搜档网
当前位置:搜档网 › SY313-5DD-M5工作原理

SY313-5DD-M5工作原理

SY313-5DD-M5工作原理
SY313-5DD-M5工作原理

产品名称:SMC电磁阀SY313-5DD-M5工作原理

电磁阀是用电磁控制的工业设备,是用来控制流体的自动化基础元件,属于执行器,并不限于液压、气动。用在工业控制系统中调整介质的方向、流量、速度和其他的参数。电磁阀可以配合不同的电路来实现预期的控制,而控制的精度和灵活性都能够保证。电磁阀有很多种,不

同的电磁阀在控制系统的不同位置发挥作用,最常用的是单向阀、安全阀、方向控制阀、速度调节阀等。

全热交换器的工作原理

全热交换器的工作原理 2003年出现的SARS疫情,使我们人类的健康面临严峻的挑战,2009年又爆发了猪流感,于是关于人居环境的空气品质问题多有讨论,提出健康空调是今后空调的发展方向。 但究竟什么是健康的空调,怎样去实现健康舒适的空调,关于这个问题,舒适100也进行了一些分析,指出全空气系统是最佳的空调系统,它可以实现对建筑热湿控制及空气品质的全面控制,同时也为充分利用自然资源,进行全新风运行提供条件。 加大新风量是实现良好空气品质的最好方法,只从空气品质的角度来说,进行全新风运行的空调系统才是最好的系统,可是由此带来的能量消耗确实是非常大的。根据武汉的气象资料计算,当室内设计值在26℃,60%时,对于公共建筑,处理1m3/h新风量,整个夏季需要投入的冷能能耗累计约9.5kw·h左右。可见加大新风量后,能量消耗就有很大增加。因此,需要在新风与排风之间加设能量回收设备。 1 目前市场上的能量回收设备有两类: 一类是显热回收型,一类是全热回收型。显热回收型回收的能量体现在新风和排风的温差上所含的那部分能量;而全热回收型体现在新风和排风的焓差上所含的能量。单从这个角度来说,全热性回收的能量要大于显热回收型的能量,这里没有考虑回收效率的因素。因此全热回收型是更加节能的设备。 按结构分,热回收器分为以下几种: (1)回转型热交换器

(2)热回收环热交换器 (3)热管式热交换器 (4)静止型板翅式热交换器 在以上几种热交换器中,热回收环型和热管型一般只能回收显热。回转型是一种蓄热蓄湿型的全热交换器,但是它有转动机构,需要额外的提供动力。而静止型板翅式全热交换器属于一种空气与空气直接交换式全热回收器,它不需要通过中间媒质进行换热,也没有转动系统,因此,静止型板翅式全热交换器(也叫固定式全热交换器)是一种比较理想的能量回收设备。 2 固定式全热交换器的性能 2.1 固定式全热交换器 固定式全热交换器是在其隔板两侧的两股气流存在温差和水蒸 气分压力差时,进行全热回收的。它是一种透过型的空气——空气全热交换器。 这种交换器大多采用板翅式结构,两股气流呈交叉型流过热交换器,其间的隔板是由经过处理的、具有较好传热透湿特性的材料构成。 2.2 三种效率的定义 全热交换器的性能主要通过显热、湿交换效率和全热交换效率来评价,它们的计算公式为: 显热交换效率:SE= 湿交换效率:ME= 全热交换效率:EE=

中速磨煤机的工作原理及应用

中速磨煤机的工作原理及应用 各种中速磨煤机在结构上有一定差异,按其碾磨部件的形状可分为辊盘式和球环式两种。辊盘式磨煤机由于各制造厂家的不同设计,磨辊和磨盘的结构形式各不相同,又有平盘磨(Loesche磨)、斜盘磨(RP磨和HP磨)及辊环磨(MPS磨和Berz磨)等多种类型。球环中速磨又称E型磨。 由于驱动磨盘、磨碗或磨环的主轴都是垂直装设的,故中速磨又有立轴磨之称。 1.1.1 中速磨煤机的工作原理与结构 各种中速磨煤机的工作原理基本相似,如图2-20所示。原煤由落煤管进入两个碾磨部件的表面之间,在压紧力的作用下受到挤压和碾磨而被粉碎成煤粉。由于碾磨部件的旋转,磨成的煤粉被抛至风环处。装有均流导向叶片的环形热风道称为风环。热风以一定的速度通过风环进入干燥空间,对煤粉进行干燥,并将其带入碾磨上部的粗粉分离器中。经过分离,不符合燃烧要求的粗粉返回碾磨区重磨。合格的煤粉经煤粉分配器由干燥剂带出磨外,引至一次风

管。来煤中夹带的杂物(如石块、黄铁矿块和金属块等)被抛至风环处后,因由下而上的热风不足以阻止它们下落,故经风环落至杂物箱,上述的杂物亦称石子煤。 图2-20 中速磨煤机工作原理 (a) Loesche平盘磨;(b)Lopulco平盘磨;(c)RP碗式磨; (d) MPS磨;(e)E型磨 平盘磨、碗式磨(RP、HP型)、MPS磨和E型磨煤机结构见图4-2。

⑴平盘磨 平盘磨如图2-21(a)所示。平盘磨内,煤在平盘和锥形的辊子之间被碾磨成煤粉,压紧力由加压弹簧或液力一气动压紧装置来提供。磨辊与磨盘之间保持一定间隙,不直接接触。装有均流导向叶片的风环,一种是固定于磨煤机机壳上(如Leosche平盘磨);另一种是固定在转动的磨盘上,并随其一起转动(如Lopulco平盘磨)。

