2(-=f 2.函数定义域为R .x x x e x x e x xe x f ----=-=')2(2)(2 令0)(='x f ,得0=x 或2=x . 当0x 时,0)(<'x f , ∴函数)(x f 在()0,∞-和()+∞,2上是减函数; 当20<'x f , ∴函数)(x f 在(0,2)上是增函数. ∴当0=x 时,函数取得极小值0)0(=f , 当2=x 时,函数取得极大值2 4)2(-=e f . 3.函数的定义域为R . .) 1() 1)(1(2)1(22)1(2)(2 2222++-=+?-+='x x x x x x x x f

令0)(='x f ,得1±=x . 当1-x 时,0)(<'x f , ∴函数)(x f 在()1,-∞-和()+∞,1上是减函数; 当11<<-x 时,0)(>'x f , ∴函数)(x f 在(-1,1)上是增函数. ∴当1-=x 时,函数取得极小值3)1(-=-f , 当1=x 时,函数取得极大值.1)1(-=f 说明:思维的周密性是解决问题的基础,在解题过程中,要全面、系统地考虑问题,注意各种条件 综合运用,方可实现解题的正确性.解答本题时应注意0)(0='x f 只是函数 )(x f 在0x 处有极值的必要条件,如果再加之0x 附近导数的符号相反,才能断定函数在0x 处 取得极值.反映在解题上,错误判断极值点或漏掉极值点是学生经常出现的失误. 复杂函数的极值 例 求下列函数的极值: 1.)5()(32-=x x x f ;2..6)(2 --=x x x f 分析:利用求导的方法,先确定可能取到极值的点,然后依据极值的定义判定.在函数)(x f 的定义域内寻求可能取到极值的“可疑点”,除了确定其导数为零的点外,还必须确定函数定义域内所有不可导的点.这两类点就是函数)(x f 在定义内可能取到极值的全部“可疑点”. 解:1..3) 2(533)5(2)5(32)(33323x x x x x x x x x f -=+-= +-= ' 令0)(='x f ,解得2=x ,但0=x 也可能是极值点. 当0x 时,0)(>'x f , ∴函数)(x f 在()0,∞-和()+∞,2上是增函数; 当20<

导数与函数的极值专题

导数与函数的极值专题 1.函数的极值 (1)函数的极小值: 函数y=f (x )在点x=a 的函数值f (a )比它在点x=a 附近其他点的函数值都 ;,f ' (a )= ;而且在点x=a 附近的左侧 ,右侧 ,则 叫作函数y=f (x )的极小值点, 叫作函数y=f (x )的极小值. (2)函数的极大值: 函数y=f (x )在点x=a 的函数值f (a )比它在点x=a 附近其他点的函数值都 ;,f ' (a )= ;而且在点x=a 附近的左侧 ,右侧 ,则 叫作函数y=f (x )的极大值点, 叫作函数y=f (x )的极大值. 极小值点、极大值点统称为极值点,极大值和极小值统称为极值. 2、利用导数求函数极值的一般步骤: (1) 求导函数f /(x); (2) 求解方程f /(x)=0; (3)检查f /(x)在方程f /(x)=0的根的左右的符号,并根据符号确定极大值与极小值 题型1:极值与导数的关系: 1、已知定义在R 的函数f(x),则“0x 是函数 f(x)的极值点”是“0)(0='x f ”的( ) A. 充分不必要条件 B.必要不充分条件 C.充要条件 D.以上都不对 2、已知定义在R 的可导函数f(x),则“0x 是函数 f(x)的极值点”是“0)(0='x f ”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.以上都不对 3、已知函数f (x )=2e f '(e)ln x e x -(e 是自然对数的底数),则f (x )的极大值为( ) A .2e -1 B .e 1- C .1 D .2ln 2 4、设f (x )=12x 2-x+cos(1-x ),则函数f (x ) ( ) A .有且仅有一个极小值 B .有且仅有一个极大值 C .有无数个极值 D .没有极值