热交换新风机工作原理

热交换新风机工作原理 进入21世纪,随着城市PM2.5的不断加剧,在空气净化行业出现了一颗炙手可热的新星——热交换新风机。那么,热交换新风机的工作原理是怎样的呢? 热交换新风机是一种高效节能型空调通风装置,其核心功能是利用室内、外空气的温差和湿差,通过能量回收机芯良好的换能特性,在双向置换通风的同时,产生能量交换,使新风有效获取排风中的可用物质,从而大大节约了新风预处理的能耗,达到节能换气的目的,其节能效果非常显著。 夏季,使用全热交换器时通过热交换芯体把室外将室内的炎热、潮湿空气中的温度和湿度,传导至排出室外的室内凉爽、干燥、污浊的空气中去。 冬季,使用热交换器换气时,通过热交换芯体用室内温度的污浊空气中的温度预热将要送入室内的室外寒冷的新鲜空气。并将湿气一并导入将要送入室内的室外干燥的空气中。 广州快净环保科技有限公司生产的快净热交换新风机作为当前最受欢迎的新风系统,拥有非常突出的优势,主要包括以下几点: 一、换热效率高。产品采用先进的逆流结构设计,能够大大的提高换热效率; 二、外形紧凑小巧。全热交换器的外形为六边形,降低了模块的厚度,特殊的通风孔道有利于模块比交叉流机芯做得更短; 三、性能稳定、无需清洁。通风孔道采用了流线设计,可以有效地防止着尘,无需对交叉流机芯进行定期的清洁; 四、使用寿命长。采用了ABS框架结构,非常坚固而耐用,使用寿命相比交叉流机芯增加了一倍。 热交换新风机适用范围: 适合于住宅、写字楼、宾馆、医院、实验室、机房、棋牌室、餐饮、办公、娱乐几乎所有场所,可以根据不同户型面积、人口数量、周边环境设计不同方案,适合各种建筑和人群。 空气是每个人每时每刻都要呼吸的必需品,如果离开清新、自然的空气我们的生活将面临很多健康安全问题,只有保证室内良好的空气质量,才能营造更为舒适健康的居住环境,热交换新风机运用高新技术,可以轻松帮你实现室内空气流通,让您畅享自然健康生活。

射频电路的设计原理及应用

射频电路的设计原理及应用 普通手机射频电路由接收通路、发射通路、本振电路三大电路组成。其主要负责接收信号解调;发射信息调制。早期手机通过超外差变频(手机有一级、二级混频和一 本、二本振电路),后才解调出接收基带信息;新型手机则直接解调出接收基带信息(零中频)。更有些手机则把频合、接收压控振荡器(RX—VCO)也都集成 在中频内部。 射频电路方框图 一、接收电路的结构和工作原理 接收时,天线把基站发送来电磁波转为微弱交流电流信号经滤波,高频放大后,送入中频内进行解调,得到接收基带信息(RXI-P、RXI-N、RXQ-P、RXQ-N);送到逻辑音频电路进一步处理。 1、该电路掌握重点 (1)、接收电路结构。 (2)、各元件的功能与作用。 (3)、接收信号流程。 2、电路分析 (1)、电路结构。 接收电路由天线、天线开关、滤波器、高放管(低噪声放大器)、中频集成块(接收解调器)等电路组成。早期手机有一级、二级混频电路,其目的把接收频率降低后再解调(如下图)。 接收电路方框图

(2)、各元件的功能与作用。 1)、手机天线: 结构:(如下图)由手机天线分外置和内置天线两种;由天线座、螺线管、塑料封套组成。 作用: a)、接收时把基站发送来电磁波转为微弱交流电流信号。 b)、发射时把功放放大后的交流电流转化为电磁波信号。 2)、天线开关: 结构:(如下图)手机天线开关(合路器、双工滤波器)由四个电子开关构成。 图一、图二 作用:其主要作用有两个: a)、完成接收和发射切换; b)、 完成900M/1800M信号接收切换。 逻辑电路根据手机工作状态分别送出控制信号(GSM-RX-EN;DCS- RX-EN;GSM-TX-EN;DCS- TX-EN),令各自通路导通,使接收和发射信号各走其道,互不干扰。 由于手机工作时接收和发射不能同时在一个时隙工作(即接收时不发射,发射时不接收)。因此后期新型手机把接收通路的两开关去掉,只留两个发射转换开关;接收切换任务交由高放管完成。 3)、滤波器: 结构:手机中有高频滤波器、中频滤波器。 作用:其主要作用:滤除其他无用信号,得到纯正接收信号。后期新型手机都为零中频手机;因此,手机中再没有中频滤波器。 4)、高放管(高频放大管、低噪声放大器): 结构:手机中高放管有两个:900M高放管、1800M高放管。都是三极管共发射极放大电路;后期新型手机把高放管集成在中频内部。

扩频通信系统的分类

扩频通信系统的分类 扩频通信系统的关键问题是在发信机部分如何产生宽带的扩频信号,在收信机部分如何解调扩频信号。根据通信系统产生扩频信号的方式,可以分为下列几种。 1 直接序列扩展频谱系统 直接序列扩展频谱系统(Direct Sequece Spread Spectrum Communication Systems,DS-SS),通常简称为直接序列系统或直扩系统,是用待传输的信息信号与高速率的伪随机码波形相乘后,去直接控制射频信号的某个参量,来扩展传输信号的带宽。用于频谱扩展的伪随机序列称为扩频码序列。直接序列扩展频谱通信系统的简化方框图参见图1-5。 在直接序列扩频通信系统中,通常对载波进行相移键控(Phase Shift Keying,PSK)调制。为了节约发射功率和提高发射机的工作效率,扩频通信系统常采用平衡调制器。抑制载波的平衡调制对提高扩频信号的抗侦破能力也有利。 在发信机端,待传输的数据信号与伪随机码(扩频码)波形相乘(或与伪随机码序列模2加),形成的复合码对载波进行调制,然后由天线发射出去。在收信机端,要产生一个和发信机中的伪随机码同步的本地参考伪随机码,对接收信号进行相关处理,这一相关处理过程通常常称为解扩。解扩后的信号送到解调器解调,恢复出传送的信息。 (a) 图1-5 直接序列扩频通信系统简化图 (a) 发射系统;(b) 接收系统 2 跳频扩频通信系统 跳频扩频通信系统是频率跳变扩展频谱通信系统(Frequecy Hopping Spread Spectrum Communication Systems,FH-SS)的简称,或更简单地称为跳频通信系统,确切地说应叫做“多频、选码和频移键控通信系统”。它是用二进制伪随机码序列去离散地控制射频载波振荡器的输出频率,使发射信号的频率随伪随机码 2个离散频率,的变化而跳变。跳频系统可供随机选取的频率数通常是几千到20 在如此多的离散频率中,每次输出哪一个是由伪随机码决定的。频率跳变扩展频谱通信系统的简化方框图参见图1-6。

HP1003中速磨煤机工作原理

HP1003中速磨煤机简介 上海重型机器厂八十年代初期从美国CE公司引进了碗式磨煤机制造技术。CE生产的磨煤机遍布全世界,用于电厂煤粉的制备和干燥,由于磨煤机内研磨表面形似深碟或碗,故称之为碗式磨煤机。HP碗式磨煤机是继RP碗式磨煤机后新开发的产品,CE公司八十年代开发试验并投入使用。HP1003表示磨碗直径为100英寸(2540㎜)的浅碗磨。每台锅炉安装6台磨煤机,其中5台运行,一台备用。当磨制设计煤种时,5台磨的总出力不小于锅炉在B-MCR工况下燃煤量的110%。磨煤机设备的使用寿命不小于30年 1.2 HP1003磨煤机结构 沿磨煤机高度方向可分为传动装置、石子煤排出装置、侧机体、碾磨部件、加载装置、干燥分离空间、分离器及煤粉排出装置。另外在每一台磨煤机配置—套润滑系统。该系统包括电机驱动的润滑油泵泵(#1炉用的是叶片泵,#2炉用的是齿轮泵)、独立油箱、滤油器,冷油器和一些液压元件。此种磨煤机属于弹簧加载,依靠弹簧的预紧力保证磨辊的正常工作。 1.3 磨辊装置结构 1.3.1磨辊装置由磨辊头、磨辊轴、磨辊座、锥形磨辊套和轴承及油封组成。整个磨辊装置固定在分离器体的耳轴上,可以绕耳轴转动,并可以翻转到垂直位置进行检修和检查。磨辊轴的位置是固定的,当磨碗转动时,靠煤的摩擦传递磨碗的转动力矩。使磨辊绕其磨辊轴转动。磨辊的行程等于磨碗的行程,磨辊的碾磨速度等于其本身的转动速度。 1.3.2磨辊衬套为双金属材料,里层是高铬铸钢,表面是用耐磨材料堆焊而成,厚度为50mm。磨辊头的作用是传递弹簧加载装置施加的压力,使磨辊在磨煤时得到必要的碾磨力,磨辊加载形式为外置式弹簧加载。磨辊头与磨辊轴的连接采用法兰盘。 1.3.3磨辊的上下轴承为两只大小相同的锥形滚柱轴承,磨辊内部有充足的润滑油,两组滚动轴承浸没在油中润滑。 1.3.4在耳轴中心开有孔道,把密封空气引向磨辊转动部件与静止部件之间的区域,防止煤粉等杂物进入润滑油。耳轴衬套为含有橡胶的材料,可以减少磨辊的振动。 1.3.5限位螺栓用来调节磨辊与磨碗衬板之间的间隙。当磨煤机启动时和空载运行时,磨辊与磨碗衬板不会直接接触,避免无谓的电能消耗,起动平稳无噪声,当辊套磨损后也可以利用限位螺栓来调整辊套与衬板之间的间隙。 1.3.6磨辊组件有3只唇形油封,其中2只是用来防止煤粉进入,1只是用来防止润滑油泄漏。3只油封安装在可更换的经过淬硬处理的耐磨圈上,以防止磨辊轴损伤。 1.1.4 加载装置结构 HP1003磨的加载装置为外置式弹簧加载。其弹簧加载装置主要由弹簧、弹簧座、弹簧杆、弹簧端盖等一些部件组成。整个组件为插袋式结构,在检修时可把整个组件进行拆卸。 1.1.5 磨碗及叶轮装置结构 1.1.5.1整个磨碗装置主要包括磨碗、延伸环、磨碗耐磨盖板、磨碗壳盖板、夹紧环以及一组呈扇形状的衬板。 1.1.5.2磨碗衬板的一端被紧密地镶嵌在磨碗的凹槽内,另一端用楔形的夹紧环压紧。当拧紧环上的螺栓后,衬板就被牢牢地固定了。衬板的寿命比磨辊长,衬板的表面并不是一平面,从衬板的截面看,其表面不是一条斜直线,而是一条折线,使磨辊小端与衬板的间隙比大端的间隙大,为喇叭状,有利于原煤进入。有若干块表面带有凸筋的衬板均匀地在这些衬板中间以增加煤与磨辊、衬板的摩擦力,防止磨辊打滑。 1.1.5.3在磨盘上的煤被磨成粉后由上升的气流抛至风环处进行第一级分离。其风环是随磨碗一起转动的,因此,该装置也被称之为叶轮。 1.1.6 传动装置结构 1.1.6.1传动装置为一个齿轮减速箱,相对于磨煤机的其它部件来讲是独立的。维修时可将其移出进行检修或用备用齿轮箱进行更换,这样可缩短磨煤机的停机时间。齿轮箱的传动形

扩频通信复习

1.1用码速率为5Mb/s的为随机码序列进行直接序列扩频,,扩频后信号带宽是多少?若信息码速率为10kb/s,系统处理增益是多少? 解:∵码速率Rc=Bss=5Mb/s ∴扩频后信号带宽是:5MHz 信息码速率Rb=10kb/s ∴系统处理增益为Gp=Rc/Rb=5000/10=500 ∵10log10∧500=27dB 1.2直接序列-频率跳变混合系统,直接序列扩频码速率为20Mb/s,频率数为100,数据信息速率为9.6kb/s,试求该系统的处理增益是多少?采用BPSK调制时,所需要传输通道的最小带宽是多少? 解:扩频码速率Rc=Bss=20Mb/s.N=100 Rb=9.6kb/s,Gp=Rc/Rb*N=20000/9.6*100=208300 采用BPSK调制时B1=2Bss ∴B2=NB1=100*2*20Mb=4000Mb 1.3在高斯白噪声信道中,要求在噪声功率比信号功率大100倍的情况下工作,输出信噪比不小于10dB,信息传输速率为8kb/s,若系统采用直接序列BPSK调制,试求所需传输通道的最小带宽 解:忽略系统的Lsys,即扩频系统的执行损耗或实现损耗 ∵噪声功率比信号功率大100倍 M0=10lg100=20dB ∴处理增益Gp=M0+(S/N)=20dB+10dB=30dB ∵Rb=8kb/s ∴Rc=Gp*Rb=1000*8kb/s=8000kb/s ∴Bss=Rc=8000kb=8Mb B=2Bss=16MHz 1.4采用BPSK调制的直接序列扩频系统,射频最大带宽为12MHz,速率为6kb/s的信息信号通过这个系统传输时,系统输出信噪比最大能改善多少? 解:最大带宽为12MHz B=2Bss=12MHz Bss=6MHz ∴Rc=Bss=6MHz/s 又∵Rb=6kb/s ∴Gp=Rc/Rb=6000/6kb=1000 [Gp]dB=10lgGp=30dB 1.5高斯白噪声信道,信道带宽为4MHz,当干扰功率比信号功率大30dB时,要求输出信噪比最小为10dB,则系统的最小处理增益是几 解:B=4MHz 干扰容限Mj=30dB S/N=10dB 在忽略系统的Lsys时有 [GP]dB=[Mj]dB+[S/N]dB=40dB ∵rc=Bss=1/2B=2Mb/s rb=rc/Gp=2/10000Mb/s=200b/s 1.6要求某系统在干扰功率比信号功率大300倍的环境下工作,系统需要多大的干扰容限?若要求输出信噪比为10dB,则系统的最小处理增益是多少? 干扰容限j/s=10log300=24.8db 处理增益Gp=(J/s)in+(s/n)out =24.8+10=34.8dB 1.7扩频通信系统中用梳子调制,干扰容限中的(s/n)out与(Eb/N0)的关系