高中数学典型例题详解和练习-利用导数求函数的极值

利用导数求函数的极值 例 求下列函数的极值: 1.x x x f 12)(3-=;2.x e x x f -=2)(;3..21 2)(2-+=x x x f 分析:按照求极值的基本方法,首先从方程0)(='x f 求出在函数 )(x f 定义域内所有可能的极值点, 然后按照函数极值的定义判断在这些点处是否取得极值. 解:1.函数定义域为R .).2)(2(3123)(2-+=-='x x x x f 令0)(='x f ,得2±=x . 当2>x 或2-'x f , ∴函数在()2,-∞-和()+∞,2上是增函数; 当22<<-x 时,0)(<'x f , ∴函数在(-2,2)上是减函数. ∴当2-=x 时,函数有极大值16)2(=-f , 当2=x 时,函数有极小值.16)2(-=f 2.函数定义域为R .x x x e x x e x xe x f ----=-=')2(2)(2 令0)(='x f ,得0=x 或2=x . 当0x 时,0)(<'x f , ∴函数)(x f 在()0,∞-和()+∞,2上是减函数; 当20<'x f , ∴函数)(x f 在(0,2)上是增函数. ∴当0=x 时,函数取得极小值0)0(=f ,

当2=x 时,函数取得极大值24)2(-=e f . 3.函数的定义域为R . .)1()1)(1(2)1(22)1(2)(2 2222++-=+?-+='x x x x x x x x f 令0)(='x f ,得1±=x . 当1-x 时,0)(<'x f , ∴函数)(x f 在()1,-∞-和()+∞,1上是减函数; 当11<<-x 时,0)(>'x f , ∴函数)(x f 在(-1,1)上是增函数. ∴当1-=x 时,函数取得极小值3)1(-=-f , 当1=x 时,函数取得极大值.1)1(-=f 说明:思维的周密性是解决问题的基础,在解题过程中,要全面、系统地考虑问题,注意各种条件 综合运用,方可实现解题的正确性.解答本题时应注意0)(0='x f 只是函数)(x f 在0x 处有极值的必要条 件,如果再加之0x 附近导数的符号相反,才能断定函数在0x 处取得极 值.反映在解题上,错误判断极值点或漏掉极值点是学生经常出现的失误. 复杂函数的极值 例 求下列函数的极值: 1.)5()(32-=x x x f ;2..6)(2--=x x x f 分析:利用求导的方法,先确定可能取到极值的点,然后依据极

利用导数研究函数的极值教案

利用导数研究函数的极值教案

任课教师陈雪艳授课班 级 高二(4) 班 授课 日期 2016.4.13 教学 课题 利用导数研究函数的极值 教学目标知识技能: (1)了解函数在某点取得极值的必要条件; (2)能利用导数求函数的极值及参数的值。 过程与方法:通过实例探究事件独立性的过程,学会判断事件相互独立性的方法。 培养学生的观察、比较、分析、概括的能力,数形结合思想、转化思想、方 程的数学思想。 情感态度和价值观:1、通过在教学过程中让学生多动手、多观察、勤思考、善总结; 2、培养学生的探索精神, 渗透辩证唯物主义的方法论 和认识论教育。 教学 模式 探究模式、课堂讨论模式、合作学习模式 重点利用导数研究函数的极值 难点函数的极值正向或逆向问题的考察 教具学案 教师活动学生设计意

教学过程 一 知识回顾: (1)极值的定义 (2)求极值的一般步骤 二 随堂小练: (1)观察函数y= f(x)的图像,指出该函数的极值点与极值 (2)函数)(x f 的定义域为开区间),(b a ,导函数)(x f 在),(b a 内的图象如图所示,指出函数y= f(x)的极值点. 活动 学生思考回答 学生回答 图 复习基 本概念 培养学生视图能力,数形结合思想 )(1 x f ) (4x f ) (2x f ) (3x f

x ? a b x y) ( f y= O 三课堂讲授 例 1 已知函数1 () f x x x =+,求函数的极值 例2:已知函数f(x)=x3+ax2+bx+a2在x=1处有极值为10, 求 a、b的值

四课堂练习 已知函数32 x处取得极 =++在点 () f x ax bx cx 大值5,其导函数'() =的图象经过点(1,0), y f x (2,0),如图所示.求: x的值; (Ⅰ) (Ⅱ),, a b c的值.