全热交换器技术参数

全热交换器技术参数 1.概述 1.1 工作原理 XFHQ系列全热交换器采用先进科技及工艺,芯体用特殊纸质经过化学处理加工而成,对温度、湿度、冷热能量回收起到最佳效果。 高效换热芯体,当室内空调排风与室外新风分别呈交叉方式流经换热芯体时,由于平隔板两侧气流存在温度差,产生传热,夏季运行时,新风从空调排风获得冷能,使温度降低;在冬季运行时,新风从空调排风中获得热能,使温度升高,这样通过换热芯体的热交换过程使新风从空调排风中回收了能量。 1.2特点 双向换气功能 将室外新风空气经过过滤后送入室内的同时,将室内污浊空气排出室外,彻底改善室内空气品质; 静音设计 内置空调专用低噪音离心风机,机箱内部覆有高效的吸音材料,全静音设计,人性化体现; 能量回收 机组内置高效的热交换器,将排出去的室内空气与送进来的室外空气进行冷热交换,在提供舒适温度空气的同时回收能量,节约能源; 控制方便 电气系统采用二次回路设计,使用开关面板,启动停止机组安全快速简单,可选择远程集中控制系统,与多联机室内机联网控制。 317

MDV4+i 直流变频智能多联中央空调 318 1.3 命名法 A,B,……Z 设计序列 S-三相,单相缺省 Z-纸芯式、L-轮转式、P-普通式 D-吊顶式、L-立柜式 新风量,单位100m 3 /h XFH-显换热式新风机 XFHQ-全换热式新风机

MDV4+i直流变频智能多联中央空调 2.参数 2.200~1200m3/h的产品采用发泡风道,具备旁通功能;2500~12000m3/h机型不带网络集中控制功能。 3.表中噪音是在额定静压安装条件半消音室测得,实际使用条件下的运行噪音可能高于此值,请根据设计安装具体条件,考虑相应的消音措施。 319

扩频通信的基本原理

扩频通信的理论基础 1.1扩频通信的基本概念 通信理论和通信技术的研究,是围绕着通信系统的有效性和可靠性这两个基本问题展开的,所以有效性和可靠性是设计和评价一个通信系统的主要性能指标。 通信系统的有效性,是指通信系统传输信息效率的高低。这个问题是讨论怎样以最合理、最经济的方法传输最大数量的信息。在模拟通信系统中,多路复用技术可提高系统的有效性。显然,信道复用程度越高,系统传输信息的有效性就越好。在数字通信系统中,由于传输的是数字信号,因此传输的有效性是用传输速率来衡量的。 通信系统的可靠性,是指通信系统可靠地传输信息。由于信息在传输过程中受到干扰,收到的信息与发出的信息并不完全相同。可靠性就是用来衡量收到信息与发出信息的符合程度。因此,可靠性决定于系统抵抗干扰的性能,也就是说,通信系统的可靠性决定于通信系统的抗干扰性能。在模拟通信系统中,传输的可靠性是用整个系统的输出信噪比来衡量的。在数字通信系统中,传输的可靠性是用信息传输的差错率来描述的。 扩展频谱通信由于具有很强的抗干扰能力,首先在军用通信系统中得到了应用。近年来,扩展频谱通信技术的理论和应用发展非常迅速,在民用通信系统中也得到了广泛的应用。 扩频通信是扩展频谱通信的简称。我们知道,频谱是电信号的频域描述。承载各种信息(如语音、图象、数据等)的信号一般都是以时域来表示的,即信息信号可表示为一个时间的函数)(t f 。信号的时域表示式)(t f 可以用傅立叶变换得到其频域表示式)(f F 。频域和时域的关系由式(1-1)确定: ?∞ ∞--=t e t f f F ft j d )()(π2 ?∞ ∞-=f e f F t f ft j d )()(π2 (1-1) 函数)(t f 的傅立叶变换存在的充分条件是)(t f 满足狄里赫莱(Dirichlet)条件,或在区间(-∞,+∞)内绝对可积,即t t f d )(?∞ ∞-必须为有限值。 扩展频谱通信系统是指待传输信息信号的频谱用某个特定的扩频函数(与待传输的信息信号)(t f 无关)扩展后成为宽频带信号,然后送入信道中传输;在接收端再利用相应的技术或手段将其扩展了的频谱压缩,恢复为原来待传输信息信号的带宽,从而到达传输信息目的的通信系统。也就是说在传输同样信息信号时所需要的射频带宽,远远超过被传输信息信号所必需的最小的带宽。扩展频谱后射频信号的带宽至少是信息信号带宽的几百倍、几千倍甚至几万倍。信息已不再是决定射频信号带宽的一个重要因素,射频信号的带宽主要由扩频函数来决定。 由此可见,扩频通信系统有以下两个特点: (1) 传输信号的带宽远远大于被传输的原始信息信号的带宽; (2) 传输信号的带宽主要由扩频函数决定,此扩频函数通常是伪随机(伪噪声)编码信号。 以上两个特点有时也称为判断扩频通信系统的准则。

容积式热交换器的工作原理

容积式热交换器的工作原理1.自动控温节能型容积式热交换器,它充分利用蒸汽能源,高效、节能是一种新型热水器。普通热交换器一般需要配置水水热交换器来降低蒸汽凝结水温度以便回用。而节能型热交换器凝结出水温度在75℃左右,可直接回锅炉房重复使用。这样减少了设备投资,节约热交换器机房面积,从而降低基建造价:因此节能型容积式热交换器深受广大设计用户单位欢迎。 2.节能型容积式热交换器工作原理详图示。有立式、卧式两种类型,其技术参数详后项图表,本厂生产规格齐全,还可按用户单位特殊需要设计、加工。 3.本热交换器适用于一般工业及民用建筑的热水供应系统。热媒为蒸汽,加热排管工作压力为<0.6MPa,壳体工作压力为0~1.6MPa,出口热水温度为65℃。 4.节能型容积式热交换器,壳体材料有三种:碳素钢Q235-A、B,不锈钢IGr18Ni9Ti,碳素钢内衬铜,U型管材料有,紫铜管T2及不锈钢管ICr18Ni9Ti,可按需要加以选用。 5.卧式节能型式为钢制鞍式支座。与国际S154、S165相同。立式为柱脚支座。 6.热交换器必须设置安全装置,下列三种安全装置可选择其中一种装设于交换器上: (1)在交换器顶装安全阀,安全阀压力须与热交换器的最高工作压力相适应(向安全阀生产厂订货时需加以申明)。安全阀的安装与使用应符合劳动人事部《压力容器安全技术监督规程》的规定。 (2)在交换器顶部装设接通大气的引出管(在有条件的场合)。 (3)设膨胀水箱,与水加热器相连,以放出膨胀水量。 7.若水中含有硬度、盐类,使用热交换器时,器壁和管壁会形成水垢,导致换热率降低,能耗增加,因而影响使用,故应采用一定的软化措施。 8.钢衬铜热交换器比不锈钢热交换器经济,并且技术上有保证。它利用了钢的强度和铜的耐腐蚀性,即保证热交换器能承受一定工作压力,又使热交换器出水水质良好。钢壳内衬铜的厚度一般为 1.2mm。钢衬铜热交换器必须防止在罐内形成部分真空,因此产品出厂时均设有防真空阀。此阀除非定期检修是绝对不能取消的。部分真空的形成原因可能是排水不当,低水位时从热交换器抽水过度,或者排气系统不良。水锤或突然的压力降也是造成负压的原因。 信息来源:51承压设备论坛https://www.sodocs.net/doc/b06674859.html, 原文链接:https://www.sodocs.net/doc/b06674859.html,/thread-25638-1-1.html

双进双出磨煤机的结构原理及工作中的影响因素(尹立杰)

600MW机组双进双出磨煤机的结构原理及影响工作的主要因素 尹立杰 (山东诚信国电聊城项目监理部) 摘要:本论文介绍了山东聊城发电厂二期双进双出钢球磨煤机的型号、性能及特点,以及分析影响磨煤机工作的主要因素,及有效的控制方法。通过上述内容的,对安装工程起到辅导性的作用。 关键词:结构原理影响因素 1 概述 近年来,随着我国进口锅炉投用的逐渐增多,与之相配套的制粉系统的形式也越来越多。双进双出低速滚筒式钢球磨煤机就是其中的一种。我国原来采用的低速钢球磨煤机一般均为单进单出式磨煤机,即单侧进煤单侧出风,而双进双出式磨煤机为双侧进煤双侧出风,较单侧进煤单侧出风磨煤机的效率有大大的提高。目前,国电聊城发电厂2×600MW二期工程机组所选用的制粉系统均为双进双出正压直吹低速滚筒式钢球磨煤机(BBD4360型)。 该类型磨煤机由两端完全对称的给煤机进煤,由两端完全对称的分离器出粉,故称为双进双出球型磨煤机.由于磨煤机正压运行,在耳轴的固定部分和转动部分之间,密封风机提供反向压力以防止煤粉泄漏;磨煤机配制一套惰性置换系统,目的是在磨煤机运行条件要求的情况下向磨内进行充惰,一旦有着火报警,可以喷高压蒸汽进行灭火;磨煤机自身装有的一套加球系统,磨煤机无需停运的情况下,即可给磨煤机补加钢球。 2 磨煤机总体结构 如上图所示,该类型磨煤机主要由:磨煤机壳体、主轴承、给煤/出粉管,驱动装置、润滑油系统等部件组成。另外还包括空心轴、衬板、大、小齿轮、空气离合器、减速机、电机、分离器等附件。 1)双进双出磨煤机的系统简图如下:

如上图所示,每台磨煤机对应4只BSOD(磨煤机一次风/粉出口挡板)和2只PSOD(磨煤机入口一次风关断挡板),在磨煤机停运或紧急跳闸时快速关闭,防止一次风/粉经过磨煤机进入炉膛,保证锅炉的安全运行。2只磨煤机密封风挡板,调节磨煤机内外差压在1700pa 左右,防止磨煤机向外冒粉污染环境。1只容量风挡板,磨煤机运行时调节磨煤机进入炉膛的风/粉量大小。1只热风挡板和1只调温风挡板,用来调节控制磨煤机的出口温度在66?C,保证磨煤机的安全稳定运行。 (2)国电聊城发电厂2×600MW机组锅炉额定出力为2027T/H,配有上海重型机器厂有限公司制造的双进双出磨煤机6台。每台磨煤机对应4只(2对)燃烧器,整台锅炉共有24只燃烧器。下面以山东聊城发电厂600MW机组双进双出磨煤机为例,进一步对照说明。 1)国电聊城发电厂2×600MW二期工程双进双出磨煤机相关参数: 磨煤机本体 型号: BBD4360型数量: 6台 筒体直径: 4250mm筒体转速: 16r/min 筒体长度: 6140mm铭牌出力: 75t/h 磨煤机出口温度: 145℃煤粉细度R200: 15%