专题2.13 利用导数求函数的单调性、极值、最值(解析版)

第十三讲 利用导数求函数的单调性、极值 、最值 【套路秘籍】 一.函数的单调性 在某个区间(a ,b )内,如果f ′(x )>0,那么函数y =f (x )在这个区间内单调递增;如果f ′(x )<0,那么函数y =f (x )在这个区间内单调递减. 二.函数的极值 (1)一般地,求函数y =f (x )的极值的方法 解方程f ′(x )=0,当f ′(x 0)=0时: ①如果在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极大值; ②如果在x 0附近的左侧f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是极小值. (2)求可导函数极值的步骤 ①求f ′(x ); ②求方程f ′(x )=0的根; ③考查f ′(x )在方程f ′(x )=0的根附近的左右两侧导数值的符号.如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值. 三.函数的最值 (1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值. (2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值. 【套路修炼】 考向一 单调区间 【例1】求下列函数的单调区间: (1)3 ()23f x x x =-; (2)2 ()ln f x x x =-. (3))f (x )=2x -x 2. 【答案】见解析 【解析】(1)由题意得2 ()63f x x '=-. 令2 ()630f x x '=->,解得2x <- 或2 x >. 当(,2x ∈-∞- 时,函数为增函数;当)2 x ∈+∞时,函数也为增函数. 令2 ()630f x x '=-<,解得22x - <<.当(22 x ∈-时,函数为减函数.

导数与函数的极值与最值

y=xf '(x) -1 11 -1 o y x 导数与函数的单调性 题型1.导数与函数图象(,0)(>'x f 函数单调递增;,0)(<'x f 函数单调递减;即导数看正负,函数看增减。 1. 设函数()x f 在定义域内可导,()x f y =的图象如图2所示,则导函数()x f '可能为D 2. 设)(x f '是函数)(x f 的导函数,)(x f y '=的图象如图所示,则)(x f y =的图象最有可能的是C 3. )(x f '是)(x f 的导函数,)(x f '的图象如图所示,则)(x f 的图象只可能是D A B C D 4.已知函数)(x f x y '=的图像如右图所示,下面四个图象中)(x f y =的图象大致是(C ) 31 -2 1-122-2o y x 1-2 1 -122o y x 4 2 1 -2 o y x 42 2 -2 o y x 5. 设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是D x y O A x y O B x y O C y O D x x y O o y x -33 y x O y x O y x O y x O A . B . C . D . 6题图

6.如图为函数32()f x ax bx cx d =+++的图象,'()f x 为函数()f x 的导函数,则不等式 '()0x f x ?<的解集为__()() 3,03,?∞-__. 7.已知()f x 在R 上是可导函数,则 ()f x 的图象如图所示,则不 等 式 ()()2 230 x x f x '-->的解集为 ____________ 题型2.利用导数求单调区间(1.定义域2.求导3.令,0)(>'x f 求增区间;令,0)(<'x f 求减区间) 1. 函数13)(23+-=x x x f 是减函数的区间为 D A.),2(+∞ B.)2,(-∞ C.)0,(-∞ D.(0,2) 2. 函数x x x f ln 3)(+=的单调递增区间是C A.)1,0(e B.),(+∞e C.),1(+∞e D.(e 1 ,e ) 3. 函数x x y ln 82-=在区间)1,2 1 ()41,0(和内分别为 A A.单调递减,单调递增 B.单调递增,单调递增 C.单调递增,单调递减 D.单调递减,单调递减 题型3.由单调区间求参数取值范围(函数在区间(),a b 上增,,0)(≥'x f 恒成立; 函数在区间(),a b 上减,,0)(≤'x f 恒成立;) 1. 已知()321 233 y x bx b x =++++是R 上的单调增函数,则b 的范围D A.1b <-或2b > B.1b ≤-或2b ≥ C.21b -<< D.12b -≤≤ 2. 若m mx x x x f +++-=23)((m 为常数)在(-1,1)上是增函数,则m 的取值范围是D A.[)∞+,1 B.[]3,1 C.[]5,1 D. [)∞+,5 练2.【2014·全国卷Ⅱ(文11)】若函数()ln f x kx x =-在区间(1,+∞)单调递增,则k 的取值范围是( ) (A )(],2-∞- (B )(],1-∞- (C )[)2,+∞ (D )[)1,+∞ 【答案】D 练3.)(3 24)(3 2R x x ax x x f ∈-+=在区间[-1, 1]上是增函数。则a 的范围是____}{11/≤≤-a a 3.(江西理科19)设.22 1 31)(23ax x x x f ++-= 若)(x f 在),3 2 (+∞上存在单调递增区间,求a 的取值范围; 解:已知()ax x x x f 221 3123++-=,()a x x x f 22++-='∴,函数()x f 在),3 2(+∞上存在单调递 增区间,即导函数在),3 2 (+∞上存在函数值大于零的部分,