BBD系列双进双出钢球磨煤机结构及工作原理

一、BBD系列双进双出钢球磨煤机结构及工作原理 1.概述 双进双出钢球磨煤机是从单进单出钢球磨煤机基础上发展起来的一种新颖的制粉设备,它具有烘干、粉磨、选粉、送粉等功能,通常被称为直吹式粉磨系统。 BBD系列双进双出钢球磨煤机是火力发电厂直吹式磨煤机制粉系统的主体设备,该设备具有连续作业率高、维修方便、粉磨出力和细度稳定、储存能力大、响应迅速、运行灵活性大、较低的风煤比、适用煤种广、不受异物影响、无需备用磨机等优点,适合研磨各种硬度和磨蚀性强的煤种,是火力发电厂锅炉制粉设备中除直吹式中速磨煤机、高速风扇式磨煤机之外的又一种性能优越的直吹式低速磨煤机。 BBD系列双进双出钢球磨煤机主要配套于100MW、200MW、300MW、600MW和900MW大型火力发电机组锅炉的制粉系统,也可用于化工、建材和磷矿等部门作为制粉的设备。 2.双进双出钢球磨煤机工作原理(参见图1) 双进双出磨煤机包括两个非常对称的研磨回路,每个回路表述如下: 原煤通过速度自动控制的给煤机从料斗卸下进入混料箱,经旁路风预干燥后,通过落煤管落到分离器底部,靠螺旋输送装置的旋转运动将煤送入正在旋转的筒体。磨煤机由主电机经减速器及开式齿轮传动带动筒体旋转。在筒体装有一定量研磨介质-钢球。通过筒体的旋转运动将钢球提升到一定高度,钢球在自由泻落和抛落过程中对煤进行撞击和摩擦,直至将煤研磨成煤粉。 热的一次风在进入磨机前被分成两路。一路为旁路风,旁路风作用两个方面,一方面在混料箱与原煤混合对煤进行预干燥。另一方面保持在煤粉管道中拥有足够的输送煤粉的风速。另一路为入磨风,进入磨机筒体,输送并干燥筒体的煤粉。风粉混合物通过中心管与中空管之间的环形通道被带出磨机。煤粉、入磨风及旁路风在输送器混合在一起后进入分离器,分离器装可调整煤粉细度叶片,可根据要求调整煤粉细度,粗粒的不合格煤粉靠重力作用返回到原煤管,与原煤混合在一起重新进行研磨。经分离器分离后合格煤粉通过煤粉出口及送粉管道输送至燃烧器,然后喷进锅炉进行燃烧。 因为这两个回路是对称而彼此独立的回路,具体操作时可使用其中一个或同时使 用两个回路。在低负荷运行状态下,可实现半磨运行。

手机电路原理,通俗易懂

第二部分原理篇 第一章手机的功能电路 ETACS、GSM蜂窝手机是一个工作在双工状态下的收发信机。一部移动电话包括无线接收机(Receiver)、发射机(Transmitter)、控制模块(Controller)及人机界面部分(Interface)和电源(Power Supply)。 数字手机从电路可分为,射频与逻辑音频电路两大部分。其中射频电路包含从天线到接收机的解调输出,与发射的I/Q调制到功率放大器输出的电路;逻辑音频包含从接收解调到,接收音频输出、发射话音拾取(送话器电路)到发射I/Q调制器及逻辑电路部分的中央处理单元、数字语音处理及各种存储器电路等。见图1-1所示 从印刷电路板的结构一般分为:逻辑系统、射频系统、电源系统,3个部分。在手机中,这3个部分相互配合,在逻辑控制系统统一指挥下,完成手机的各项功能。 图1-1手机的结构框图 注:双频手机的电路通常是增加一些DCS1800的电路,但其中相当一部分电路是DCS 与GSM通道公用的。 第二章射频系统 射频系统由射频接收和射频发射两部分组成。射频接收电路完成接收信号的滤波、信号放大、解调等功能;射频发射电路主要完成语音基带信号的调制、变频、功率放大等功能。手机要得到GSM系统的服务,首先必须有信号强度指示,能够进入GSM网络。手机电路中不管是射频接收系统还是射频发射系统出现故障,都能导致手机不能进入GSM网络。 对于目前市场上爱立信、三星系列的手机,当射频接收系统没有故障但射频发射系统有故障时,手机有信号强度值指示但不能入网;对于摩托罗拉、诺基亚等其他系列的手机,不管哪一部分有故障均不能入网,也没有信号强度值指示。当用手动搜索网络的方式搜索网络时,如能搜索到网络,说明射频接收部分是正常的;如果不能搜索到网络,首先可以确定射频接收部分有故障。 而射频电路则包含接收机射频处理、发射机射频处理和频率合成单元。 第一节接收机的电路结构 移动通信设备常采用超外差变频接收机,这是因为天线感应接收到的信号十分微弱,而鉴频器要求的输人信号电平较高,且需稳定。放大器的总增益一般需在120dB以上,这么大的放大量,要用多级调谐放大器且要稳定,实际上是很难办得到的,另外高频选频放大器的通带宽度太宽,当频率改变时,多级放大器的所有调谐回路必须跟着改变,而且要做到统一调谐,