用导数求函数的极值.

用导数来求函数的极值 例 求下列函数的极值: 1.x x x f 12)(3-=;2.x e x x f -=2)(;3..21 2)(2-+=x x x f 分析:按照求极值的基本方法,首先从方程0)(='x f 求出在函数)(x f 定义域内所有可能的极值点,然后按照函数极值的定义判断在这些点处是否取得极值. 解:1.函数定义域为R .).2)(2(3123)(2-+=-='x x x x f 令0)(='x f ,得2±=x . 当2>x 或2-'x f , ∴函数在()2,-∞-和()+∞,2上是增函数; 当22<<-x 时,0)(<'x f , ∴函数在(-2,2)上是减函数. ∴当2-=x 时,函数有极大值16)2(=-f , 当2=x 时,函数有极小值.16)2(-=f 2.函数定义域为R .x x x e x x e x xe x f ----=-=')2(2)(2 令0)(='x f ,得0=x 或2=x . 当0x 时,0)(<'x f , ∴函数)(x f 在()0,∞-和()+∞,2上是减函数; 当20<'x f , ∴函数)(x f 在(0,2)上是增函数. ∴当0=x 时,函数取得极小值0)0(=f , 当2=x 时,函数取得极大值2 4)2(-=e f . 3.函数的定义域为R . .) 1()1)(1(2)1(22)1(2)(22222++-=+?-+='x x x x x x x x f

令0)(='x f ,得1±=x . 当1-x 时,0)(<'x f , ∴函数)(x f 在()1,-∞-和()+∞,1上是减函数; 当11<<-x 时,0)(>'x f , ∴函数)(x f 在(-1,1)上是增函数. ∴当1-=x 时,函数取得极小值3)1(-=-f , 当1=x 时,函数取得极大值.1)1(-=f 说明:思维的周密性是解决问题的基础,在解题过程中,要全面、系统地考虑问题,注意各种条件 综合运用,方可实现解题的正确性.解答本题时应注意0)(0='x f 只是函数 )(x f 在0x 处有极值的必要条件, 如果再加之0x 附近导数的符号相反,才能断定函数在0x 处取得极值.反映在解题上,错误判断极值点或漏掉极值点是学生经常出现的失误. 复杂函数的极值 例 求下列函数的极值: 1.)5()(32-=x x x f ;2..6)(2--=x x x f 分析:利用求导的方法,先确定可能取到极值的点,然后依据极值的定义判定.在函数)(x f 的定义域内寻求可能取到极值的“可疑点”,除了确定其导数为零的点外,还必须确定函数定义域内所有不可导的点.这两类点就是函数)(x f 在定义内可能取到极值的全部“可疑点”. 解:1..3)2(533)5(2)5(32 )(33323x x x x x x x x x f -=+-=+-=' 令0)(='x f ,解得2=x ,但0=x 也可能是极值点. 当0x 时,0)(>'x f , ∴函数)(x f 在()0,∞-和()+∞,2上是增函数; 当20<

导数与极值、最值练习题.doc

三、知识新授 (一)函数极值的概念 (二)函数极值的求法:(1)考虑函数的定义域并求f'(x); (2)解方程f'(x)=0,得方程的根x 0(可能不止一个) (3)如果在x 0附近的左侧f'(x)>0,右侧f'(x)<0,那么f(x 0)是 极大值;反之,那么f(x 0)是极大值 题型一 图像问题 1、函数()f x 的导函数图象如下图所示,则函数()f x 在图示区间上( ) (第二题图) A .无极大值点,有四个极小值点 B .有三个极大值点,两个极小值点 C .有两个极大值点,两个极小值点 D .有四个极大值点,无极小值点 2、函数()f x 的定义域为开区间()a b ,,导函数()f x '在()a b ,内的图象如图所示,则函数()f x 在 开区间()a b ,内有极小值点( ) A .1个 B .2个 C .3个 D .4个 3、若函数2 ()f x x bx c =++的图象的顶点在第四象限,则函数()f x '的图象可能为( ) D. C. B. A. x y O x y O x y O O y x 4、设()f x '是函数()f x 的导函数,()y f x '=的图象如下图所示,则()y f x =的图象可能是( ) -1 2 1O y x D. C. B. A. 12121 221x y O x y O x y O O y x b a O y x O y x

5、已知函数 () f x 的导函数 () f x '的图象如右图所示,那么函数()f x 的图象最有可能的是( ) -1 1 f '(x ) y x O 6、()f x '是()f x 的导函数,()f x '的图象如图所示,则()f x 的图象只可能是( ) 2y x O 222 2 D. C. B. A. O x y O x y y x O O x y 7、如果函数 () y f x =的图象如图,那么导函数()y f x '=的图象可能是( ) y y y x x x y x D C B A x y y=f(x)

导数与函数的极值、最值

导数与函数的极值、最值 【题型突破】 利用导数解决函数的极值问题 ?考法1根据函数图象判断函数极值的情况 【例1】设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是() A.函数f(x)有极大值f(2)和极小值f(1) B.函数f(x)有极大值f(-2)和极小值f(1) C.函数f(x)有极大值f(2)和极小值f(-2) D.函数f(x)有极大值f(-2)和极小值f(2) D ?考法2求已知函数的极值 【例2】已知函数f(x)=(x-2)(e x-ax),当a>0时,讨论f(x)的极值情况.[解]∵f′(x)=(e x-ax)+(x-2)(e x-a) =(x-1)(e x-2a), ∵a>0,由f′(x)=0得x=1或x=ln 2a. ①当a=e 2时,f′(x)=(x-1)(e x-e)≥0,∴f(x)单调递增,故f(x)无极值. ②当0<a<e 2时,ln 2a<1,当x变化时,f′(x),f(x)的变化情况如下表: x (-∞,ln 2a)ln 2a (ln 2a,1)1(1,+∞) f′(x)+0-0+ f(x)极大值极小值 ③当a>e 2时,ln 2a>1,当x变化时,f′(x),f(x)的变化情况如下表: x (-∞,1)1(1,ln 2a)ln 2a (ln 2a,+∞) f′(x)+0-0+ f(x)极大值极小值

综上,当0<a <e 2时,f (x )有极大值-a (ln 2a -2)2,极小值a -e ; 当a =e 2 时,f (x )无极值; 当a >e 2时,f (x )有极大值a -e ,极小值-a (ln 2a -2)2. ?考法3 已知函数极值求参数的值或范围 【例3】 (1)已知f (x )=x 3+3ax 2+bx +a 2在x =-1时有极值0,则a -b =________. (2)若函数f (x )=e x -a ln x +2ax -1在(0,+∞)上恰有两个极值点,则a 的取值范围为( ) A .(-e 2,-e) B .? ? ???-∞,-e 2 C .? ? ???-∞,-12 D .(-∞,-e) (1)-7 (2)D [方法总结] 1.利用导数研究函数极值问题的一般流程 2.已知函数极值点和极值求参数的两个要领 (1)列式:根据极值点处导数为0和极值列方程组,利用待定系数法求解. (2)验证:因为一点处的导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证根的合理性. A .2或6 B .2 C .23 D .6 (2)(2019·广东五校联考)已知函数f (x )=x (ln x -ax )有极值,则实数a 的取值范围 是( )

相关主题