新风全热交换原理

全热交换器工作原理就是一种将室外新鲜气体经过过滤、净化,热交换处理后送进室内,同时又将室内受污染的有害气体进行热交换处理后排出室外,而室内的温度基本不受新风影响的一种高效节能,环保型的高科技产品。 工作原理:全热交换器的核心器件就是全热交换芯体,室内排出的污浊空气与室外送入的新鲜空气既通过传热板交换温度,同时又通过板上的微孔交换湿度,从而达到既通风换气又保持室内温、湿度稳定的效果。这就就是全热交换过程。当全热交换器在夏季制冷期运行时,新风从排风中获得冷量,使温度降低,同时被排风干燥,使新风湿度降低;在冬季运行时,新风从排风中获得热量,使温度升高,同时被排风加湿。 全热交换器主要由热交换系统、动力系统、过滤系统、控制系统、降噪系统及箱体组成。 1、热交换系统 目前,无论在国内或就是国外,在全热交换器上采用的热交换器有静止与旋转两种形式其中转轮式热交换器也属于旋转式类型。从正常使用与维护角度出发,静止式优于旋转式,但大于2×10000m3/h 的大型机来说,一般只能靠转轮式热交换器才能实现,因此可以说静止式与旋转式各有优缺点。 为了易于布置设备内的气流通道,以缩小整机体积,全热交换器采用了叉流、静止板式热交换器。亦即:冷热气体的运动方向相互垂直,其气流属于湍流边界层内的对流换热性质。 因此充分的热交换可以达到较高的节能效果。 2、动力系统 全热交换器动力部分采用的就是高效率、降噪音风机。将经过过滤、净化与热交换处理后的室外新鲜空气强制性送入室内,同时把经过过滤,净化与热交换处理后的室内有害气体强制性排出室外。 3、过滤系统 全热交换器的过滤系统分为初效、中效、亚高效与高效四种过滤器。换气机在两个进风口处分别设置空气过滤器,可有效过滤空气中的灰尘粒子、纤维等杂质,有效地阻止室外空气中的尘埃等杂质进入室内达到净化的目的,并确保主机的热交换部件不被污物附着而影响设备性能。 4、控制系统 ①全热交换器选用可靠的电器组件,以安全可靠长寿命运行实现不同风量的控制。 ②根据不同的使用环境选配不同的控制方式。 ③可实现自动、定时、预置。 5、降噪系统 全热交换器主机外壳内侧粘贴聚乙烯发泡材料,钣金件结合处有长效密封材料,可有效的降低整机的噪音。 6、外壳 全热交换器外壳采用柜架结构。分别采用冷板喷塑、不锈钢板等不同材质,亦可根据用户实际需求选择不同材质加工。 全热交换器的功能 1、过滤净化空气,保证室内的空气品质。 2、保证室内的冷热负荷(温度)基本不受新风的影响。 全热交换器的特点 1、双向换气 室内外双向换气,新风与污风等量置换,根据客户要求可实现正负压操作;新风与排风完全隔开,彻底避免交叉感染发生。 2、过滤处理

中速磨煤机结构原理、工作过程及其特点汇总

中速磨煤机结构原理、工作过程及其特 点汇总 目前市场上比较先进且应用较广的制粉设备当属中速磨煤机,中速磨煤机的磨粉部件是一对以不同速度相向旋转的圆柱形磨辊,待磨物料被喂入两辊之间研磨成粉。该机与皮带机等组成一条生产线,其中皮带机价格等会影响到投入的成本,与盘式磨粉机和锥形磨粉机相比,具有研磨时间短,加工质量好、动力消耗少等优点,但它的结构较复杂。 今天,小编带着大家一块来了解一下中速磨煤机结构特点,加深您对中速磨煤机的认识! 一、结构原理 中速磨煤机有两组相对运动的碾磨部件,碾磨部件在弹簧力、液压力或其它外力作用下,将其间的原煤挤压和碾磨,最终破碎成煤粉;

通过碾磨部件旋转,把破碎的煤粉甩到风环室,流经风环室的热空气流将这些煤粉带到中速磨煤机上部的煤粉分离器,过粗的煤粉被分离下来重新再磨,在这个过程中,热风还伴随着对煤粉的干燥;在磨煤过程中,同时被甩到风环室的还有原煤中夹带的少量石块和铁器等杂物,它们最后落入杂物箱,被定期排出。经过上述加工过程,中速磨煤机可以为高炉炼铁系统提供非常适合使用的辅助材料煤粉。优质中速磨煤机具有金属耗量少,金属磨耗低,维护费用低,磨煤电耗小,工作噪音低,结构合理,坚固耐用,价格低廉,维修方便等特点。中速磨煤机主要由磨粉部分、筛粉部分、传动部分和机架等组成。 1、磨粉部分 磨粉部分是磨粉机的主要工作部分,由进料斗、流量调节机构、快与慢磨辊、磨辊间距调节机构与机体等组成。磨辊通常有两种形式:

一类是在磨辊表面刻有不同几何参数的细槽(拉丝),称为齿辊;另一类是光滑的圆柱表面,称为光辊。磨粉机的进料和磨辊离合机构有手动控制和自动控制两种,传统的自动控制大多是液压的。 2、筛粉部分 有平筛和圆筛两种类型。平筛是由若干不同传动筛孔的木质筛格叠合而成,采用振动式筛理,圆筛采用回转式筛理。 3、传动部分 由电动机及电动机传动轮、圆筛带轮、快辊传动轮、慢辊齿轮和快辊齿轮等组成。工作时电动机上的电动机传动轮通过快辊V带,首先带动磨头上的快辊,由快辊二联传动轮经过圆筛V带,通过圆筛传动轮转动圆筛。 二、工作过程 中速磨煤机工作时原料经过由人工送入进料斗,然后由慢辊将物料喂入慢辊和快辊之间进行研磨,磨料经出料斗进入圆筛,筛上物由出麸口流出,筛下物为面粉,由出粉口流出。 三、特点 中速磨煤机结构复杂,体积大,自重大,占地面积大,设备的价格高,与其他磨粉机相比,具有研磨时间短,加工质量好,运行消耗少,自动化程度高等优点,广泛地应用于矿石的加工。

磨煤机减速机结构

这几天看到磨煤机的行星轮减速箱但对行星轮工作原理不是很明白 所以在网上找了点资料与大家 第一次发贴不妥的地方大家见谅 1)齿圈固定,太阳轮主动,行星架被动。 从演示中可以看出,此种组合为降速传动,通常传动比一般为2.5~5,转向相同。 2)齿圈固定,行星架主动,太阳轮被动。 从演示中可以看出,此种组合为升速传动,传动比一般为0.2~0.4,转向相同。

3)太阳轮固定,齿圈主动,行星架被动。 从演示中可以看出,此种组合为降速传动,传动比一般为1.25~1.67,转向相同。 4)太阳轮固定,行星架主动,齿圈被动。 从演示中可以看出,此种组合为升速传动,传动比一般为0.6~0.8,转向相同。 5)行星架固定,太阳轮主动,齿圈被动。 从演示中可以看出此种组合为降速传动,传动比一般为1.5~4,转向相反。

6)行星架固定,齿圈主动,太阳轮被动。 从演示中可以看出此种组合为升速传动,传动比一般为0.25~0.67,转向相反。 7)把三元件中任意两元件结合为一体的情况: 当把行星架和齿圈结合为一体作为主动件,太阳轮为被动件或者把太阳轮和行星架结合

为一体作为主动件,齿圈作为被动件的运动情况。 从演示中我们可以看出,行星齿轮间没有相对运动,作为一个整体运转,传动比为1,转向相同。汽车上常用此种组合方式组成直接档。 8)三元件中任一元件为主动,其余的两元件自由: 从分析中可知,其余两元件无确定的转速输出。第六种组合方式,由于升速较大,主被动件的转向相反,在汽车上通常不用这种组合。其余的七种组合方式比较常用。 行星齿轮传动的定义及特点 齿轮传动在各种机器和机械设备中已获得了较广泛的应用。例如,起重机械、工程机械、冶金机械、建筑机械、石油机械、纺织机械、机床、汽车、飞机、火炮、船舶和仪器、仪表中均采用了齿轮传动。在上述各种机器设备和机械传动装置中,为了减速、增速和变速等特殊用途,经常采用一系列互相啮合的齿轮所组成的传动系统,在《机械原理》中,便将上述的齿轮传动系统统称之为轮系。 一、行星齿轮传动的定义 轮系可由各种类型的齿轮副组成。由锥齿轮、螺旋齿轮和蜗杆轮组成的轮系,称为空间轮系;而由圆柱齿轮组成的轮系,称为平面系统。本书主要讨论平面轮系的设计问题。 根据齿轮系运转时其各齿轮的几何轴线相对位置是否变动,齿轮传动分为两大类型。 1.普通齿轮传动(定轴轮系) 当齿轮系运转时,如果组成该齿轮系的所有齿轮的几何轴线位置都是固定不变的,则称为普通齿轮传动(或称定轴轮系)。在普通齿轮传动中,如果各齿轮副的轴线均互相平行,则称为平行轴齿轮传动;如果齿轮系中含有一个相交轴齿轮副或一个相错轴齿轮副,则称为不平行轴齿轮传动(空间齿轮传动)。 2.行星齿轮传动(行星轮系) 当齿轮系运转时,如果组成该齿轮中至少有一个齿轮的几何轴线位置不固定,而绕着其他齿轮的几何轴线旋转,即在该齿轮系中,至少具有一个作行星运动的齿轮,如图1(a)所示。在上述齿轮传动中,齿轮a、b和构件x均绕几何轴线OO转动,而齿轮c是活套在构件x的轴Oc上,它一方面绕自身的几何轴线Oc旋转(自转),同时又随着几何轴线Oc 绕固定的几何轴线OO旋转(公转),即齿轮c作行星运行;因此,称该齿轮传动为行星齿轮传动,即行星轮系。 行星齿轮传动按其自由度的数目可分为以下几种。 (1)简单行星齿轮传动具有一个自由度(W=1)的行星齿轮传动,如图1(b)所示。对于简单行星齿轮传动,只需要知道其中一个构件的运动后,其余各构件的运动便可以确定。 ||| (2)差动行星齿轮传动具有两个自由度(W=2)的行星齿轮传动,即它是具有三个可动外接构件(a、b和x)的行星轮系[见图1(a)]。对于差动行星齿轮传动,必须给定

扩频原理

1.1 扩频通信系统发展概述 扩频通信(spread spectrum communication)是近几年内迅速发展起来的一种通信技术。在早期研究这种技术的主要目的是为提高军事通信的保密和抗干扰的性能,因此这种技术的开发和应用一直是处于保密状态。美国在20世纪50 年代中期,就开始了对扩频通信的研究,当时主要侧重在空间探测、卫星侦察和军用通信等方面。以后,随着民用通信的频带拥挤日益严重,又由于近代微电子技术、信号处理技术、大规模集成电路和计算机技术的快速发展,与扩频通信有关的器件的成本大大地降低,从而进一步推动了扩频通信在民用领域的发展金额应用,而且也使扩频通信的理论和技术也得到了进一步的发展。目前在军事上,它已经广泛应用于各种战略和战术通信的系统中,成为电子战中反干扰的一种重要的手段。扩频技术在军事应用上的最成功的范例可以以美国和俄国的全球卫星定位系统(GPS和GLONASS)以及美军的联合战术分布系统(JTIDS)为代表;GPS和GLONASS在民用上也都得到了广泛的应用,这些系统的技术基础就是扩频技术。扩频的码分多址技术应用于蜂窝移动通信中时,大大降低了噪声和衰落的影响,同时还避免了复杂的频率分配和时隙划分等技术上的困难,并可以省去保护频带或时隙,极大地提高了蜂窝通信系统中小区的频率复用度,使信号频谱利用率得到提高。1990年1月,国际无线电咨询委员会(CCIR,现为ITUR)在研究未来民用陆地移动通信系统的计划报告中已明确地建议采用扩频通信技术[5]。美国已制定出了基于CDMA蜂窝技术的IS-95标准,Samsung、Motorola等公司也已相继推出了各自的CDMA移动通信商用实验网已开通运行,并取得了良好的效果。 扩频技术由于其本身具备的优良性能而得到广泛应用,到目前为止,其最主要的两个应用领域仍是军事抗干扰通信和移动通信系统,而跳频系统与直扩系统则分别是在这两个领域应用最多的扩频方式。一般而言,跳频系统主要在军事通信中对抗故意干扰,在卫星通信中也用于保密通信,而直扩系统则主要是一种民用技术。面对全世界范围内对移动通信日益增加的要求,CDMA将是无线通信中最主要的多址介入手段。在本世纪,扩频技术将得到更加广泛的应用。 从扩频技术的历史可以看出,每一次技术上的大发展都是由巨大的需求驱动的。军事通信抗干扰的驱动以及个人通信业务的驱动使得扩频技术的抗干扰性能和码分多址能力得到最大限度的挖掘。展望未来,第四代移动通信系统(4G)的驱动无疑会使扩频技术传输高速数据的能力得到更大的拓展。 直接序列扩频系统又称为直接序列调制系统或伪噪声系统(PN系统),简称为直扩系统,是目前应用较为广泛的一种扩展频谱系统。人们对直扩系统的研究最早,如美军的国防卫星通信系统(AN-VSC-28)、全球定位系统(GPS)、航天飞机通信用的跟踪和数据中继卫星系统

相关主题